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Abstract

In this paper, we prove a functional central limit theorem for the multidimensional
parameter fractional Brownian sheet using martingale difference random fields. The
proof is based on the invariance principle for the Brownian sheet due Poghosyan and
Roelly (Stat. Probab. Lett. 38:235-245, 1998).
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1 Introduction

Self-similar stochastic processes with long range dependence (or long memory) are im-
portant aspect of stochastic models in various scientific areas, such as econometrics,
network traffic analysis, hydrology, telecommunications, and so on. These are processes
X = {X;,t > 0} whose dependence on the time parameter ¢ is self-similar, in the sense
that there exists a (self-similarity) parameter 0 < H < 1 such that for any constant ¢ > 0,
{X.s,t > 0} and {c'X,,t > 0} have the same distribution. These processes are often en-
dowed with other distinctive properties.

Fractional Brownian motion (fBm) is the usual candidate to model phenomena in which
the self-similarity property can be observed from the empirical data. It is a suitable gen-
eralization of the standard Brownian motion B, which exhibits a long range dependence
(when H > 1/2), self-similarity, and Holder’s continuity, and which has stationary incre-
ments. Some surveys and comprehensive literature concerning fBm could be found in
Biagini et al. [2], Gradinaru et al. [3], Hu [4], Mishura [5] and Nualart [6].

The so-called fBm of Hurst parameter H is a continuous centered Gaussian process
B = {BH, ¢ > 0} with the covariance function

R(t,s) = E[B{'BY] = %[32” + 27—t — ).

Recall that B has the following integral representation with respect to the standard Brow-

nian motion B (when H > %):

t
B = / Ky (t,s)dB;, t>0, 1.1)
0
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where K} is the kernel defined by (see, e.g., Decreusefond and Ustiinel [7])

1 t
Ku(t,s) = (H - E)CH-S';H/ qu% (u —S)H7% du
S
with ¢y > 0 the following normalizing constant:

B 2HT' (3 - H)
VT H+ Dr2-2H)’

There are two possible multidimensional parameter extensions of the fBm. The first

one is the Lévy fractional Brownian random field (see Ciesielski and Kamont [8]), and the

second one is the anisotropic fractional Brownian random field introduced by Kamont [9]

as a centered Gaussian process B* = {B%,t € R?} with covariance function given by

2 2 2
[skak + tkak = |tk — skl ak],

N =

e[ ]=T]

d
k=1

where o = (a1, @2, ..., ag) € (0,1)%. We will call it a d-parameter fractional Brownian sheet.

Foraj=og=---=ayg = %, it coincides with the standard d-parameter Brownian sheet

W ={W,te ]Rf}. This process is null on the axes and has a continuous version.

It is well known that a martingale difference random field is extremely useful because it

imposes much milder restrictions on the memory of the sequence than under indepen-

dence, yet most limit theorems that hold for an independent sequence will also hold for a

martingale difference random field. Limit theorems for martingale differences were stud-

ied for example by Dai et al. [10], Nahapetian [11], Nieminen [12], Poghosyan [13], Shen

and Yan [14], Shen et al. [15], Wang et al. [16] and so on. In this work, we will present a

multidimensional parameter invariance principle for the fractional Brownian sheet, which

is proved by a convergence criterion for random fields to multi-parameter Brownian sheet

proved in Poghosyan and Roelly [1].

The rest of this paper is organized as follows. Section 2 contains some preliminaries on

the multidimensional parameter stochastic processes and a precise statement of the main

result of this paper. Finally, Section 3 is devoted to a proof of the main weak convergence

theorem, Theorem 2.1.

2 Preliminaries and main results

We will use the definitions and notations introduced in the basic work of Bickel and
Wichura [17]. Consider [0,1]¢ with the usual partial order. Let (2,.%,P) be a complete
probability space and let {.%;t € [0,1]%} be a family of sub-o-fields of .# such that
Fs C F; for any s < t. Given s < t, we denote by A;X; the increment of the process X

over the rectangle (s, f] = ]_[il(si, 4] C R4,

Let A be the group of all mappings A : [0,1]¢ — [0,1]% of the form A(t) = (A1(t1), ...,
A4(t4)), where each A; : [0,1] — [0,1] is continuous, is strictly increasing, and fixes zero
and one. Denote by D = D([0,1]%) the Skorohod space of functions on [0,1]% which are
continuous from above with limits from below and equip D, as usual, with the metric

d(x,y) == inf{min(|lx — yA[,, |All) : & € A},
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where ||x—yA|| = sup{|x(t) —y(A(2))] : £ € [0,1]%} and || A|| = sup{|A(£) | : £ € [0,1]¢}. Under
this metric, D is a separable and complete metric space. For more details we refer to Bickel
and Wichura [17]. Let X, X" be processes in D, we say X” converges in law to X if Ef(X") —
Ef(X) for all bounded and continuous functions f : D — R as # tends to infinity.

On the d-dimensional integer lattice Z%, let I be the o -algebra of invariant subsets of :

1= {A e ¥ :1,(A)=Aforeachu e Zd},
where {t,, u € Z*} is the group of translations, acting on by 7,(X) = X(t — u), t € Z°.

Definition 2.1 A random field {£(¢),t € Z*} is called translation invariant (homogeneous)
if P(t,(A)) = P(A) for each A € .% and u € Z%.

Definition 2.2 A translation invariant random field {&(£), ¢ € Z%} is called ergodic if P is
trivial on the o -algebra of invariant subsets, i.e. P(A) =0 or P(A) =1 foreach A € 1.

For u = (uy, Us, ..., uz) € Z2, let
Z‘_i(u) = {t e7%: 3j,1 <j <dsuchthat ;< uj},
and let fo(u) = Z\Z%(u). For a random field {£(£),t € Z%}, set P(u) = o {&(t),t € Z%(w)}.

Definition 2.3 A random field {£(t),t € Z%} is called a martingale difference if, for each
teZq,

EE@IPE-1)=0 as,
wheret—1=(t; — Lty —1,...,t5 - 1).

Set
s t
K]{’,(t,s)::n/ 1I(H(ﬂ,u)du, n=12,..., (2.1)
s=u n

where |x| denotes the greatest integer not exceeding x. It is an approximation of Ky/(Z, s).

Let oy > %, k=1,2,...,d. Taking into account the integral representation (1.1) for the
fBm, the d-parameter fractional Brownian sheet B* has also the following integral repre-
sentation:

tg 151
Bi‘ = / e / 1<0t1 (tlx u1)1<0t2 (tz, uz) o 'I<ad (td; ud) dWm (22)
0 0

where {Ky,,k=1,...,d} is given by (1.2).
The following theorem is the main result of the present paper, it is a multidimensional

extension of Nieminen [12].

Theorem 2.1 Let oy > %, k=12,...,d. {Eiyf,iz,...,id’ik =1,2,...} is a translation invariant,

ergodic, martingale difference random field with finite second moment E(§]; . d)2 < +00
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such that

lim & 1 as. (2.3)

00 thk2rld -

foralll <ix <nand

X |5i7,i2 ,,,,, id| <C as. (2.4)

1<ix<n

for some C > 1. Define, foralln > 1,t = (1, ty, ..., tg) € [0,1]%,

d
B} := gZ Silizei h

k=1 ig=1
i i
W 0 t £
x| ] K, _Ln 1] Jup ) Ky _Ln ] Jug | duy -+ dug, (2.6)
ig-1 -l T\ g W\ n

where the kernel Ky, is given by (1.2) and the sequence {ng, n=12,...} defined by (2.1) is
an approximation of Ky, .
Then, {Z"} converges weakly in the Skorohod space D([0,1]%) to the d-parameter frac-

tional Brownian sheet B*.

In the rest of this paper, most of the estimates contain unspecified constants. An un-
specified positive and finite constant will be denoted by C, which may not be the same in
each occurrence. Sometimes we shall emphasize the dependence of these constants upon

parameters.

3 Proof of Theorem 2.1

In this section, we will prove Theorem 2.1. We verify weak convergence via the conver-
gence of finite dimensional distributions and tightness. We first check the tightness. Since
the Z” are null on the axes, using the criterion established in Bickel and Wichura [17], it

suffices to prove the following lemma.

Lemma 3.1 Let {Z!} be the family of processes defined by (2.6). Then for any s, t € [0,1]%
with s < t and any even number m > 2, there exists a constant C,, such that

d
supE(AsZZ’)m <Cu l_[(tk = )"k,
" k=1
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Proof Notice that

ty 51
Az [T [0 )~ K ) x ¢ (K2 ) = K )
Sd s1

PR " 0 " Lt ] [751]
=n2 Z Z Eil,izw-,id i i I(al T; u _Koq T; u

k=1 ix=1
t,
<atd(M)ud> _Kad<w,ud)) dul e dud
n n

X...X<

d |nt] i
d " Lt [7251]
=n2 Z fil,l‘z ..... i /L <Ka1 <—n , ul) - Ky, (—n , u1>) du,

k=1 ix=1

~~

in [ ] A Lty sy
E(A Z”) = 2E|:Z ‘ gi’ll,in-'-vid /ﬂ <I(a1(71,u1> —Kal<71,u1)> du,
4 ¢ "
X"'X/ <I(ad<|_n djrud)_Kad<Mrud)>dud:|
ig-1 n n
d n] i
t
5 o () ()
X i-1 n n

=1 =1 n

il m
X oo X ﬁd*l (]de(%’ud) —I(ad(@;ud>)dud:|
[ntx] 2
[ (\/—Z ‘[k 1 ( (Lnth k) —Kak(%ij’”o)d”k) :|

ix=1

m
2

By the Cauchy-Schwarz inequality, the last expression can be bounded by

d [ Lnt] 2 5
1[5 L () (2 ]

ix=1

e[ (o () () )

k=1

m
2

moy

Lnt] — Lnsi]

:Cm
n

>
I
—_

Let us have now arbitrary 0 < s < # and % < ag < 1. If nty — nsy > 1, then we have

|M |2% < |2(tx — s¢)|?**. On the other hand, if ntx — nsi < 1 then either t; and s; be-

long to a same subinterval 77, ”’“) for some integer m, which implies |M [2% = Q.



Wang and Cui Journal of Inequalities and Applications (2016) 2016:202 Page 6 of 9

Therefore, we get

20

Lntr] — Lnsk] < |2 _Sk)|2ak

n

for all » > 1. This completes the proof of this lemma. O

We now proceed with the identification of the limit law by proving the convergence of
the finite-dimensional distributions of the processes {Z}'} to those of B*.

Theorem 3.1 The family of processes {Z!'} defined by (2.6) converges, in the sense of a
finite-dimensional distribution, to the d-parameter fractional Brownian sheet B*.

Proof Forall N € N, consider ay, ...,ay € Rand £,...,tN €0, 1]%. It suffices to prove that

the linear combination

N
Y" =Y " az)
j=1

converges in distribution, as # tends to infinity, to a normally distributed random variable

with zero mean and variance

N
E(Z a,»B';)
j=1

2

Fact is that the zero mean is trivial. Next, we observe that

N
(6" = E(Y")’ = > qaEZiZ
jl=1

iq
n

N d_n nt] |
_ ZajdlndZZ/i‘dfl ...ﬁ_l 1<m( . ,m)

jil=1 k=1 ix=1" "n_ n

nt
X oo X1<ad<M,Md>du1"'dud
n
iq i I
" E Lt} Lnt,] 2
X /;d‘l "/QK‘“( P uy ) Ky, T,ud duy - - dud(éfl‘,iz ,,,,, id)
N d n ik j i !
d " A " Lnt; ] 2
= Za,a,n 1_[ /ﬂ Kak< . Ju | du ﬂKak . U d”‘(ff?,@ YYYY id) .
Jil=1 k=1ix=1""n

Consider now the inner sum. By the mean value theorem, we have

n /3 i U3 /
v () T
n E - Kak( ” U du/;_l Ky T,u du

n

n j !
Ko, ( L”lnt;(J , ”?,k)Kak (%, qu> (3.1)
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for some uj, u}; € (”‘ = ”‘] Since the kernel Ky, (¢, ) is continuous and decreasing we see
that (3.1) is equal to

n I
S () () o2

ir=1

for some

u! € [min(uy, uf}), max(uf,, u))] S (lk — 1, l_k]

n n

On the other hand, we observe that the kernel Ky with 1 < H <1is continuous with respect

[mJ

to both arguments and the maps ¢ — converge umformly to the identity map in [0, T'].

So (3.2) is a Riemann type sum. Thus, combmmg with (2.3), we see that (3.1) converges to

1
/ o () K (£, ) .

As a consequence, we see that (o™)? converges to

Za,a,n / (o) (Za,3a>

Jil=1

Let us now write Y” as

N
no_ on
Y= a4z,
j=1
d N iq i ,
' ", (Ll
ZZ” glller wid Zal ig-1 qo1 n Iz
k=1 j=1 j=1 e i
A
X"'Xl<otd< yUd dul dd
d n
o— n
. Yil,iz ,,,, ig
k=1 ir=1

Then, it remains to prove that the following Lindeberg condition is satisfied:
2 ; . .
nlggo kX: X}E 11 2wl 1{\Y,-'I,,-2,.‘,,idl>s} [Pl -1ia=1,...,00 - 1)] =0 (3.3)
1 i

for all & > 0. By the Cauchy-Schwarz inequality and the fact that the kernel Ky(¢,s) with
3 <H <1is increasing in ¢ and decreasing in s, we have

()/i}:,iz,w,l’d)z = nd( i}f,iz,.‘.,id)2

N iq ia j i 2
" " Lnt) | A
x<§ a,-/ﬂ---/EKal( - ,u1>--~1(ad(Td,ud duy - dug
j=1 n n
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i id 2
2 n n
< nd( iyf,iz,...,z’d) A(/tl_1 Koy (L) dug X -+ % _/ﬂ K., (1, ud)dud)

i

q
2 n n
< (&) A /171 K; (Lw)duy x -+ x / K, L ua) dug

n n

d

1
= ( i?,iz,...,id)zAH/O ka(l, u) du

k=1

= (&, ) A8,

11509500l
1
where A := (3, 4;)? and §" := &, Ji K3, (Lu) du. So we get

(Yhiial > €} = (V)" > €2 S (8], 0) A8 > €7},

150250y i15025mig i1,020ig
Consequently, we obtain

E[(Y;T,iz,-.-,id)zl{‘yrqvfz

n 2 n
<E[( ) A"

id|>s}|7)(i1 ~Liy-1,...,ig - 1)]

asnsey|[Plin—1ia—1,...,0g = 1)]

i525e0ig) 70 T G, iq

< CA(S”E[I{(ginl‘l_zwid)z a2y Plin—1ia —1,...,ig - 1)]

forall iy =1,2,...,m, k=1,2,...,d, and that

d n
> ZE[(Yiyll,iz,...,id)zl{\Y{Liz ,,,,, el Pl =L =1, ig = 1)]

k=1 ix=1

n

d
S Z CASHE[I{(Sinl,iz,m,id)2A6n>82} |P(l1 - 1, iz - 1, ceey id - 1)]
k=1 ix=1

d n
< CAs" Z ZE[I{CA6”>92}] -0 (n—00)

k=1 ix=1

because 6" — 0, implies 1;cgsn..2) — 0.
Thus, the Lindeberg condition (3.3) holds and the proof of Theorem 2.1 is now com-
plete. d
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