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proposed by Byrne and Moudafi (Working paper UAG, 2013), and few algorithms
came from the idea of the alternating CQ-algorithm given by Moudafi (Nonlinear
Anal. 79:117-121, 2013). Hence, it is important and necessary to give new algorithms
from the idea of the alternating CQ-algorithm. In this paper, we first present a hybrid
projected Landweber algorithm to study the split equality problem. Next, we propose
a hybrid alternating CQ-algorithm to study the split equality problem. As applications,
we consider the split feasibility problem and linear inverse problem. Finally, we give
numerical results for the split feasibility problem to demonstrate the efficiency of the
proposed algorithms.
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1 Introduction
Let H be a real Hilbert space with inner product (-,-) and norm || - ||. We denote the strong
convergence and weak convergence of {x,},cn tox € H by x,, — xand x,, — x, respectively.
The symbols N and R are used to denote the sets of positive integers and real numbers,
respectively. For each x € H, there is a unique element x € C such that [[x— || = min,ec [lx—
y|l. In this study, we set Pcx = ¥, and Pc is called the metric projection from H onto C.

Let H; and H, be two real Hilbert spaces. Let A : Hy — H, and A* : Hy — H; be two
linear and bounded operators. Then A* is called the adjoint of A if (Az, w) = (z, A*w) for all
z € Hy and w € H,. It is known that the adjoint operator of a linear and bounded operator
on a Hilbert space always exists and is linear, bounded, and unique. Further, we know that
Al = 1Al

Let H;, Hy, and Hs be real Hilbert spaces. Let C and Q be nonempty closed convex sub-
sets of H; and H,, respectively. Let A : H} — H3 and B : H, — Hj be linear and bounded
operators with adjoint operators A* and B*, respectively. The following problem is the
split equality problem, which was studied by Moudafi [2, 3]:

(SEP) Find x € C and y € Q such that Ax = By.
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Let @ :={(x,y) € C x Q: Ax = By} be the solution set of problem (SEP). Further, we ob-
served that (x,y) is a solution of the split equality problem if and only if

X = Pc(x - ,OlA*(Ax - BJ/)),
y= PQ(y + sz*(Ax - By));

for all p; > 0 and p, > 0 (for details, see [4]).

As mentioned by Moudafi [2], the interest of the split equality problem covers many
situations, for instance, in decomposition methods for PDEs, game theory, and intensity
modulated radiation therapy (IMRT). For details, see [2, 5, 6]. To solve problem (SEP),
Moudafi [3] proposed the alternating CQ-algorithm:

(ACQA) | %1 Pc(%n = puA™(Axy — Byn)),
Y11= PQn + puB*(A%yi1 — Byy)), neN,

where H; = RN, H, = RM, P is the metric projection mapping from H; onto C, and Py is
the metric projection mapping from H; onto Q, ¢ >0, A isaJ x N matrix, BisaJ x M
matrix, A4 and A are the spectral radii of A*A and B*B, respectively, and {p, } is a sequence
in (g,min{i, ﬁ} —8).

In 2013, Byrne and Moudafi [1] presented a simultaneous algorithm, which was called
the projected Landweber algorithm, to study the split equality problem

Xne1 := Pe(x, — ppA* (A, _Byn))y

(PLA) B}
Yn+1 := PQ()/n + pB*(Ax, _Byn))» neN,

where H; = RN, H, = RM, P is the metric projection mapping from H; onto C, and Py, is
the metric projection mapping from H; onto Q, ¢ >0, A isaJ x N matrix, BisaJ x M
matrix, A4 and Ap are the spectral radii of A*A and B*B, respectively, and {p,} is a sequence

in (e, )LAE)MB)'
Besides, we also observed that Chen et al. [7] gave the following modification of (ACQA)
by using the Tikhonov regularization method and proved a convergence theorem under

suitable conditions:

Xn+l = PC((l - 8npn)xn - pnA*(Axn _Byn)):

(TRA) i
Yne1 :=Po((L — €4,04)n + PuB* (A% — By,)), mneN,

where {¢,},cn is a sequence in (0, 00). Besides, many researchers studied problem (SEP)
and gave various algorithms. For more details about the algorithms for the split equality
problem, we refer to [8, 9] and related references.

Besides, from the literature we know that most algorithms in the literature come from
the idea of the projected Landweber algorithm, and few algorithms come from the idea of
the alternating CQ-algorithm. Hence, it is important and necessary to give new algorithms
from the idea of the alternating CQ-algorithm. In this paper, motivated by the works men-
tioned on the split equality problem, we present a hybrid projected Landweber algorithm
and a hybrid alternating CQ-algorithm to study the split equality problem and give con-
vergence theorems for the proposed algorithms. As applications, we consider the split fea-
sibility problem and linear inverse problem in real Hilbert spaces. Finally, we give numer-
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ical results for the split feasibility problem to demonstrate the efficiency of the proposed
algorithms.

2 Main results

In the sequel, we need the following lemma, which is a crucial tool for our results.

Lemma 2.1 [10] Let C be a nonempty closed convex subset of a real Hilbert space H, and
let Pc be the metric projection from H onto C. Then:
(i) (x—Pcx,Pcx—y) >0 forallxe H and y € C;
(i) |lx=Pcx||® + |Pcx—y|®> < |lx =y forallx € H and y € C;
(iii) ||Pcx — Pcyll? < (x —y, Pcx — Pcy) for all x,y € H.

2.1 Hybrid projected Landweber algorithm
Let H, H», and Hs be real Hilbert spaces with inner product (.,-)y, and norm || - | g;,
i =1,2,3. For simplicity, we write (-,-) and | - ||. Let C and Q be nonempty closed con-
vex subsets of H; and H,, respectively. Let A : H; — H3 and B: H, — Hj be linear and
bounded operators with adjoint operators A* and B*, respectively. Choose § € (0,1). Let
Q2 be the solution set of the split equality problem and suppose that Q # . Let {p,},en be
a sequence in (0, 00).

Now we present a hybrid projected Landweber algorithm to study the split equality
problem.

Algorithm 2.1 For given x, € H; and y, € H», find the approximate solution by the fol-
lowing iterative process.

Step 1. Compute the next iterate (u,,v,) as follows:

Uy = Pclx, — ppA*(Ax, — B)’n)];
Vi = Polyn + pnB*(Ax, — Byn)],

where p, > 0 satisfies

o2 (|[A*(Ax, - By,) - A*(Au, — Bv,,) ||2 + || B*(Ax, - By,) - B*(Au, — Bv,) ||2)

<8y — 0 ||* + 8llyn —vall®>, 0<8<1. (2.1)

Step 2. Ifx, = u, and y, = v,, then (x,,y,) is a solution of problem (SEP) and stop. Other-
wise, go to Step 3.

Step 3. Compute the next iterate (x,,,1,V,+1) as follows:

D(n,l) =Xy — Uyt Py [A*(Aurl - BV}’I) _A*(Axn _B_yn)]:

D(n,z) =Vn—Vn— Pn [B*(Au, — Bv,) — B*(Ax,, — Byn)]:
(¥n=ttn,D(,1) )+ n=vn:D(n2))
1Dgs,1) 241D 2 12 ’

Xptl = PC [xn - anD(n,l)]r
Ynl = PQ [yn - anD(n,2)]~

o, =

Next, update 7 := n + 1 and go to Step 1.
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Remark 2.1 If0< p, < X then (2.1) holds.

N
V2(IA]12+11B]12

Proof Without loss of generality, we may assume that x, # u, and y, # v,. We know

that
p? - (|| A*(Ax, - By,) — A*(Au, — Bv,) || + | B* (A%, — By,) — B*(Au, — Bv,)|”)

<ol (|4 P+ 1B°1") - A%, - By) - (4w, - Bv)|*

<p2- (A + IB)?) - (KA - 1% = 2tall + UBI - 11y = vill)

<2p7 - (IAI7 + 1BI%) - (LAI? - 1% = wall® + IBI* - 1lyn — vall?)

<202 (IA1% + 1BI%)” - (110 = 21l + 19 = vall?)

e . 2 2\2 _ 2 _ 2

<2 S AP+ IBEP (AN + 1B1%)” - (119 = s l* + 1190 = vall?)

=8 (1% — uall> + 1lyn = vall®).
Therefore, the proof is completed. g

Theorem 2.1 Let {p,},en be a sequence in (0,2/(||A||? + ||B|?)) such that (2.1) holds and
assume that liminf,_, o p,(2 — p,(|A|1%2 + | Bl|?)) > 0. Then, for the sequence {(X,, Yn) }nen in
Algorithm 2.1, there exists (x,y) € Q such that x, — x and y, — y as n — oo.

Proof Take any n € N and let # be fixed. Take any (i, v) € Q and let (i, V) be fixed. Then
e C,ve Q,and Au = By. First, we set

Enl = Pn [A*(Au, — Bv,) - A*(Ax, _Byn)]r
En2 = Pn [B*(Ax, _Byn) - B*(Au,, — Bv,)].

Then
<xn — Uy, D(n,l)) + <yn =V D(n,Z))

= (X — Uy Xpp — Uy + €y 1) + Y = Vis Y — Vi + En2)

2 2
= oo = wnll” + (Xn = sy €01) + 110 = Vall™ + Y = Vi €n2)

1
2 2
=3 ”xn - un” + (xn — Uy, 871,1) + E ”xn - Mn”

2
1 2 1 2
+ =y = Vall® + On = Vi €n2) + 2190 — Vall
2 2
1 2 1 2
z3 e — vl + (X0 — s, €1) + 3 llenall
1 2 1 2
+ = ”yn - Vn” + (yn — Vi, 871,2) + = ||8n,2”
2 2
Y L A
2 n n nl 2 n n n2
1 1
= S 1Dun|I” + S 1D I (2.2)
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By (2.2) we know that

a, = <xn — Uy, D(n,l)z) + <yn - Vn;D(n,2)> > l (23)
1DenylI* + |1 Dy 2
Next, by Lemma 2.1 we know that
[l — Olnl)(n,l) - xn+1||2 + %1 — Ijl”2 < l%n - anD(n,l) - 12”2 (2.4)
and
”yn - O5;/11)(n,2) _yn+1”2 + ||yn+1 - ‘_/”2 =< ||yn - O[nl)(n,Z) - 1_/”2 (2'5)
Hence, by (2.4),
lloes = 11> = [lo0a1 — 32|
> (196 — 1> = 1% = uDiu1) = &> + %01 = % + Dy |1
> (% — ill* = % — D) — ll*
= llotn — i))* = lovn — ))* — oo |1 Diuy I* + 2000 (0 — 4, Dn1))
=20, (x, — U, D(n,l)) - OlZ ”D(n,l) ”2 (2.6)
Similarly, we have
190 = V11> = 1y = P1* = 200 (Y = ¥, D)) = @ | Dy 1. (27)
By (2.6) and (2.7) we get
%1 = &1 + |ymer = VI
< 1% = ll* + 11y = V11> = 200 (% = 2 D 1)) = 20 (Y = ¥, D))
+ oy (1D lI* + 1D 1) (2.8)
Next, we know that
(0, — I:trD(n,l)> +{v, — 1_/,1)(;1,2)>
= (tn — 14, %n — thy + pu[ A*(Atsy — Bv,)) — A*(Ax,, — By,)])
+ (Vi = ¥, Yn = Vn — pu[ B* (At — Bv,)) — B*(Ax,, — By,,)|)
= (uy, — U, Xy — Uy — PpA" (A, — By,,)) + (u,, — i, puA*(Au, — va,))
+ (v,, — U, Y = Vy + ppB*(Ax,, — By,,)) - (v,, -9, puB*(Au, — BV,,)). (2.9)

By Lemma 2.1,

(un — Uy Xy — PuA" (A, — By,) - un) >0 (2.10)
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and
(Vn ~V, Y+ onB*(Ax, _Byn) - Vn) >0. (2.11)
Besides, we also have

(u,, —u, A" (Au, — an)) - <vy, -v,B*(Au,, - BV,,))
= (Au, — Au,Au, — Bv,)) — (Bv,, — Bv,Au,, — Bv,,)
= (Au, — Bv,, — Au + Bv,Au,, — Bv,)
= (Au, — Bv,,Au, — Bv,)

= |Au, — Bv,||* > 0. (2.12)
So, by (2.9), (2.10), (2.11), and (2.12) we determine that
(g — 1, Diu1y) + (Vi — ¥, D)) = 0, (2.13)
which implies that
(%n — U, D(1)) + Yn — Vs Dn2)) = (% — s Din1)) + Y = Vies D)) (2.14)
By (2.2), (2.8), and (2.14),

%1 = )1 + [|ymer — VI
< llotw = @l1” + lyn = VII* = 200 % — i D)) = 200 (¥ — ¥ D))
+ o (1D I* + 1D 1)
< Nl — 21 + 1yn = VII* = 200 ((%n = 4, D)) + Y = Vi Din2)))
+ 2 (1D I* + 1D 1)
= 11960 — &l1* + |y = V11> = &t (% — s D)) + 3 = Vs Dn2)))
< o — i)* + [lyn — VII*. (2.15)

So, {||, — || + ||y, — V||*} is a decreasing sequence, and lim,,_, o ||, — ||% + ||y, — V||* exists.
Further, {x,},cn and {y,},cy are bounded sequences, and

lim <xn - Mn:D(n,l)) + (yn - Vn:D(n,2)> =0. (216)

n—00

Besides, we know that

(xn - MmD(n,l)> + <_yn - Vn:D(n,2)>
= (xn — Uy, Xy — Uy + Sn,l) + O’n —VisyYn—Vn + 8;1,2)

= 1% = tnll® + (% = thy €01) + 90 = Vll* + D = Vi €02), (2.17)
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which implies that

[l — un”z + |y — Vn||2
= (xn - un;D(n,1)> + (yn - Vn:D(n,2)> - (xn - um£n,l> - (yn —Vu 8;1,2)

< (xn - un:D(n,l)) + <yn - Vn»D(n,2)> + ”xn - un” : ”8}1,1” + ||yn - Vn” : ”81'1,2”

l 2 2 2 2
< (%, — un;D(n,l)) + <yn - VmD(n,Z)) + 5 (”xn =t |” + lenall” + ”yn —Vull” + llenall )
1+6 5 2
< <xn - u}’llD(Vl,l)> + <yn - Vn:D(n,2)> + T : (”xn - un” + ||yn - Vn” ) (218)
Hence, by (2.18) we derive that
(1 - 8)(”.76;4 - un”2 + ”yn - Vn”z) =< z(xn - umD(n,l)) + 2<yn - Vn)D(n,2)>~ (219)
By (2.16) and (2.19) we know that
lim (|x, —u,|| = lim ”yn = Vull = 0. (2'20)
n—00 n—0o0
By Lemma 2.1 again,

lloty - ﬁllz = ”PC[xn — PnA™ (A, _Byn)] — Pc[u] ”2
=< ”xn - PnA*(Axn _Byn) - ﬁnz

< llww — a@ll* + p |AII* - |A%, — Byull® = 2, (A%, — By, Ax, — Ar).  (2.21)
Similarly,
Ve = V1% < llyn = VII* + 07 |1 B - 1A%y = Byull* + 204 (At — By, By, — BV).  (2.22)
By (2.21) and (2.22),

lletw — @l + v = 7)1
< lxn = &l* + lyu = 91> + o7 (IAI* + IBII*) - | A%, — By |?
- zpn (Axn _BymAxn _Aﬁ> + an (Axn _Byn;Byn - Bl—j)

= lloew = &ll* + 1y = VII* = ou(2 = ou(IIAI* + 1 BII®)) - Il A% — Byl (2.23)
We also have

=12 =12 2 = =112
ety — ull” + |V = VII™ = Nlotn — 2|7 + 2408, — Xy X0 — 1) + || — 1]

+ Vi = 9l + 2V = Y 9 = 9) + NIy = VII% (2.24)
By (2.20), (2.23), and (2.24) we get

lim [[Ax, — By,| = 0. (2.25)
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Since {x,,},en and {y,},en are bounded sequences, there exist subsequences {x,, }xen and
(¥ Yken Of (%} nen and {y,} nen, respectively, such that x,, — xandy,, — y for somex € H;
and y € H,. Since {x,},2, isasequence in C, we know that x € C. Also, y € Q. Since x,,, — x
and y,, — , it is easy to see that Ax,, — Ax and By,, — By by using the properties of A
and B. Further, Ax,, — By, — Ax— By, and the lower semicontinuity of the squared norm

implies
| A% - By||” < liminf |Ax,, — By, |* = lim ||Ax, — By,|* = 0. (2.26)
k—o00 n—00

Then Ax = By and (%,%) € Q.

Next, let {x/nk} and {y/nk} be other subsequences of {x,},cn and {y,},en such that x;k —X
and y, — J, respectively. Following the same argument as before, we get that (x,7) € Q.
Besides, we have

962 = X1 + [y — 1>
= [l — Z” + |12 - XI* + 2(x, — £ % — &)
g =317 + 15 = 51% + 20 = 5.5 - 7) (227)
and
960 = 1% + [y = 5117
= [lo6n — X% + 12 - X* + 2(x, — %, % — &)
g =717+ 17 =51 + 20 = 5,5 = 3)- (2.28)
Clearly, lim,, . oo [, — |12 + ||y, — ¥||* exists, and lim,,_, oo ||, — &[|2 + [, — 7|? exists. Hence,
by (2.27) we get
lim (Jle, = %1% + [y, = ¥11%)
n— o0
. P
= lim (|}, —%|"+ [, - 5]")
. T T N O
= lim ([}, %]+ 7, =317) + 12 =207 + 15 - 51

+ lim 2, ~ %33 +2 lim (v, -5,5-7)

k—00

2 A =2 A=n2
)+ 1E =%+ 17 -7l

4|y -7

- kggo(”x"k ~%
= lim (|l — RN+ llyw = 31%) + 1% =201 + 15 - 311%. (2.29)
Similarly, by (2.28) we have

nlingo(llxn = &%+ llyn = 31%) = nlingo(llxn = %1%+ llyn = 31%) + 11X =21 + 7 - 71 (2.30)

By (2.29) and (2.30) we know that x = & and y = j. Therefore, x,, — ¥ and y, — ¥, and the
proof is completed. O
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Remark 2.2 In Theorem 2.1, if we choose {p,,},en from (0, 7 ], then we only

-8
e JAI2+1BI?)
need to assume that liminf,_, o, p, > 0.

Proof Since p, € (0, m], we have

pu(IlAI* +1IBI*) <v/2- pu- (IAI* +1BI?) <8, VneN, (2.31)
which implies that

(2-pu(IAI* +1IBI?)) =2-8>1, VneNl. (2.32)

Since liminf,_, o, p, > 0, we may assume that there is « such that p, >« >0 for allm € N.

Hence, we determine
pn(2 = pa(IAI* +1BIP)) =k - (2= 8) >k, VneN. (2:33)
By (2.33) we get the conclusion of Remark 2.2. O

2.2 Hybrid alternating CQ-algorithm
In this subsection, we present a hybrid alternating CQ-algorithm to study the split equality
problem.

Algorithm 2.2 For given x, € H; and y, € Hj, find the approximate solution by the fol-
lowing iterative process.

Step 1. Compute the next iterate (u,, v,) as follows:

u, = Pclx, — ppA*(Ax, — Byn)];
Vp = PQb’n + pnB*(Aun _Byn)],

where p, > 0 satisfies

o2 (|A*(Ax, - By,) - A*(Au, — Bv,,) ||2 + || B*(Au,, - By,) - B*(Au,, — Bv,) ||2)

< 811%n — tull> + 8llyu —vull>, 0<8<l (2.34)

Step 2. Ifx, = u, and y, = v, then (x,,y,) is a solution of problem (SEP) and stop. Other-
wise, go to Step 3.
Step 3. Compute the next iterate (x,,1,¥4+1) as follows:

D(n,l) =Xy —Upt Pn [A*(Aun _BVn) _A*(Axn - Byn)]’

D(n,2) =Yn—Vn— Pn (B*(Au, — Bv,) - B*(Au, — Byn)];
(¥n—=1n,D(y, 1))+ (Yn=vn,D(11,2))

1Dgs,1) 241D 2 12 ’
Xptl = PC [xn - anD(n,l)];

Yn+1 = PQ[yn - Olnl)(n,Z)]'

oy =

Next, update #:= n + 1 and go to Step 1.
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Remark 2.3 If0<p, < V6 , then (2.34) holds.

Proof Without loss of generality, we may assume that x,, # u,, and y,, # v,. We have

p? - (|A*(Ax, — By,) — A*(Au, — Bv,)||” + | B*(Au, — By,) - B*(Au, - Bv,))||°)

&
&
&
&

max{v/2-|A]12,4/2-14]1%-|BI2+|BI3}

4% |1* - || (A%, = By,) = (Au, = Bv)||* + I1BIP - llyn = vull?)
A% |* - (1A%, — Auy |l + 1By, = Bv,ll)* + 1BIP - llyn — val®)
|A*|* - (211 A%, — A1 + 201By, = Bal®) + IBI - 19 = vull?)

2 A" = wall® + (2IAN2 - 1B + 1BI®) - 13 = val®)

2 2
< B81%n — tull” + 8llyn — vall”

Therefore, the proof is completed.

Page 10 of 17

O

Theorem 2.2 Let {p,} en be a sequence in (0,1/ max{||A||%, ||B||?}) such that (2.34) holds
and assume that liminf,_, o 0,(1 — p,||A]|?) > 0 or liminf,_, o 0,(1 — p,||B||?) > 0. Then, for

the sequence {(%y,Yn)}nen in Algorithm 2.2, there exists (x,y) € Q such that x, — x and

Yp =y asn— oo.

Proof Take any n € N and let n be fixed. Take any (i, v) € Q and let (i, V) be fixed. Then
ue C,veQ,and Au = Bv. First, we set

Enl = Pn [A*(AM,, - an) _A*(Axn _Byn)]r
En2 = Pn [B*(Aun _Byn) _B*(Aun - an)]'

Then

1 1
(xn - un;D(n,l)> + <yn - Vn:D(n,2)> > 5 ”D(n,l) ”2 + 5 ||D(n,2)||2-

By (2.35) we have that

<xn — Uy, D(n,l)) + <yn =V D(n,Z))

oy, =

1
>,
—2

D@ lI? + 1 Day 12

Next, by Lemma 2.1 we have

and

2 =112 =112
B OlnD(n,l) =Xt I” + %1 — 21" < [l — O‘nD(n,l) —ul|

lyn — anD(n,Z) _yn+1”2 + | Yne1 — ‘7”2 <lyn- C(}'tD(n,2) - 1_/”2

Hence, by (2.37),

=112 =112 - 2 2
”xn - Lt” - ||xn+l - M” = 20[;1 (xn - M)D(n,1)> - an”D(n,l)” .

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)
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Also, by (2.38),

19 = VI = 1¥ne1 = V11> > 20 (¥ = ¥, D)) — &2 | Dy 1

By (2.39) and (2.40) we get

%041 = &lI> + [[yna1 = VII?
<l = il + |y = VII* = 20 (%, = i, D1y} = 20 (Y = ¥, D))

+ (1D lI* + 1D I%)-
Next, we have

(un - ﬁrD(n,l)> + (Vn - 1_’:l)(;f1,2)>
= (u,, — Uy Xy — Uy + Py [A*(Au,, - Bv,) - A*(Ax,, - Byn)])
+ <Vn —VsYu— Vi — Pn [B*(Aun - Bv,) - B*(Au, _Byn)]>

= (s — iy % — thy — PuA* (A — Byy)) + (thy — ih, puA* (At — Bvy,))

+ (Vn - ljryn —Vnt pnB*(Aun - Byn)) - (Vn - ‘_/¢ pnB*(AMn - BVn))-

By Lemma 2.1,

(= 1,50 — puA* (A% — Byy) — thy) > 0
and

(Vi =V, + puB*(Atty, = By,) = v,) = 0.

Besides, we also have

(u,, —u,A*(Au, —Bv,,)) - (v,, -v,B*(Au, - an)> = ||Au, — Bv,||® > 0.

So, by (2.42), (2.43), (2.44), and (2.45) we determine that

(thy — U, Dy1)) + (Vo =V, D)) = 0,
which implies that

xn =, D)) + On =V, Dn2y) = (% = U, D)) + U = Vi, D))
By (2.35), (2.41), and (2.47),

%6041 = 1> + [[ye1 = VII>
< Nl = &ll* + [y = VI1* = 200 (% — i, D)) — 20 (Y — ¥, D))

+ (1D lI* + 1Dy II?)

Page 11 of 17

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)
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< lxn - 12”2 + lyn - ‘_/”2 - 2an(<xn = U, Dn1)) + n — VnrD(n,Z)))
+ (1D I* + 1Dy 1)
= ”xn - 12”2 + ”yn - 1_/”2 - an((xn - umD(n,l)) + (yn - Vn:D(n,2)>)

< s = all* + llyn = vI1%. (2.48)

So, {ll%, — &||® + ||y, — v||?} is a decreasing sequence, lim,,_, oo [, — &]|? + ||y, — V||? exists,

{xn}nen and {y,},en are bounded sequences, and
lim <xn - Mn’D(n,l)) + (yn - Vn:D(n,2)> =0. (249)

n—00

Besides, we have

(xn - umD(n,l)) + (yn - Vn;D(n,2)>

= ”xn - Mn”Z + (xn — Uy, Sn,l) + ”yn - Vrl”2 + <yn =V 8n,2)) (250)
which implies that
[l — un”2 + |y = Vn||2
1+6 9 9
< (%n = i, D)) + n = Vi, Din2)) + T : (”xn = upll” + 1Y = vall ) (2.51)
Hence, by (2.51) we derive that
(1- 8)(”xn - un”2 + [lyn - Vn||2) < 2%y = thy, D)) + 2{¥n = Vi, Dn,2))- (2.52)
By (2.49) and (2.52) we get that
Mm%, — ]| = im [y — vull = 0. (2.53)
n—00 n—0o0
By Lemma 2.1 again,

iy — &% = | Pe[ = puA*(Ax, - By,)] - Pell|?
< |0 — puA" (A, — By,y) - |
< llow — &ll® + p7 I AI* - | Ax,, — By, |1*
= 2pu(A%y — Byn, Axy, — Als)
= [l — &l = pu - (2= pullAI%) - 1A%, — By

— 20, (A%, — By,;, By, — Ail). (2.54)
Similarly,

v, = 1% = |Po[yn + puB’ (A, — By,)] - Polvl |

< |yn + puB*(Att — By,) - 7|
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< lyn=I* + pplIBI* - |Ats,, — By, |?
+ 2p,(Au, — By,, By, — BV)

= yn = VI = u(2 = pallBI?) - | Aty = BylI?

+2p,(Au, — By,, Au,, — BV). (2.55)
We also have
2(Ax, — By, By, — Ait) = || Ax, — Aul|* - || A, — Byu||* - |By, — Ant|)? (2.56)
and
2(Auy - By, A, — BV) = || Au, — BV|* + || Auy, = By, |I* - || By, — Bv|)>. (2.57)

By (2.54), (2.55), (2.56), and (2.57),

s = ) + v — 71
< 1% = @ll* + 170 = V11> = pu(L = pullAI*) - A%, — Byull>
= pu(1= pullBI?) - | Attyy — Byu|l* + pu (At — Alt]|* - || Ax,, — Ai]|*)
< 1o — > + lyn = VII* = ou(1 = pullAI?) - | A%y, — By,ll®
= pu(1= pullBI?) - | Atty — By ||®

+ n - AN Nttn = %l - (1A, — Ati]| + ||Ax, — Ast]). (2.58)
We also have

=112 =112 2 = ~ 112
Notn = wll” + v = VII™ = 1t = Xnll™ + 2(0n = X, % — 1h) + || % — 4|

+ [V _yn||2 + 2V =Y Yn = V) + |y — 1_’”2' (2.59)

Case 1: liminf,_, o0 pu(1 = pullA[?) > 0.
By (2.53), (2.58), and (2.59) we get

lim ||Ax, — By,|| = 0. (2.60)

Case 2: Suppose that liminf,_, o, 0,(1 — p,[1B]|?) > 0.
By (2.53), (2.58), and (2.59) we get

lim || Aut,, — Byy|| = 0. (2.61)
n—00

By (2.53) and (2.61) we determine
lim [|Ax, — By,| = 0. (2.62)
n—00

Next, following the same argument as the final proof of Theorem 2.1, we get the conclu-
sion of Theorem 2.2. O
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Remark 2.4 Suppose that {p, },cn satisfy the following inequality:

O<k=pn=

8
~ max{v/2 - |AI1%,v/2- |AI2 - [BI? + [BI?, IBI>)

Then {p,}.cn satisfy the conditions in Remark 2.3 and Theorem 2.2.

3 Applications of the split equality problem
3.1 The split feasibility problem

Let H; and H; be real Hilbert spaces. Let C and Q be nonempty closed convex subsets of

H; and H,, respectively. Let A : Hy — H; be a linear and bounded operator with adjoint

operator A*. The following problem is the split feasibility problem in Hilbert spaces, which

was first introduced by Censor and Elfving [11]:

(SFP) Find x € H; such that x € C and Ax € Q.

Here, let ©; := {x € C: Ax € Q} be the solution set of problem (SFP). It is worth noting
that this problem is a particular case of the split equality problem when H; = H, and B is

the identity mapping on H,. For additional details, one can refer to [6, 11-24] and related

literature.

By Algorithm 2.2, we get the following algorithm to study problem (SEP).

Algorithm 3.1 For given x,, € H; and y, € H;, find the approximate solution by the fol-

lowing iterative process.

Step 1.

Step 2.

Step 3.

For n e N, let u,, and v, be defined by

Uy = PC[xn - pnA*(Axn _yn)]:
Vn = PQ[_)/n + pn(Aun _yn)]:

where p, > 0 satisfies

P2 (| A*(Axy = y) = A* (At = v,) | + | (Atty — 3) = B* (A, =) )

< 8|1%y — tyll® + 81lyn — vall®>, 0<8<Ll. (3.1)

If x, = u, and y, = v,, then (x,,y,) is a solution of problem (SFP) and stop. Other-
wise, go to Step 3.
Compute the next iterate (x,41, y,+1) as follows:

D(n,l) =Xy — Uyt Py [A*(AM,, - Vn) _A*(Axn _yn)]:

D(n,z) =Yn—Vn— Pul(Auy, —vy) — (AM,, _yn)]:
Fn=wnD(,1))+ Yn=vn:Di,2))
1DGs,1) 241D 2 12

Xptl = PC [xn - anD(n,l)]r
Ynl = PQ [yn - anD(n,2)]~

oy =

Next, update 7 := n + 1 and go to Step 1.
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We get the following convergence theorem for the split feasibility problem by using The-
orem 2.2,

Theorem 3.1 Let H, and H; be real Hilbert spaces. Let C and Q be nonempty closed con-
vex subsets of Hy and H,, respectively. Let A : Hy — H, be a linear and bounded operator
with adjoint operator A*. Choose § € (0,1). Let 2, be the solution set of the split feasibility
problem and suppose that Q # 9. Let {p,}nen be a sequence in (0,1/ max{||A||%,1}) such
that (3.1) hold and assume that liminf,_, o p,,(1 - p,|A]|?) > 0 or liminf,_, o0 0 (1 — p,;) > Os.
Then, for the sequence {(x,,V)}uen in Algorithm 3.1, there exists x € Q4 such that x, — x
asn— oo.

3.2 Linearinverse problem

In this subsection, we study an inverse problem by our algorithms and convergence the-
orems. Let H; and H, be real Hilbert spaces. Let C be a nonempty closed convex subset
of Hy, and A : H; — H, be a linear and bounded operator with adjoint operator A*. Given
b € H,. Then we consider the following inverse problem in this section:

(IV) Find x € C such that Ax = b.

This is a particular case of the split equality problem if H, = Hs, Q = {b}, and B(x) =
for all x € H,. Next, take any (xy,y1) € Hy X Hy with y; = b. Then, by Algorithm 2.2 we get
the following algorithm to study problem (IV).

Algorithm 3.2 For givenx, € Hj, find the approximate solution by the following iterative
process.

Step 1. Compute the next iterate u, as follows:
Uy = Pc[%n — puA*(Ax, — b)],
where p, > 0 satisfies
P2 - | A*(Ax,) — A*(Auw) | < Sl —wall?>, 0<8<1. (3.2)

Step 2. Ifx, = u,, then x, is a solution of problem (IV) and stop. Otherwise, go to Step 3.
Step 3. Compute the next iterate x,,; as follows:

Dn =Xy — Uyt Py [A*(AM,,) _A*(Axn)]’
(%n—=tn,Dn)
I1Dul? 7

Xn+l = PC [xn - anDn]'

oy =

Next, update # := n + 1 and go to Step 1.

We get the following convergence theorem for the linear inverse problem by using The-
orem 2.2.

Theorem 3.2 Let H; and H, be real Hilbert spaces. Let C be a nonempty closed convex
subset of Hy, and A : H — H, be a linear and bounded operator with adjoint operator A*.
Given b € Hy and § € (0,1). Let Q25 be the solution set of (IV) and suppose that Q; # 0.
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Let {pp}nen be a sequence in (0,1/max{||A|%,1}) such that (3.2) holds and assume that
liminf, . 0 0,(1 = p,||A[|?) > 0 or liminf, . o 0,(1 — p,,) > 0. Then, for the sequence {%,},en
in Algorithm 3.2, there exists x € Q2 such that x, — X as n — oo.

Remark 3.1 By Algorithm 2.1 and Theorem 2.1, we can get the related algorithms and
convergence theorems for the split feasibility problem and the inverse problems.

4 Numerical results
All codes were written in R language (version 3.2.4 (2016-03-10), the R Foundation for
Statistical Computing Platform: x86-64-w64-mingw32/x64).

Example 4.1 Let H, =H, =H; =R?, C:={x e R?: ||x|| <1}, Q:= {x = (u,v) e R? : (u -
6)% + (v —8)% < 25},

L b

Then problem (SEP) has a unique solution (%,7) € R? x R2, where ¥ := (x1,%2), 7 := (1, y2)-
Indeed, x; = 0.6, x5 = 0.8, 1 = 3, y» = 4. Let ¢ > 0 and the algorithm stop if ||x, — x| + ||y, —
yll<e.

In Table 1, setting & = 107}, x; = (10,10)7, y; = (1,1)7, and p, = 0.01 for all # € N, we get
the numerical results.

In Table 2, setting ¢ = 1071, x; = (5,5)7, 1 = (1,1)7, and p,, = 0.01 for all # € N, we get the
numerical results.

In Table 3, setting & = 4 x 1072, x; = (-12,-50)7, y; = (-40,20)7, and p, = 0.01 for all
n € N, we get the numerical results.

Table1 £ =10"",x; =(10,10)7, y1 =(1,1)7, p, =0.01

Algorithm Time(s) Iteration  Approximate solution (x},x2)  Approximate solution (y;,y2)
Algorithm 2.1 0.01 196 (0.6114674,0.7912309) (3.0850778,3.9920504)
Algorithm 2.2 0.00 122 (0.5970952,0.8020906) (3.0421971,4.0866474)
(ACQA) 1.94 58,324 (0.6132467,0.7898914) (3.0670840,3.9505550)
(PLA) 257 78,654 (0.6132467,0.7898914) (3.0670840, 3.9505550)

Table2 =107, x, =(5,5)7,y1 =(1,1)7, pn = 0.01

Algorithm Time(s) lteration  Approximate solution (x},x2)  Approximate solution (y;,y2)
Algorithm 2.1 0.82 11,168 (0.6132467,0.7898915) (3.067084,3.950555)

Algorithm 2.2 0.02 205 (0.6077392,0.7940725) (3.0847143,4.0304899)

(ACQA) 194 58,324 (0.6132467,0.7898914) (3.067084,3.950555)

(PLA) 2.28 71,521 (0.6132467,0.7898915) (3.067084,3.950555)

Table3 &=4 x 1072, x7 =(12,-50)7, y1 = (-40,20)7, p, =0.01

Algorithm Time(s) lteration  Approximate solution (x},x2)  Approximate solution (y;,y2)
Algorithm 2.1 0.07 527 (0.5988387,0.8008379) (3.0167366,4.0343372)
Algorithm 2.2 45.89 474,754 (0.5946535,0.8039821) (2.973400,4.020089)

(ACQA) 2044 579,771 (0.5946535,0.8039821) (2.973400,4.020089)

(PLA) 22.55 585,380 (0.5946536,0.8039821) (2.973400,4.020089)
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