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Abstract
In this paper, we provide a new type of study approach for the two-dimensional (2D)
Sobolev equations. We first establish a semi-discrete Crank-Nicolson (CN) formulation
with second-order accuracy about time for the 2D Sobolev equations. Then we
directly establish a fully discrete CN finite volume element (CNFVE) formulation from
the semi-discrete CN formulation about time and provide the error estimates for the
fully discrete CNFVE solutions. Finally, we provide a numerical example to verify the
correction of theoretical conclusions. Further, it is shown that the fully discrete CNFVE
formulation is better than the fully discrete FVE formulation with first-order accuracy
in time.
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1 Introduction
The finite volume element (FVE) method (see [, ]) is a very effective discretization tool
for the two-dimensional (D) Sobolev equations. Compared to finite element (FE) (see
[, ]) and finite difference schemes (see []), the FVE method is very much easier to im-
plement and provides flexibility in handling complicated computational domains. Espe-
cially, the FVE method can ensure local mass conservation and a highly desirable prop-
erty in many real-life applications. Thus, it is considered as the preferred numerical ap-
proach. It is also known as a generalized difference method (see [, ]) or a box method
(see [, ]). It has been widely used in real-life numerical computations (see, e.g., [, ,
–]).

A semi-discrete FVE formulation with respect to spatial variables (see []) and a fully
discrete FVE formulation with the first-order accuracy in time (see []) for the D Sobolev
equations have also been posed. However, to the best of our knowledge, there is not any
paper about the Crank-Nicolson (CN) FVE (CNFVE) method and the error analysis for
the D Sobolev equations. Therefore, in this paper, we establish a fully discrete CNFVE
formulation with the second-order accuracy in time for the D Sobolev equations and
provide the error estimates of the fully discrete CNFVE solutions.
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The procedure that we here establish the fully discrete CNFVE formulation is different
from the classical FVE methods. The classical FVE methods were first to establish the
semi-discrete FVE formulations with respect to spatial variables, and, then, to build the
fully discrete FVE formulations. Whereas the fully discrete CNFVE formulation here is
directly established from the semi-discrete CN formulation about time, which avoids the
semi-discrete FVE formulation with respect to spatial variables, such that the procedure of
theoretical analysis for the fully discrete CNFVE formulation becomes simpler and more
convenient than the classical FVE methods, which is a new type of study approach for the
D Sobolev equations.

In addition, because the D Sobolev equations do not only include the first-order deriva-
tive in time but also contain the mixed derivatives of the first-order derivative in time and
the second-order in spatial variables (see the term �ut for Problem I in Section ), so
the theoretical study of the fully discrete CNFVE formulation for the D Sobolev equa-
tions requires more technique than that for the D parabolic problems in [, , ], but the
Sobolev equations are more useful than parabolic problems.

The outline of the paper is as follows. In Section , we establish the semi-discrete CN
formulation about time for the D Sobolev equations and provide the error estimates of
solutions for the formulation. In Section , we directly establish the fully discrete CNFVE
formulation from the semi-discrete CN formulation about time and analyze the errors of
the CNFVE solutions, where the error estimates obtained here are optimal, well-rounded,
and very beautiful. In Section , we provide a numerical example to verify that the nu-
merical results are consistent with theoretical conclusions. Further, it is shown that the
fully discrete CNFVE formulation is better than the fully discrete FVE formulation with
the first-order accuracy in time (see []). Section  provides main conclusions and future
tentative ideas.

2 Semi-discrete CN formulation with second-order accuracy about time and
error estimates

Let � ⊂ R be a bounded domain with piecewise smooth boundary ∂� and consider the
following initial boundary value problems of the D Sobolev equations in � × [, T].

Problem I Seek u such that

⎧
⎪⎨

⎪⎩

ut – ε�ut – γ�u = f , (x, y, t) ∈ � × (, T],
u(x, y, t) = ψ(x, y, t), (x, y, t) ∈ ∂� × (, T],
u(x, y, ) = ϕ(x, y), (x, y) ∈ �,

where ut = ∂u/∂t, ε and γ are two positive constants, the source term f (x, y, t), the bound-
ary value function ψ(x, y, t), and the initial value function ϕ(x, y) are sufficiently smooth
to ensure the following theoretical analysis validity, and T is the total time. For the sake of
convenience and without loss of generality, we may as well suppose that ψ(x, y, t) is a zero
function in the following theoretical analysis.

The Sobolev equations possess the important physical background. They are used to
describe the fluid flow penetrating rocks, soils, or different viscous media (see [–]).
They have widely been used in many real-life engineering fields.
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The Sobolev spaces and their norms used in this context are standard []. Let U =
H

(�). Then the variational formulation for Problem I can be stated as follows.

Problem II Seek u(t) : [, T] → U such that

{
(ut , w) + εa(ut , w) + γ a(u, w) = (f , w), ∀w ∈ U ,
u(x, y, ) = ϕ(x, y), (x, y) ∈ �,

(.)

where a(u, w) = (∇u,∇w) and (·, ·) represents the inner product in L(�).

It is well known that Problem II has a unique solution that satisfies the following estimate
(see [–]):

‖utt‖L(H) + ‖∇ut‖ ≤ C
(‖ft‖L(L) + ‖ϕ‖

)
,

where ‖ · ‖Hm(Hl) is the normal in Sobolev space Hm(, T ; Hl(�)), C =
√

/ min{, ε,γ }.
For the positive integer N , we denote the time step increment by k = T/N and put un =

u(x, y, tn) (tn = nk,  ≤ n ≤ N ) and ūn = (un + un–)/. If the derivative ut of u at t = tn about
time is approximated by the difference ∂̄tun = (un – un–)/k, then the semi-discrete CN
formulation with respect to time for Problem II is stated as follows.

Problem III Seek un ∈ U such that
{

(∂̄tun, v) + εa(∂̄tun, v) + γ a(ūn, v) = (f (tn– 


), v), ∀v ∈ U ,  ≤ n ≤ N ,
u(x, y) = u(x, y, ) = ϕ(x, y), (x, y) ∈ �.

(.)

Note that the norm ‖ · ‖ is equivalent to the semi-norm ‖∇(·)‖ in H
(�), i.e., there are

two constants C and C such that (see, e.g., [, , ])

C‖∇v‖ ≤ ‖v‖ ≤ C‖∇v‖, ∀v ∈ H
(�).

For the semi-discrete CN formulation, we have the following results.

Theorem  Problem III has a unique series of solutions un ∈ U (n = , , . . . , N ), and if
f ∈ W ,∞(, T ; L(�)), we have the following error estimates:

∥
∥u(tn) – un∥∥

 +
∥
∥∇(

u(tn) – un)∥∥
 ≤ C̃k‖u‖W ,∞(H), (.)

where C̃ = [C
/(γ ) + ε/(γ ) + γ /]// min{,

√
ε}.

Proof Put A(u, v) = (u, v)+εa(u, v)+kγ a(u, v), F(v) = k(f (tn– 


), v)+(un–, v)+εa(un–,
v) – kγ a(un–, v). Then Problem III is equivalently restated as follows:

{
A(un, v) = F(v), ∀v ∈ U ,  ≤ n ≤ N ,
u(x, y) = u(x, y, ) = ϕ(x, y), (x, y) ∈ �.

(.)

Since A(u, u) = ‖u‖
 + ε‖∇u‖

 + kγ ‖∇u‖
 ≥ ‖u‖

 + ε‖∇u‖
 ≥ α‖u‖

 (where α =
min{, ε}), A(u, v) is a positive definite bilinear function in H

(�) × H
(�). It is evident
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that A(u, v) is continuous in H
(�) × H

(�) and F(v) is also a continuous linear function
in H

(�) for given un–. Thus, by means of the Lax-Milgram theorem (see [] or []), we
deduce that variational equation (.), i.e., Problem III has a unique series of solutions
un ∈ U (n = , , . . . , N ).

By taking t = tn– 


in Problem II, we have

{
(ut(tn– 


), v) + εa(ut(tn– 


), v) + γ a(u(tn– 


), v) = (f (tn– 


), v), ∀v ∈ U ,

u(x, y, ) = ϕ(x, y), (x, y) ∈ �.
(.)

By using a Taylor expansion, we obtain

u(tn) = u(tn– 


) +
(

k


)

ut(tn– 


) +
(

k


) 
!

utt(tn– 


)

+
(

k


) 
!

u()(tn– 


) + · · · ; (.)

u(tn–) = u(tn– 


) –
(

k


)

ut(tn– 


) +
(

k


) 
!

utt(tn– 


)

–
(

k


) 
!

u()(tn– 


) + · · · . (.)

By using the Newton remainder term and by subtracting (.) from (.), we obtain

u(tn) – u(tn–)
k

= ut(tn– 


) +
k


[
u()(ξn) + u()(ξn)

]
, (.)

where ξn ∈ [tn–, tn] and ξn ∈ [tn–, tn]. By using the Newton remainder term again and by
adding (.) to (.), we obtain

u(tn) + u(tn–)


= u(tn– 


) +
k


[
u()(ξn) + u()(ξn)

]
, (.)

where ξn ∈ [tn–, tn] and ξn ∈ [tn–, tn]. With (.) and (.), from (.), we obtain the
following equivalent form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(u(tn) – u(tn–), v) + εa(u(tn) – u(tn–), v) + kγ a((u(tn) + u(tn–))/, v)
= k

 (u()(ξ) + u()(ξ), v) + εk

 a(u()(ξn) + u()(ξn), v)
+ γ k

 a(u()(ξn) + u()(ξn), v) + (f (tn– 


), v), ∀v ∈ U ,
u(x, y, ) = ϕ(x, y), (x, y) ∈ �.

(.)

Let en = u(tn) – un. By subtracting (.) from (.), we obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(en – en–, v) + εa(en – en–, v) + kγ

 a(en + en–, v)
= k

 (u()(ξn) + u()(ξn), v) + εk

 a(u()(ξn) + u()(ξn), v)
+ γ k

 a(u()(ξn) + u()(ξn), v), ∀v ∈ U ,
e = , (x, y) ∈ �.

(.)
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By taking v = en + en– in (.) and by using the Hölder and Cauchy inequalities, we obtain

‖en‖
 – ‖en–‖

 + ε
(‖∇en‖

 – ‖∇en–‖

)

+
kγ


∥
∥∇(en + en–)

∥
∥



≤ k


(∥
∥u()(ξn)

∥
∥

 +
∥
∥u()(ξn)

∥
∥



)‖en + en–‖

+
εk


(∥
∥∇u()(ξn)

∥
∥

 +
∥
∥∇u()(ξn)

∥
∥



)∥
∥∇(en + en–)

∥
∥



+
γ k


(∥
∥∇u()(ξn)

∥
∥

 +
∥
∥∇u()(ξn)

∥
∥



)∥
∥∇(en + en–)

∥
∥



≤ C
k

γ

(

∥
∥u()(ξn)

∥
∥

 + 
∥
∥u()(ξn)

∥
∥



)
+

γ k


∥
∥∇(en + en–)

∥
∥



+
εk

γ

(

∥
∥∇u()(ξn)

∥
∥

 + 
∥
∥∇u()(ξn)

∥
∥



)
+

γ k


∥
∥∇(en + en–)

∥
∥



+
γ k



(

∥
∥∇u()(ξn)

∥
∥

 + 
∥
∥∇u()(ξn)

∥
∥



)
+

γ k


∥
∥∇(en + en–)

∥
∥

. (.)

It follows from (.) that

‖en‖
 – ‖en–‖

 + ε
(‖∇en‖

 – ‖∇en–‖

)

≤ C
k

γ

(

∥
∥u()(ξn)

∥
∥

 + 
∥
∥u()(ξn)

∥
∥



)
+

εk

γ

(

∥
∥∇u()(ξn)

∥
∥



+ 
∥
∥∇u()(ξn)

∥
∥



)
+

γ k



(

∥
∥∇u()(ξn)

∥
∥

 + 
∥
∥∇u()(ξn)

∥
∥



)
. (.)

Note that e = . By summing from  to n for (.), we obtain

‖en‖
 + ε‖∇en‖



≤ C
k

,γ

n∑

i=

(∥
∥u()(ξi)

∥
∥

 +
∥
∥u()(ξi)

∥
∥



)

+
εk

γ

n∑

i=

(∥
∥∇u()(ξi)

∥
∥

 +
∥
∥∇u()(ξi)

∥
∥



)

+
γ k



n∑

i=

(∥
∥∇u()(ξi)

∥
∥

 +
∥
∥∇u()(ξi)

∥
∥



)

≤ k
[

C


γ
‖u‖

W ,∞(L) +
ε

γ
‖u‖

W ,∞(H) +
γ


‖u‖

W ,∞(H)

]

. (.)

Thus, it follows from (.) that

‖en‖ + ‖∇en‖ ≤ C̃k‖u‖W ,∞(H), (.)

where C̃ = [C
/(γ ) + ε/(γ ) + γ /]// min{,

√
ε}, which gets (.) and completes

the proof of Theorem . �
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3 Fully discrete CNFVE formulation and error estimate
In this section, we will directly establish the fully discrete CNFVE formulation from the
time semi-discrete CN formulation for the D Sobolev equations and analyze the errors
of the fully discrete CNFVE solutions. To this end, it is necessary to adopt an FVE approx-
imation for the spatial variables of Problem III.

Let �h = {K} be the quasi-uniform triangulation of � (see [] or []) and �∗
h the dual par-

tition based on �h. The elements in �∗
h, called the control volumes, are formed by means of

the same technique as that in []. Denote the barycenter of K ∈ �h by zK . By connecting zK

with line segments to the midpoints of the edges of K , we divide it into three quadrilaterals
Kz (z = (xz, yz) ∈ Zh(K), where Zh(K) represents a set of the vertices of K ). Then the control
volume Vz is constituted by the sub-regions Kz of the sharing vertex z ∈ Zh =

⋃
K∈�h

Zh(K)
(see Figure ). Thus, all control volumes covering the domain � form the dual partition
�∗

h based on �h. Z◦
h represents the set of interior vertices in Zh.

The trial function space Uh and test space Ũh are defined as follows, respectively:

Uh =
{

uh ∈ C(�) ∩ H
(�) : uh|K ∈P(K),∀K ∈ �h

}
,

Ũh =
{

wh ∈ L(�) : wh|Vz ∈P(Vz),∀Vz ∈ �∗
h; wh|Vz = , Vz ∩ ∂� �= ∅}

,

where Pl(e) (l = ,  and e = K or Vz) are lth polynomial spaces on e.
It is obvious that Uh ⊂ U and the test space Ũh is spanned by the following basis func-

tions:

φz(x, y) =

{
, (x, y) ∈ Vz,
, elsewhere,

∀z ∈ Z◦
h. (.)

For w ∈ U , let �hw be the interpolation operator of w onto Uh. By the interpolation
theory of Sobolev spaces (see [, , ]), we have

|w – �hw|m ≤ Ch–m|w|, m = , , if w ∈ H(�), (.)

where C in this context denotes a positive constant which is possibly different at various
positions, being independent of h and k.

For w ∈ U , let �∗
hw be the interpolation operator of w onto the test space Ũh, i.e.,

�∗
hw =

∑

z∈Z◦
h

w(z)φz. (.)

Figure 1 Triangle element and control volume. The left chart is a triangle K partitioned into three
sub-regions Kz . The right chart is a sample region with dotted lines indicating the corresponding control
volume Vz .
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By the interpolation theory (see [, , ]), we have

∥
∥w – �∗

hw
∥
∥

 ≤ Ch|w|. (.)

Further, the interpolation operator �∗
h satisfies the following properties (see [, , ]).

Lemma  If vh ∈ Uh, then

∫

K

(
vh – �∗

hvh
)

dx dy = , K ∈ �h;

∥
∥vh – �∗

hvh
∥
∥

Lr(�) ≤ ChK‖vh‖W ,r(�),  ≤ r ≤ ∞.

Let

a(uh, wh) = –
∑

Vz∈�∗
h

wh(z)ã(uh,φz), ∀uh ∈ Uh,∀wh ∈ Ũh, (.)

where ã(uh,φz) =
∫

∂Vz
( ∂uh

∂x dy – ∂uh
∂y dx) and z = (xz, yz).

The following two lemmas are known (see [, ]).

Lemma  The bilinear form a(uh,�∗
hvh) is symmetric, bounded, and positive definite, i.e.,

a
(
uh,�∗

hvh
)

= a
(
vh,�∗

huh
)

= a(uh, vh), ∀uh, vh ∈ Uh,

and there exist two positive constants C and C such that

a(uh, vh) ≤ C‖∇uh‖‖∇vh‖, a(uh, uh) ≥ C‖∇uh‖
, ∀uh, vh ∈ Uh.

Lemma  The following formula holds:

(
uh,�∗

hūh
)

=
(
ūh,�∗

huh
)
, ∀uh, ūh ∈ Uh.

If u ∈ Hm(�) (m = , ) and vh ∈ Uh, the following error estimates hold:

∣
∣(u, vh) –

(
u,�∗

hvh
)∣
∣ ≤ Chm+n‖u‖m‖vh‖n, n = , .

Put ‖|uh‖| = (uh,�∗
huh)/. Then ‖| · ‖| is equivalent to ‖ · ‖ on Uh, i.e., there exist two

positive constants C and C that satisfy

C‖uh‖ ≤ ‖|uh‖| ≤ C‖uh‖, ∀uh ∈ Uh.

For given solutions u ∈ U , define a generalized Ritz projection Rh : U → Uh such that

(Rhu – u, vh) + εa(Rhu – u, vh) = , ∀vh ∈ Uh. (.)

Thus, from standard FE method (see, e.g., [] or []), we have the following results.
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Lemma  The generalized projection Rh : U → Uh satisfies

‖u – Rhu‖ ≤ C‖u‖. (.)

If u ∈ H(�), we have

‖u – Rhu‖ + h
∥
∥∇(u – Rhu)

∥
∥

 ≤ Ch‖u‖. (.)

The following discrete Gronwall lemma is known (see []) and will be used in the next
analysis.

Lemma  (Discrete Gronwall lemma) If {an}, {bn}, and {cn} are three positive sequences,
and {cn} is monotone that satisfy a + b ≤ c and an + bn ≤ cn + λ̄

∑n–
i= ai (n = , , . . . ,

λ̄ > ), then an + bn ≤ cn exp(nλ̄) (n = , , , . . .).

Thus, the fully discrete CNFVE formulation with the second-order accuracy for the D
Sobolev equations is stated as follows.

Problem IV Seek un
h ∈ Uh such that

⎧
⎪⎨

⎪⎩

(un
h – un–

h ,�∗
hvh) + εa(un

h – un–
h , vh) + kγ

 a(un
h + un–

h , vh)
= k(f (tn– 


),�∗

hvh), ∀vh ∈ Uh,
u

h(x, y) = Rhϕ, (x, y) ∈ �.
(.)

We have the following main result for Problem IV.

Theorem  Under the hypotheses of Theorem , if ϕ ∈ H(�), then Problem IV has a
unique series of solution un

h ∈ Uh that satisfies

∥
∥un

h
∥
∥

 +
∥
∥∇un

h
∥
∥

 ≤ C

(

k
n∑

i=

∥
∥f (ti– 


)
∥
∥

 + ‖ϕ‖

)

, n = , , . . . , N . (.)

And if f ∈ W ,∞(, T ; H(�)), ϕ ∈ H(�), and k = O(h), then the errors between the solu-
tion u(t) to Problem II and the solutions un

h to Problem IV are as follows:

∥
∥u(tn) – un

h
∥
∥

 ≤ C
(
k + h), n = , , . . . , N . (.)

Proof Let A(u, v) = (u,�∗
hv) + εa(u, v) + kγ a(u, v) and F(v) = k(f (tn– 


),�∗

hv) + (un–
h ,

�∗
hv)+εa(un–

h , v)–kγ a(un–
h , v). Then Problem IV may be equivalently restated as follows:

{
A(un

h, vh) = F(vh), ∀vh ∈ Uh,  ≤ n ≤ N ,
u

h(x, y) = , (x, y) ∈ �.
(.)

From Lemma , we have A(u, u) = ‖|u‖| + ε‖∇u‖
 + kγ ‖∇u‖

 ≥ C‖u‖
 + ε‖∇u‖

 ≥
α‖u‖

 (where α = min{C, ε}). Thus, A(u, v) is a positive definite bilinear function on
Uh × Uh. It is evident that A(u, v) is a continuous bilinear function on Uh × Uh and F(v)
is a continuous linear function on Uh for fixed un–

h . Thus, by the Lax-Milgram theorem
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(see [] or []), we deduce that the system of equation (.), i.e., Problem IV has a unique
series of solutions un

h ∈ Uh (n = , , . . . , N ).
By taking vh = un

h + un–
h in Problem IV, we have

∥
∥
∣
∣un

h
∥
∥
∣
∣
 –

∥
∥
∣
∣un–

h
∥
∥
∣
∣
 + ε

(∥
∥∇un

h
∥
∥

 –
∥
∥∇un–

h
∥
∥



)

≤ k
∥
∥
∣
∣f (tn– 


)
∥
∥
∣
∣


∥
∥
∣
∣un

h + un–
h

∥
∥
∣
∣
. (.)

Note that ‖|un
h + un–

h ‖| ≤ C‖∇(un
h + un–

h )‖ ≤ C(‖∇un
h‖ +‖∇un–

h ‖). From (.) we have

∥
∥
∣
∣un

h
∥
∥
∣
∣
 –

∥
∥
∣
∣un–

h
∥
∥
∣
∣
 +

ε

CC

(∥
∥∇un

h
∥
∥

 –
∥
∥∇un–

h
∥
∥



) ≤ k
∥
∥
∣
∣f (tn– 


)
∥
∥
∣
∣
. (.)

By summing from  to n for (.), we obtain

∥
∥
∣
∣un

h
∥
∥
∣
∣
 +

ε

CC

∥
∥∇un

h
∥
∥

 ≤ k
n∑

i=

∥
∥
∣
∣f (ti– 


)
∥
∥
∣
∣
 +

∥
∥
∣
∣u

h
∥
∥
∣
∣
 +

ε

CC

∥
∥∇u

h
∥
∥

. (.)

By using Lemma , from (.), we obtain (.).
By subtracting Problem IV from Problem III by taking v = vh ∈ Uh ⊂ U , we obtain the

following error equations:

⎧
⎪⎨

⎪⎩

(un – un
h – (un– – un–

h ), vh) + (un
h – un–

h , vh – �∗
hvh) + kγ a(ūn – ūn

h, vh)
+ εa(un – un

h – (un– – un–
h ), vh) = k(f (tn– 


), vh – �∗

hvh), ∀vh ∈ Uh,
u

h(x, y) = u(x, y) = , (x, y) ∈ �.
(.)

It follows from (.) and (.) that

∥
∥Rhun – un

h
∥
∥

 + ε
∥
∥∇(

Rhun – un
h
)∥
∥



=
(
Rhun – un, Rhun – un

h
)

+
(
un – un

h, Rhun – un
h
)

+ ε
(∇(

Rhun – un),∇(
Rhun – un

h
))

+ ε
(∇(

un – un
h
)
,∇(

Rhun – un
h
))

=
(
un– – un–

h , Rhun – un
h
)

+ ε
(∇(

un– – un–
h

)
,∇(

Rhun – un
h
))

–
kγ


(∇(

ūn – ūn
h
)
,∇(

Rhun – un
h
))

–
(
un

h – un–
h , Rhun – un

h – �∗
h
(
Rhun – un

h
))

+ k
(
f (tn– 


), Rhun – un

h – �∗
h
(
Rhun – un

h
))

. (.)

By using (.) and the Hölder and Cauchy inequalities, we have

(
un– – un–

h , Rhun – un
h
)

+ ε
(∇(

un– – un–
h

)
,∇(

Rhun – un
h
))

=
(
Rhun– – un–

h , Rhun – un
h
)

+ ε
(∇(

Rhun– – un–
h

)
,∇(

Rhun – un
h
))

≤ 

(∥
∥Rhun– – un–

h
∥
∥

 +
∥
∥Rhun – un

h
∥
∥



)

+
ε


[∥
∥∇(

Rhun– – un–
h

)∥
∥

 +
∥
∥∇(

Rhun – un
h
)∥
∥



]
, (.)
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–
kγ


(∇(

un – un
h
)
,∇(

Rhun – un
h
))

= –
kγ


(∇(

un – Rhun),∇(
Rhun – un

h
))

–
kγ


(∇(

Rhun – un
h
)
,∇(

Rhun – un
h
))

=
kγ

ε

(
un – Rhun, Rhun – un

h
)

–
kγ


(∇(

Rhun – un
h
)
,∇(

Rhun – un
h
))

≤ kγ 

ε

∥
∥un – Rhun∥∥

 +
k


∥
∥Rhun – un

h
∥
∥

, (.)

–
kγ


(∇(

un– – un–
h

)
,∇(

Rhun – un
h
))

= –
kγ


(∇(

un– – Rhun–),∇(
Rhun – un

h
))

–
kγ


(∇(

Rhun– – un–
h

)
,∇(

Rhun – un
h
))

=
kγ

ε

(
un– – Rhun–, Rhun – un

h
)

–
kγ


(∇(

Rhun– – un–
h

)
,∇(

Rhun – un
h
))

≤ kγ 

ε

∥
∥un– – Rhun–∥∥

 +
k


∥
∥Rhun – un

h
∥
∥



+
kγ


[∥
∥∇(

Rhun– – un–
h

)∥
∥

 +
∥
∥∇(

Rhun – un
h
)∥
∥



]
. (.)

If k = O(h), with Lemma , and Taylor’s formula, we have

(
un

h – un–
h , Rhun – un

h – �∗
h
(
Rhun – un

h
))

≤ Ch∥∥∇(
un

h – un–
h

)∥
∥



∥
∥∇(

Rhun – un
h
)∥
∥



≤ Ch∥∥∇(
Rhun – un

h
)∥
∥

 + Ch[∥∥∇(
Rhun – un)∥∥



+
∥
∥∇(

un – un–)∥∥
 +

∥
∥∇(

un– – Rhun–
h

)∥
∥



+
∥
∥∇(

Rhun–
h – un–

h
)∥
∥



]∥
∥∇(

Rhun – un
h
)∥
∥



≤ Ck
[∥
∥∇(

Rhun – un
h
)∥
∥

 +
∥
∥∇(

Rhun–
h – un–

h
)∥
∥



]

+ Chk
∥
∥∇ut(ξn)

∥
∥

 + Chk
[∥
∥∇(

un – Rhun
h
)∥
∥



+
∥
∥∇(

un– – Rhun–
h

)∥
∥



]
, ξn ∈ (tn–, tn), (.)

k
(
f (tn– 


), Rhun – un

h – �∗
h
(
Rhun – un

h
))

≤ Chk
∥
∥∇f (tn– 


)
∥
∥

 + Ck
∥
∥∇(

Rhun – un
h
)∥
∥

. (.)

By combining (.) to (.) with (.), we obtain

∥
∥Rhun – un

h
∥
∥

 + ε
∥
∥∇(

Rhun – un
h
)∥
∥



≤ ∥
∥Rhun– – un–

h
∥
∥

 + ε
∥
∥∇(

Rhun– – un–
h

)∥
∥



+ Chk
[∥
∥∇(

un – Rhun)∥∥
 +

∥
∥∇(

un– – Rhun–)∥∥


]

+ Chk
[∥
∥∇f (tn– 


)
∥
∥

 +
∥
∥∇ut(ξn)

∥
∥



]

+ Ck
[∥
∥∇(

Rhun – un
h
)∥
∥

 +
∥
∥∇(

un– – Rhun–
h

)∥
∥



]
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+ Ck
[∥
∥Rhun – un

h
∥
∥

 +
∥
∥un– – Rhun–

h
∥
∥



]

+
kγ


[∥
∥un – Rhun∥∥

 +
∥
∥un– – Rhun–∥∥



]
. (.)

By summing from  to n for (.) and using Lemma , we obtain

∥
∥Rhun – un

h
∥
∥

 + ε
∥
∥∇(

Rhun – un
h
)∥
∥



≤ Ch + Chk
n∑

i=

{∥
∥∇(

ui – Rhui)∥∥
 + h[∥∥∇f (ti– 


)
∥
∥

 +
∥
∥∇ut(ξi)

∥
∥



]}

+ Ck
n∑

i=

[
ε
∥
∥∇(

Rhui – ui
h
)∥
∥

 +
∥
∥Rhui – ui

h
∥
∥

 +
∥
∥ui – Rhui

h
∥
∥



]
. (.)

If k is sufficiently small such that Ck ≤ /, it follows from (.) that

∥
∥Rhun – un

h
∥
∥

 + ε
∥
∥∇(

Rhun – un
h
)∥
∥



≤ Ch + Chk
n∑

i=

{∥
∥∇(

ui – Rhui)∥∥
 + h[∥∥∇f (ti– 


)
∥
∥

 +
∥
∥∇ut(ξi)

∥
∥



]}

+ Ck
n∑

i=

∥
∥ui – Rhui

h
∥
∥

 + Ck
n–∑

i=

[
ε
∥
∥∇(

Rhui – ui
h
)∥
∥

 +
∥
∥Rhui – ui

h
∥
∥



]
. (.)

Thus, by using Lemmas  and , from (.) we obtain

∥
∥Rhun – un

h
∥
∥

 +
∥
∥∇(

Rhun – un
h
)∥
∥



≤ C

{

k
n∑

i=

[∥
∥ui – Rhui

h
∥
∥

 + h∥∥∇(
ui – Rhui)∥∥



]
+ h

}

exp(Ckn)

≤ Ch. (.)

Further, it follows from (.) that

∥
∥Rhun – un

h
∥
∥

 +
∥
∥∇(

Rhun – un
h
)∥
∥

 ≤ Ch. (.)

Combining (.) with Lemma  and Theorem  yields (.) which complete the proof of
Theorem . �

Remark  The error estimates of Theorem  are optimal order, well-rounded, and very
beautiful.

4 A numerical example
In this section, we provide a numerical example of the D Sobolev equations to illustrate
that the numerical results are consistent with theoretical conclusions. Further, it is shown
that the fully discrete CNFVE formulation is better than the fully discrete FVE formulation
with the first-order accuracy in [], thus validating the feasibility and efficiency of the fully
discrete CNFVE formulation.
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Figure 2 CNFVE solution with the second-order accuracy when t = 2 s.

We choose the computational domain as � = [, ] × [, ]. We take ε = /(π),
γ = /(π), the initial value function ϕ(x, y) = sinπx sinπy, the boundary value function
ψ(x, y, t) = , and the source term f (x, y, t) =  sinπx sinπy exp(t).

We first divide the � into the right triangle element with diameter h =
√

 × –,
which constitutes a triangularization �h with the number of node Nh =  × . The dual
decomposition �∗

h consists of barycenter dual decomposition, i.e., the barycenter of the
right triangle K ∈ �h acted as the node of the dual decomposition. In order to satisfy the
condition k = O(h) in Theorem , we choose the time step increment as k = – s (sec-
ond).

When we adopt the fully discrete CNFVE formulation to solve the D Sobolev equa-
tions at t =  s, as soon as we perform  steps, we can obtain the numerical solution
with accuracy – with respect to the norm ‖ · ‖ in H

(�) (see Figure ) such that the ac-
cumulation of truncation errors in the computational process is very slow (see the dotted
line of Figure ).

If one adopts the following fully discrete FVE formulation (see []):

Problem V Seek un
h ∈ Uh such that

⎧
⎪⎨

⎪⎩

(un
h – un–

h ,�∗
hvh) + εa(un

h – un–
h , vh) + kγ a(un

h, vh)
= k(f (tn),�∗

hvh), ∀vh ∈ Uh,
u

h(x, y) = Rhϕ(x, y), (x, y) ∈ �

(.)

to find the solution for the D Sobolev equations, the error estimates between the accuracy
solution and the fully discrete FVE solutions only have the first-order accuracy in time as
follows (see []):

∥
∥u(tn) – un

h
∥
∥

 ≤ C(k + h), n = , , . . . , N .
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Figure 3 FVE solution with the first-order accuracy when t = 2 s.

Figure 4 Compare errors of the CNFVE solutions with the FVE solutions with the first-order accuracy
when 0 ≤ t ≤ 2 s.

Thus, in order to obtain the same computational accuracy as the fully discrete CNFVE
formulation with the second-order accuracy, the time step increment and spatial step in-
crement for Problem V have to choose as h = O(k) = O(–) such that the number of node
is Nh =  × . When one uses the fully discrete FVE formulation with the first-order ac-
curacy to find the solution for the D Sobolev equations at t =  s which is depicted graph-
ically on the chart in Figure , he needs to perform , steps so that the accumulation
of its truncation errors in the computational process increases very quick (see the solid
line in Figure ) and is far greater that those of the fully discrete CNFVE formulation
with the second-order accuracy. It is shown that the errors of the second-order accuracy
CNFVE solutions are far smaller than those of the first-order accuracy FVE solutions be-
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cause the accumulation of truncation errors for the fully discrete CNFVE formulation is
far slower than that for the fully discrete FVE formulation with the first-order accuracy
(see Figure ). Further, it is shown that the fully discrete CNFVE formulation with the
second-order accuracy to solve the D Sobolev equation is computationally very effective
and the numerical results are consistent with theoretical those because the theoretical
and numerical errors all are O(–) with respect to the norm ‖ · ‖ in H

(�). Therefore,
the fully discrete CNFVE formulation is far better than the fully discrete FVE formula-
tion with the first-order accuracy in time in []. In addition, the study approaches here
are simpler and more convenient than those of the classical fully discrete FVE methods
(see, e.g., [, ]) due to avoiding the semi-discrete FVE formulation with respect to space
variables.

5 Conclusions and perspective
In this paper, we have directly established the fully discrete CNFVE formulation with the
second-order accuracy for D Sobolev equations from the semi-discrete CN formulation
with second-order accuracy about time, analyzed the errors between the accurate solution
and the fully discrete CNFVE solutions, and we provided a numerical example validating
the advantage of the fully discrete CNFVE formulation. It is shown that the fully discrete
CNFVE formulation is far better than the fully discrete FVE formulation with the first-
order accuracy in time.

Future research work in this area will aim at extending the fully discrete CNFVE formu-
lation to some real-life Sobolev equations and to a set of more complicated PDEs such as
the atmosphere quality forecast system and the ocean fluid forecast system.
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