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Abstract
In this paper, we consider a class of weakly nonlinear complementarity problems
(WNCP) with large sparse matrix. We present an accelerated modulus-based matrix
splitting algorithm by reformulating the WNCP as implicit fixed point equations based
on two splittings of the system matrixes. We show that, if the system matrix is a
P-matrix, then under some mild conditions the sequence generated by the algorithm
is convergent to the solution of WNCP.
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1 Introduction
Consider the following weakly nonlinear complementarity problems, which is to find z ∈
Rn such that

z ≥ , Az + �(z) ≥ , zT(
Az + �(z)

)
= , ()

abbreviated as WNCP, where A = (aij) ∈ Rn×n is a given large, sparse and real matrix, �(z):
Rn → Rn is a Lipschitz continuous nonlinear function, z ≥  means zi ≥ , i = , , . . . , n,
and T always denotes the transpose of a vector.

As is well known, the classical nonlinear complementarity problems (NCP) are very im-
portant and fundamental topics in optimization theory and they have been developed
into a well-established and fruitful principle. See [–] for details as regards the basic the-
ories, effective algorithms and important applications of NCP. Problem () is a special
case of NCP, but it extends from linear complementarity problems. When �(z) = q is a
constant vector, problem () reduces to a linear complementarity problem. Recently, lots
of researchers [–] have paid close attention to feasible and efficient methods for solv-
ing linear complementarity problems. Especially, by reformulating linear complementar-
ity problems as an implicit fixed point equation, Van Bokhoven [] proposed a modulus
iteration method, which is defined as the solution of system of linear equations at each it-
eration. In , Bai [] presented a modulus-based matrix splitting iteration method and
showed the convergence when the system matrix is an H+-matrix. Consequently, Zhang
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[] proposed two-step modulus-based matrix splitting iteration methods and considered
the convergence theory when the system matrix is an H+-matrix. Based on the above work,
for solving problem (), in [] Sun and Zeng proposed a modified semismooth Newton
method with A being an M-matrix and �(z) being a continuously differentiable monotone
diagonal function on Rn.

In this paper, for satisfying the requirements of the application, more details can be
found in [–], we present an accelerated modulus-based matrix splitting algorithm for
dealing with WNCP. The organization of this paper is as follows: Some necessary notations
and definitions are introduced in Section . In Section , we establish a class of acceler-
ated modulus-based matrix splitting iteration algorithms. In Section , the convergence
conditions are considered.

2 Preliminaries
Some necessary notations, definitions and lemmas used in the sequel discussions are in-
troduced in this section. For B ∈ Rn×n, we write B–, BT , ρ(B) to denote the inverse, the
transpose, the spectral radius of the matrix B, respectively. For x ∈ Rn, we write ‖x‖, |x| to
denote the norm of the vector x, |x| = (|x|, . . . , |xn|), respectively. ‖A‖ denotes any norm of
matrix A. Especially, we use ‖ · ‖ to denote a spectral norm. λ ∈ λ(A) denotes the eigen-
value of matrix A where λ(A) is the set of all eigenvalues of matrix A.

Definition  [] If for any x := (x, x, . . . , xn) �= , there exists an index k, such that
xk(Ax)k = xk(akx + · · · + aknxn) > , we call that matrix A is a P-matrix.

Definition  For the function f (x) : Rn → Rn, if for any x, y ∈ Rn, there exists a constant L
such that

∥∥f (x) – f (y)
∥∥ ≤ L‖x – y‖,

then we call f a Lipschitz continuous function on Rn, and L is called a Lipschitz constant.

Lemma  [] Let A = (aij) ∈ Rn×n be a P-matrix, for any nonnegative diagonal matrix �,
the matrix A + � is nonsingular.

3 Algorithm
Theorem  Let M – N = M – N = A be two splittings of the matrix A ∈ Rn×n and �, �
be n × n positive diagonal matrices, �, � be n × n nonnegative diagonal matrices such
that � = � + �, then the following statements hold.

(i) If z is a solution of problem (), then x = 
 (�–z – �–(Az + �(z))) satisfies the

implicit fixed point equation

(M� + �)x = (N� – �)x + (� – M�)|x| + N�|x| – �
(
�

(|x| + x
))

. ()

(ii) If x satisfies the implicit fixed point equation (), then

z = �
(|x| + x

)

is a solution of problem ().
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Proof First we prove part (i). Since z is a solution of problem (), we have z ≥ . So there
exists x ∈ Rn such that

z = �
(|x| + x

)
.

Define another nonnegative vector,

υ = �
(|x| – x

)
.

It is easy to see that υ ≥ , zTυ = , and υ = Az + �(z) if and only if

�
(|x| – x

)
= A�

(|x| + x
)

+ �
(
�

(|x| + x
))

.

Replace A with M – N, we have

(M� + �)x = N�x +
(
� – (M – N)�

)|x| – �
(
�

(|x| + x
))

.

Taking M – N = M – N and � = � + � into account, it follows that

(M� + �)x = (N� – �)x + (� – M�)|x| + N�|x| – �
(
�

(|x| + x
))

.

This shows that equation () holds.
We now turn to prove part (ii). By some simple calculations, the implicit fixed point

equation () is equivalent to

A�
(|x| + x

)
+ �

(
�

(|x| + x
))

= �
(|x| – x

)
.

Set z = �(|x| + x) and υ = �(|x| – x). Evidently, it yields z ≥ , υ ≥ , zTυ = , and υ =
Az + �(z), which means that z is a solution of problem (). This completes the proof. �

Note that the implicit fixed point equation () includes many parameters that are quite
complicated to be determined in a computation. For solving this problem, we will give the
simple formulation as follows. Subsequently, a matrix splitting iteration algorithm will be
given for solving WNCP. Let � = �, � = ,� = 

γ
I , where γ >  is a real number, then

the implicit fixed point equation reduces to

(M + γ�)x = Nx + (γ� – M)|x| + N|x| – γ�

(
(|x| + x)

γ

)
.

In fact, γ� in the above equation denotes a positive diagonal parameter matrix, which can
be replaced by � for simplicity. That is, the above equation is essentially equivalent to

(M + �)x = Nx + (� – M)|x| + N|x| – γ�

(
(|x| + x)

γ

)
. ()

In the rest of the paper, we will use the fixed point equation above to give the algorithm
and convergence analysis for solving WNCP.
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Algorithm 
Step . Choose two splittings of the matrix A ∈ Rn×n satisfying A = M – N = M – N.
Step . Set k = . Give an initial vector x ∈ Rn, compute z = 

γ
(|x| + x).

Step . Choose xk+ such that

(M + �)xk+ = Nxk + (� – M)
∣∣xk∣∣ + N

∣∣xk+∣∣ – γ�
(
zk), ()

and set

zk+ =

γ

(∣∣xk+∣∣ + xk+), k = k + .

Here, �,� ∈ Rn×n are positive diagonal matrices and γ is a positive constant.
Step . If the sequence {zk}+∞

 is convergent, stop. Otherwise, go to Step .

4 Convergence theorems
In this section, we will consider the conditions that ensure the convergence of {zk}+∞

 ob-
tained by Algorithm .

Theorem  Let A ∈ Rn×n be a P-matrix, M – N = M – N = A be two splittings of the
matrix A with M ∈ Rn×n being a P-matrix. Assume that � ∈ Rn×n is a positive diagonal
matrix, γ is a positive constant and �(z): Rn → Rn is a Lipschitz continuous function with
the Lipschitz constant L. Set

ρ(�) = g(�) + q(�) + f (�),

where g(�) = ‖(M + �)–N‖, q(�) = ‖(M + �)–N‖ + L‖(M + �)–‖, f (�) = ‖(M +
�)–(� – M)‖. If the matrix � satisfies ρ(�) < , then for any initial vector x ∈ Rn, the
iteration sequence {zk}+∞

k= generated by Algorithm  converges to a solution z∗ ∈ Rn
+ of prob-

lem ().

Proof Suppose that z∗ ∈ Rn
+ is a solution of problem (). Note that � = 

γ
I , by Theorem 

and (), we see that x∗ = 
 (γ z∗ – �–(A(z∗) + �(z∗))) is a solution of the equation

(M + �)x∗ = Nx∗ + (� – M)
∣
∣x∗∣∣ + N

∣
∣x∗∣∣ – γ�

(
z∗) ()

with z∗ = 
γ

(|x∗| + x∗). Let us consider () minus (); we have

(M + �)
(
xk+ – x∗)

= N
(
xk – x∗) + (� – M)

(∣∣xk∣∣ –
∣∣x∗∣∣)

+ N
(∣∣xk+∣∣ –

∣
∣x∗∣∣) – γ

(
�

(
zk) – �

(
z∗)).

Note that M – N = M – N, we have

(� – M)
(∣∣xk∣∣ –

∣∣x∗∣∣)

= (� – M + N – N)
(∣∣xk∣∣ –

∣∣x∗∣∣)
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= (� – M + N – N)
(∣∣xk∣∣ –

∣∣x∗∣∣)

= (� – M)
(∣∣xk∣∣ –

∣
∣x∗∣∣) + N

(∣∣xk∣∣ –
∣
∣x∗∣∣) – N

(∣∣xk∣∣ –
∣
∣x∗∣∣). ()

Since M is a P-matrix and � is a positive diagonal matrix, it follows from Lemma  that
M + � is a nonsingular matrix. Hence, by () and (), we have

xk+ – x∗

= (M + �)–N
(
xk – x∗) + (M + �)–(� – M)

(∣∣xk∣∣ –
∣∣x∗∣∣)

+ (M + �)–N
(∣∣xk∣∣ –

∣
∣x∗∣∣) – (M + �)–N

(∣∣xk∣∣ –
∣
∣x∗∣∣)

+ (M + �)–N
(∣∣xk+∣∣ –

∣∣x∗∣∣) – (M + �)–γ
(
�

(
zk) – �

(
z∗)). ()

Taking the facts

∥
∥zk – z∗∥∥ =

∥∥
∥∥
|xk| + xk

γ
–

|x∗| + x∗

γ

∥∥
∥∥ ≤ 

γ

∥
∥xk – x∗∥∥, ()

�(z) is a Lipschitz continuous function, and () into account, we have

∥
∥�

(
zk) – �

(
z∗)∥∥ ≤ L

∥
∥zk – z∗∥∥ ≤ L

γ

∥
∥xk – x∗∥∥. ()

Thereby, we derive from () and () that

(
 –

∥∥(M + �)–N
∥∥)∥∥xk+ – x∗∥∥

≤ (

(∥∥(M + �)–N

∥
∥ + L

∥
∥(M + �)–∥∥)

+
∥
∥(M + �)–(� – M)

∥
∥

+
∥∥(M + �)–N

∥∥)∥∥xk – x∗∥∥,

which is equivalent to

∥
∥xk+ – x∗∥∥ ≤ q(�) + f (�) + g(�)

 – g(�)
∥
∥xk – x∗∥∥

with g(�) < . The condition

q(�) + f (�) + g(�)
 – g(�)

< 

with g(�) < , which is equivalent to ρ(�) = g(�) + q(�) + f (�) < , ensures that the limit
limk→+∞ xk = x∗ holds. These results complete the proof. �

Theorem  Let A ∈ Rn×n be a P-matrix, M – N = M – N = A be two splittings of the
matrix A with M ∈ Rn×n being a symmetric P-matrix. Suppose that � = ωI ∈ Rn×n is a
positive scalar matrix and ω is a positive constant. �(z) : Rn → Rn is a Lipschitz continuous
function with the Lipschitz constant L. λmax and λmin to denote the largest and smallest
eigenvalue of the matrix M, respectively. Let τ = ‖M–

 N‖ and τ = ‖M–
 N‖ satisfy

τ + τ < . If λmin > L, the choices of the parameters ω, M, N, M, N satisfy either of the
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following conditions, then the iteration sequence {zk}+∞
k ⊂ Rn

+ generated by Algorithm 
converges to the unique solution z∗ ∈ Rn

+ of WNCP for any initial vector x ∈ Rn.
(i) When  < τ + τ < λmin–L

λmax
,

ω =
√

λmaxλmin.

(ii) When λmin–L
λmax

< τ + τ < λmin–L√
λmaxλmin

,

√
λmaxλmin ≤ ω <

[ – (τ + τ)]λmaxλmin – Lλmax

(τ + τ)λmax + L – λmin
.

(iii) When τ + τ = λmin–L
λmax

,

ω ≥ √
λmaxλmin.

Proof We first give some formulations, which will be used in the proof. Since M is a sym-
metric P-matrix and τ + τ < , by the definition of the spectral norm, we have

∥
∥(M + �)–N

∥
∥

 =
∥
∥(M + ωI)–MM–

 N
∥
∥



≤ ∥∥(M + ωI)–M
∥∥



∥∥M–
 N

∥∥


= max
λ∈λ(M)

λτ

ω + λ

=
λmaxτ

ω + λmax
. ()

Similarly, we have

∥∥(M + �)–N
∥∥

 =
∥∥(M + ωI)–MM–

 N
∥∥



≤ λmaxτ

ω + λmax
()

and

∥∥(M + �)–∥∥
 =

∥∥(M + ωI)–∥∥


= max
λ∈λ(M)


ω + λ

=


ω + λmin
. ()

In addition, from a simple calculating process, we have

∥∥(M + �)–(� – M)
∥∥

 =
∥∥(M + ωI)–(ωI – M)

∥∥


= max
λ∈λ(M)

|ω – λ|
ω + λ

= max

{ |ω – λmax|
ω + λmax

,
|ω – λmin|
ω + λmin

}

=

{
λmax–ω

λmax+ω
, ω ≤ √

λmaxλmin,
ω–λmin
ω+λmin

, ω ≥ √
λmaxλmin.

()
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As follows from ()-(), we have

ρ(�) = g(�) + q(�) + f (�)

= 
∥
∥(M + �)–N

∥
∥

 + 
(∥∥(M + �)–N

∥
∥



+ L
∥
∥(M + �)–∥∥



)
+

∥
∥(M + �)–(� – M)

∥
∥



= 
λmaxτ

ω + λmax
+ 

(
λmaxτ

ω + λmax
+

L
ω + λmin

)
+

{
λmax–ω

ω+λmax
, ω ≤ √

λmaxλmin,
ω–λmin
ω+λmin

, ω ≥ √
λmaxλmin.

()

We then consider two cases.
(a) When ω ≤ √

λmaxλmin, by a simple calculation on (), we see that ω, τ, and τ satisfy
ρ(�) < , which is equivalent to

ω –
(
(τ + τ)λmax + L – λmin

)
ω –

(
(τ + τ)λmaxλmin + Lλmax

)
> .

Note that ω >  and ω ≤ √
λmaxλmin, then the solution of the above inequality is

θ (τ, τ) < ω ≤ √
λmaxλmin,

where

θ (τ, τ)

=
√

((τ + τ)λmax + L – λmin) + (τ + τ)λmaxλmin + Lλmax



+
(τ + τ)λmax + L – λmin


.

Certainly, we have

θ (τ, τ) <
√

λmaxλmin. ()

Since λmin > L, by the definitions of τ, τ and solving (), we get

 < τ + τ <
λmin – L√
λmaxλmin

.

(b) When ω ≥ √
λmaxλmin, in a same way as (a), ω, τ, and τ satisfying ρ(�) < , which is

equivalent to

[
(τ + τ)λmax + L – λmin

]
ω + (τ + τ – )λmaxλmin + Lλmax < . ()

If (τ + τ)λmax + L – λmin > , that is, τ + τ > λmin–L
λmax

, then

ω <
[ – (τ + τ)]λmaxλmin – Lλmax

(τ + τ)λmax + L – λmin
.
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Combined with ω ≥ √
λmaxλmin, we get

√
λmaxλmin ≤ ω <

[ – (τ + τ)]λmaxλmin – Lλmax

(τ + τ)λmax + L – λmin
.

Naturally, we have

√
λmaxλmin <

[ – (τ + τ)]λmaxλmin – Lλmax

(τ + τ)λmax + L – λmin
.

That is,

τ + τ <
λmin – L√
λmaxλmin

.

This, together with τ + τ > λmin–L
λmax

, shows that we have

λmin – L
λmax

< τ + τ <
λmin – L√
λmaxλmin

.

If (τ + τ)λmax + L – λmin ≤ , that is, τ + τ ≤ λmin–L
λmax

, then for any ω >  () holds. So

ω ≥ √
λmaxλmin.

Hence, from (a) and (b), we see that when  < τ + τ < λmin–L
λmax

,ω =
√

λmaxλmin; when
λmin–L
λmax

< τ + τ < λmin–L√
λmaxλmin

,
√

λmaxλmin ≤ ω < [–(τ+τ)]λmaxλmin–Lλmax
(τ+τ)λmax+L–λmin

; when τ + τ = λmin–L
λmax

,
ω ≥ √

λmaxλmin. The proof is completed. �

5 Results and discussion
This study focused on the weakly nonlinear complementarity problems with a large sparse
matrix. We proposed an algorithm that is not only computationally more convenient to
use but also faster than the modulus-based matrix splitting iteration methods and the
convergence conditions are presented when the system matrix is a P-matrix.

Some scholars had already stressed the accelerated modulus-based matrix splitting it-
eration methods for linear complementarity problems and pointed out that the system
matrix is either a positive definite matrix or an H+-matrix. However, we suggest that the
system matrix is a P-matrix, this is more adaptable but also a limitation. Notwithstanding
its limitation, this study does suggest that WNCP can be solved faster.

6 Conclusions
In this paper, by reformulating the complementarity problem () as an implicit fixed point
equation based on splittings of the system matrix A, we establish an accelerated modulus-
based matrix splitting iteration algorithm and show the convergence analysis when the
involved matrix of the WNCP is a P-matrix.
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