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1 Introduction

A smooth metric measure space is actually a Riemannian manifold equipped with some
measure which is absolutely continuous with respect to the usual Riemannian measure.
More precisely, for a given complete #-dimensional Riemannian manifold (M, (,)) with the
metric (,), the triple (M, (,),e” dv) is called a smooth metric measure space, where f is a
smooth real-valued function on M and dv is the Riemannian volume element related to (, )
(sometimes, we also call dv the volume density). Let 2 be a bounded domain in a smooth
metric measure space (M, (,),e” dv), and let A : @ — End(T'R2) be a smooth symmetric
and positive definite section of the bundle of all endomorphisms of 72, we can define the
elliptic operator in weighted divergence form as

Lr =—divf AV, (1.1)

where divy X = ¢/ div(e X) is the weighted divergence of vector fields X, and V is the gra-
dient operator. When A is an identity map, —£; becomes the drifting Laplacian Ay, for
the drifting Laplacian, some universal inequalities have been given in [1-5]. When f is a
constant, £r becomes the elliptic operator in divergence form, for some recent develop-
ments about universal inequalities of the eigenvalue of elliptic operator in divergence form

© 2016 Zhu et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


http://dx.doi.org/10.1186/s13660-016-1130-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-1130-0&domain=pdf
mailto:defengdu123@163.com

Zhu et al. Journal of Inequalities and Applications (2016) 2016:191 Page 2 of 15

on Riemannian manifolds, we refer to [6—10] and the references therein. As briefly men-
tioned above, it is a natural problem how to get the universal inequalities of the eigenvalues
of elliptic operator in weighted divergence form. Actually, in this paper, we first consider
the eigenvalue problem as follows:

{(Qf +V)u=Xrpu, ing, 1.2)

u=0, on 082,

where Q is a bounded domain in a complete smooth metric measure space (M, (,),e” dv),
V is a non-negative continuous function on M, and p is a weight function which is positive
and continuous on M. For the eigenvalues of (1.2), we can give the following universal
inequalities.

Theorem 1.1 Let 2 be a connected bounded domain in an n-dimensional complete smooth
metric measure space (M, (,),e” dv) . Assume that &1 < A, tr(A) < n&, throughout Q, and
1 =< p(x) < p2, | Vf|(x) < Co,Vx € Q, here I is the identity map, &, &, p1, p2, Co are positive
constants and tr(A) denotes the trace of A. Let A; be the ith eigenvalue of the eigenvalue
problem (1.2), then we have

k
> Ok = 1)
i=1

k

1

48, p2 A — o5tV ri—p3 Vo2 m2H? + C?

= 52,12)2 Z()‘k+1—)»i){w+co<l 2 0) +— 0}, (1.3)
- & & 4m

where Hy = sup,..q, |H|(x), Vo = mingeq V(x), and H is the mean curvature vector field of M
in a Euclidean space R™.

Remark 1.2 From inequality (1.3), we can get some results which are given in [5, 8], for
example, if f is a constant, then Cy = 0, (1.3) becomes (3.2) in [8].

For the fourth-order elliptic operator in weighted divergence, we can consider the fol-
lowing eigenvalue problem:

2 _ .
Efu =Au, in&,

uzg—;‘=0, on 092,

(1.4)

we also give some universal inequalities for the eigenvalues of (1.4) as follows.

Theorem 1.3 Let Q be a connected bounded domain in an n-dimensional complete
smooth metric measure space (M, (,),e” dv). Assume that &1 < A < &1 throughout <,
and |Vf|(x) < Co,Vx € Q, here I is the identity map, &, &,, Cy are positive constants. Let A;
be the ith eigenvalue of the eigenvalue problem (1.4), then we have
‘ 2 _ & : 2 3 3ad 2772, 2
D (A=A < ey D (Akir = AP (@r+4)A] +4CoE7 A} + & (nPHE + C2))
i-1 o =
k 1 1 1 %
XY (A - A)(AA7 +4CEEA] +&(PHy + C3)) . (15)
i=1
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where Hy = sup,.q |H|(x), and H is the mean curvature vector field of M in a Euclidean
space R™.

Remark 1.4 From inequality (1.5), we can get some results which are given in [3, 11], for
example, if A is an identity map, then & =&, =1, (1.5) becomes (1.2) in [3].

On smooth metric measure spaces, we can also define the so-called weighted Ricci cur-
vature Ric/ given by

Ri¢/ = Ric + Hessf,

which is also called the co-Bakry-Emery Ricci tensor. The equation Ri¢/ = «(,) for some
constant « is just the gradient Ricci soliton equation, which plays an important role in the
study of Ricci flow. We refer the reader to [12] for some recent progress about Ricci soli-
tons. For k > 0,k = 0,0rk < 0, the gradient Ricci soliton (M, (,),e” dv,«) is called shrink-
ing, steady, or expanding, respectively. In the following, we would like to give two examples
of Ricci solitons.

Example 1 The Gaussian shrinking soliton (R”, (,)Caua,,e’%“"2 dv, %), where (,)can is the
standard Euclidean metric on R”, f = i|x|2,x e R”, and Ri¢/ = %(, Ycan-

Example 2 More generally, consider the Riemannian product ¥ x R”, where (%; (,)x) is
an Einstein manifold satisfying Ricy = « (,) 5. Define the smooth function f : ¥ x R” - R
by setting f(p;x) = 5|x|* + x - @ + b, for any a € R” \ {0} and b € R. Then (£ x R*, ()5 +
(Veamr €7 dvs ® dvg, k) is a non-trivial gradient Ricci soliton. Similarly, one could even
construct gradient Ricci solitons with a warped product structure. More details of the
product solitons can be found in the Remark 3.2 in [2].

In the following, we will give some universal inequalities for the Dirichlet eigenvalues
in a connected bounded domain on the Gaussian shrinking solitons and general product

solitons.

Theorem 1.5 Let Q be a connected bounded domain in the Gaussian shrinking soliton
(R", )Can,e’%"“2 dv, %), and assume that &1 < A, tr(A) < n&, throughout 2, here I is the
identity map, &,&, are positive constants and tr(A) denotes the trace of A. Let A; be the ith
eigenvalue of the Dirichlet problem

Lru=Au, ing, (1.6)
u=0, on 082, '
where f = 1|x|?, then we have
k k
48, &1 .
Mol = A < — Y (M1 = A i+ — (4m - 2). 1.7
;(kl )_n&;(kl ){ + 22 (an ggg{lxl}} (17)

|12

Remark 1.6 (i) For a self-shrinker, the drifting Laplacian Ay with f' = ¥~ is actually the
operator £ := A — %(x, V(-)), which was introduced by Colding-Minicozzi [13] to study
self-shrinker hypersurfaces. For the Dirichlet problem of the operator £, some univer-
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sal inequalities have been obtained by Cheng and Peng [14]. In this case, our results can
be regarded as conclusions for the Dirichlet problem of the elliptic operator in weighted
divergence form.

(ii) Let b = ‘;—f, using the recursive formula in Cheng and Yang [15], we can infer from
(1.7) that

3} in{ |2 C W N I——"
Aal + 1 (4n—iré%1{|x| }) < Co(m, k)k (A1+ 16 (471 Ixrélél{|x| })), (1.8)

where Cy(1,k) <1+ % is a constant (see [15]).

Theorem 1.7 Let Q be a connected bounded domain in the gradient product Ricci soliton
(Z xR, ),e‘% dv, k), where X is an Einstein manifold with constant Ricci curvature k.
Setx = (x,t) € Q, wherex € ¥,t € R, and assume that &1 < A < &1 throughout 2, here I is
the identity map, &, &, are positive constants. Let A; be the ith eigenvalue of the eigenvalue
problem (1.6), where f = %, then we have

k k

> O =) < 2—2 > Chaen = 2 {40 + 461 - €61 min {122} . (1.9)

i=1 i=1 whes

2 A general inequality
In this section, we will prove a general inequality, which will play a key role in the proof of
our main results which are listed in Section 1.

Lemma2.1 Let (M, (,),e” dv) be an n-dimensional compact smooth metric measure space
with boundary dM (possibly empty), and let a, b be the random non-negative constants and
a+b+#0. Let \; be the ith eigenvalue of the eigenvalue problem of the fourth-order elliptic
operator in weighted divergence form with weight p such that

(aE} +bLr+ Vu=2rpu, inM,

u:g—’j:O, on oM,

and u; be the orthonormal eigenfunction corresponding to A;, that is,

(aS} +b& + Vu; = Mipw,  inM,

ui:%:O, on oM,
[ puinjdp = 85, Vi,j=1,2,...,

where du = e dv. Then, for any h € C*(M), we have

k
Gk =2" [ wIh d
i=1 M

k
<Y 800w =2 [
i=1

k 2
A + _)\i 1 M,‘A h
+ E le/ —((Vh,Vu,»)+ 2f ) du, (2.1)

i1 M P
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where § is any positive constant and

pi= —Za(Vh,AV(Sfui» +alihLru; — Zaﬂf((Vh,AVu,'))
+alp(u;Leh) — 2b(Vh, AVu;) + bu; Srh.

Proof Let ¢; = hu; — Z]'.;l a;uj, here k > 1is any integer and a;; = 2117:1 fM phuu;dp = aj;.
Then we have
09

©ilam = M

=0, and /p(piujduzo, Vi,j=1,...,k.
oM M

By the Rayleigh-Ritz inequality, we get

Y / pg?dp < / 0i(ali + b+ V)gidp. (2.2)
M M
From the definition of £;, we have

L (hu;) = —dive(AV (hu;))
= —¢ div(e? (A(hVu; + u;Vh)))
= —div(A(hVu; + u;Vh)) — (Vf, AhVu; + u;Vh))
= ~hdiv(AVu;) - (Vi AVu;) — u; dive(AVH) — (Vu;, AVh)

=h&ru; —2(Vh,AVu;) + u;Srh (2.3)
and

2}(hu,') = Ef(hﬂfui —2(Vh,AVu;) + uith)
= h&u; - 2(Vh, AV (&u)) + SrhLru,;

- 28 ((VI,AVu;)) + £ (u; Lrh). (2.4)
It follows from (2.3) and (2.4) that
(aﬂf +bLr+ V)(hui) = Aiphu; + p;, (2.5)
where p; is defined by

pi = —2a(Vh,AV (L4 (u;))) + alrh€ru; — 2aL;((Vh, AVu))

+aly(uiL(h)) - 2b(Vh,AVu;) + bu;Sh.
Let us compute
/ wi(aﬂf +bLr+ V)pidu
M

= / (pi(aﬂf +bLr+ V)(hui) du
M
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= A / piphu;dp + / pipidp
M M

k
= )»i/ pg? dp + / hup;dp - Zﬂijbij: (2.6)
M M =

where bj; is defined by b; = [, piujdp.
On the other hand, by (2.2) and (2.6), we have

k

Oun=2 [ petdin< [ hupidu=Y apy 2.7)
M M

j=1

By a similar computation to (2.8)-(2.12) in [6], we have
2/ Lru{AVh, Vu;) du —2/ Lrui(AVh, Vu;) du
M M
= —/ huiﬁfuj du + / hujﬂfu,- du + / wiLruwLehdu — / wruw Lehdu, (2.8)
M M M M

/ujﬂf(Vh,AVui)d,u,+/ u,(Vh,AV(Efui))du
M M

:/ Sfuj(Vh,AVui)d,u—/ Sfui(Vh,AVuj)du+/ wru Lrhdu, (2.9)
M M M
/ujﬂf(uiﬂfh)du:/ wi Sruirhdu, (2.10)
M M
and
/uj{—Z(Vh,AVui)+ui2fh}d,u:/ huii‘,fu/du—/ huiLru;d. (2.11)
M M M

Combining (2.8)-(2.11) and a similar calculation to (2.13) in [6], we get
b,‘j = / [J,’M]' du = ()Lj - )Ll‘)dl'j. (212)
M

We infer from (2.7) and (2.12) that
k
Gan=2) [ oot < [ hupidic =3 0, 2)a3 (2.13)
M M ,
j=1

Setting t; = [}, u;((Vh, Vi) + uiifh)du, thus ¢; = —¢;; and

bliAfh
/—Zgoi (Vh,Vu;) + du
" 2
k

= / (—2hui(Vh, Vu;) — hu?Afh) du +2 Z ac;
M

j=1

k
- / W IVhPdp+2 " ajc. (2.14)
M

j-1
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Using (2.13), (2.14), and the Schwarz inequality, we can get

k
(hks = 1)’ ( /M ] |\Vh|* dp +2 Zm,-q,)

j=1
1 N A
:()\k+1_)Li)z/[\‘/[_Z\//_)‘pi(ﬁ((Vhrvui) i f ) ch]\/_u/)

<00ua -1 [ potdu
M

2
Aa1 — Ai 1 AN AN
i 15 /M<ﬁ<<Vh’VMi> ) ch][u,)

<8(Ajs1— )\i)z (/ hup;dp — Z()‘ A )“u)

j=1

Aes1 = As 1 u,Afh
+ le< /M ;((Vh, Vi) + ) Zcu>, (2.15)

where § is any positive constant. Summing over i from 1 to k in (2.15) and noticing a; =

aji, ¢ij = —Cji, we have

k

k
Z()\ku - 1) / u; |Vh|* dp -2 Z()»ku =2 (hi = Ajajic;;
i=1 M

ij=1

k k 2

Ais1 — A 1 iArh
E (k1 — / hup;du + E Sl Z o / _(<Vh:vui> + £ 2f ) du
i1 M P

i=1

K A=A
+1 — A
_2:3(Ak+1— ) = 1i)’a - § Tc?j, (2.16)
ij=1 ij=1

which implies that

k
> Chea 1" [ wiVhdu
i=1 M

k K ’
)\ . _)Vi l A h
< ZS()\-kH _)Li)Z/ huz’pidﬂ + Z le/ ((Vh Vu;) + Ui 2f ) dﬂ
= M i1 M

0
This completes the proof of Lemma 2.1. O

3 Proof of Theorem 1.1 and Theorem 1.3
In this section, we will give the proof of Theorem 1.1 and Theorem 1.3 by using Lemma 2.1.

Proof of Theorem 1.1 From the Nash embedding theorem, we know that there exists an
isometric immersion from a complete Riemannian manifold M into a Euclidean space R™.
Thus, M can be considered as an n-dimensional complete isometrically immersed sub-
manifold in R™. Let y,>,...,¥, be the standard coordinate functions of R”. Then we
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have
ilvyof =n, (3.1)
AGL Y2 Ym) = (Ay1, Aya,..., Ayy) = nH, (3.2)
i Vye Vf)’ Zl(Vf(ya ) = 1VfP%, (33)
i (V) Vui)? i Vu; (ya = |Vul%, (3.4)
o o
anI:(Vyw Vi) (Vya, Vf) = er;Vui(ya)Vf(ya) = (Vu;, Vf), 3.5)
i Ay (Vya, Vi) = ij Ay Viui(ya) = (nH, Vi) = 0, (3.6)
o ot

and
i Aye(Vyeo Vf) = i AyaVf () = (HH,Vf) = 0. (37)
a1 o

Then we infer from (3.3)-(3.7) that

er;Afya<vyar Vu;) = Xy::(Aya — (Ve VO)(Vyar Viti) = (Vuiy, V) (3.8)
and
il(Afya)z’ = il(Aya = (V3 V)
= Xr::((Aya)z =209 (Vya, V) + (Vyas V)?)
= ;;|H|2 +|VfIA (3.9)

Let @ = 0,b =1 in (2.1), then taking /4 = y, and summing over «, and noticing p;' <

&

u;||> < p7t, we get
1 g

k k i
st 3w = = Y00k =20 [ S upusd
i=1 i=1 o=l
i)\kﬂ—)w‘ / li((v}’ Vu;) + uiA—fya>2du, (3.10)
=1 g Qp a=1 v l 2 ,

where py; = -2(Vyo, AVu;) + u; L5y, . Since

—2/yaui(Vya,AVui)du=/
Q

uiz(vywAvya>dM_/yau?£fya du,
Q Q
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we infer from above equality and }_\_ (Vy,, AVy,) = tr(A) < n§, that
/ > Yaltipaidi = / > vatti(~2(Vya, AVii) + uiLrye) dps
Q2 -1 Q2 o1
= / > uH(Vyar AVya) dp < nésl|uil|* < nap;’. (3.11)
Q a=1
From p;! < |lu;||> < p;* and A > &1, we have
A= / ui(Lr + Vu;dp =f —u;divf(AVu,-)d/L+/ Vui2 du
Q Q Q
S GO R T
Q Q

which implies

ri—pytVo

Vo ]|* < (3.12)
&

Using the Schwarz inequality and the above inequality, we have

1
1 Ai— Vo 2
fwf,wi)dusf IV Vuil dp < Co{ [ Vui|*}2 s@(%) . (3.13)
Q Q 1

Combining (3.4), (3.8), (3.9), (3.12), and (3.13), we have

1 “ iA o 2
/‘Z((Wa,vwﬂu 24 > dp
QP 2

1 o
= / N Z((V}/mvui>2 + uiAfya<Vya, vul) + M) d/l/
ol it

4
1 2 "‘12 211712 2
= | = IVul® + (Vf, Vi) + == (n*H)> + |Vf ) ) d
QP 4
1
1 [ri-p3'V, ri—p3tVo\2 1
5_{M+co(w> +_(n2Hg+cg)}. (3.14)
P1 & & 4
Substituting (3.11) and (3.14) into (3.10), we have
‘ a P26
282
D Cr = 20> D80t — i)
. = o1
i=1 i=1
i =hi o2 [Mi=pi Vo L (hi—ps' Vo2
+ Z + z_{ i 2 + C()(#)
= & np & &

n*H; + C3 }
+—— 1.
41
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Taking
k Ai ri—p3 V¢ n?H2+CE . 1
5= { Zizl(}hkﬂ A ){ p2 CO( [;21 0) 4(:): } }
Zi:l (Aks1 — )\i) né;
we can get (3.1). This completes the proof of Theorem 1.1. d

Proofof Theorem 1.3 Leta=1,b=0,V =0, p =1in(2.1), then taking 4 = y, and summing

over «, where {y,}, are defined as above, we get
k k m
n Z(Aku -A)? < Z S(Ags1 — Ai)2/ Zyauipaidu
i=1 i=1 241
A - UiAryy
P / Z( Ve, Viti) f ) > du, (3.15)

i=

where py; = — s u)) + aAfUi — ar u)) + u; ). a direct
h Z(Vy AV(Sf )) Efy Sf 2£f((Vy AV )) Sf( Sfy) BY di

computation, we have

/ YalhiPai AL
Q
= / Yattif =2(Vya, AV (Er13)) + Lrya Lr1ti — 287 ((Vyar AVisy))
Q
+ Sf(uiﬂfya)} d/L

= [ 20V, A} 4 20V, AV = gy Sy}
+/anu,»£fy(,£fuid,u
+/;2{£fyau,-+ya£ful-—Z(Vya,AVMi)}{—Z(VyayAVMD+Mi£fya}dﬂ
- /Q 20 (Vo AV ) dpt + /Q MV y, AV dpt

- [ 4w 9y AV dy+ [ () (3.16)
Q Q

Since &1 < A < &1, we can infer from (3.1)-(3.9) that

Z / 2u; Lrui(Vyo, AVyy) die < 2n&, / uSru;dp
Q Q

1 1
< 2na{luil*1€puil*}? = 2n82 A7, (3.17)
m
> [ 4T AV dye = 4145 < 48, [ (VA
a=1Y 2 Q

1

= 4‘52/ wilpu;dp < 46 A7, (3.18)
Q
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Z—/ 414;L7Yo (Vyo, AVu;) dpt
a=1 Q@

< “Ezf MiAfya(Vya,AVMi)dM‘
Q
= ‘452/ Mi<Vf»AVMi>dM‘
Q
5452/ui|Vf||Vui|du
Q

1
<4Co& | luil* AV |}

3 2 301
=4Co&; {/ (Vu;, AVu;) dﬂ} <4Co&; A},
Q

(3.19)
and
> [spardn =&y [ a2
a=1 2 a=1 Q2
= 522/ u; (R HI> + |Vf*) du
Q
<& (n*H;g + CY). (3.20)
Combining (3.16)-(3.20), we have
" 1 11
Z/ YathiPai dp <& (21 +4)A} +4Co&) A} + & (n*Hy + CF)). (3.21)
a=1 Q

1
3
Since || Vu;||? < ilfQ(Vui,AVui) du = %fg wipuidp < Ag—i, then from (3.14), we have

m A » 2
fZ(WwauiH - ) dp
o 2

a=1

2
(|Vui|2 + (Vf, Vi) + - (P [HP + |Vf|2)) du
Q

2772 2
; n“Hy + C
+

4

(3.22)

Taking (3.21) and (3.22) into (3.15), we have

£ 2 £ 2 3 31 2772 2
nY (Ara—A) <D 8(Aka = A& (@n+ HA] +4Co&] Al + & (nH; + C))
i=1 i=1

& 1 1
+ZAk+1—Ai<Al? CoA} n2H§+C§)'

— 3.23
4 5 A S (3.23)
i=1 El

Page 11 of 15
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Let

1 1
COA4 2H2+c2

2
Y (Arer = A + 25 ) 1
Si 2

8= { 1 : T 1 } ’
S (A = APE(2n + DA} +4Co87 A + &(n2HE + C2)
we can infer from (3.23) that

k 1 1 1
D (A —A) < f—g {Z(Aku = AP (2n+4)A7 +4Co&7 Al + &(n*H; + CF))

i=1

XY (Mg — A)(4A] A} +4cog1 %[ + & (nHy + cg))} . (3.29)

i=1

this completes the proof of Theorem 1.3. d

4 Proof of Theorem 1.5 and Theorem 1.7

In this section, applying Lemma 2.1, we will give the proof of Theorem 1.5 and Theo-
rem 1.7.

Proofof Theorem 1.5 Leta=0,b=1,V =0, p =1in(2.1), then taking % = x, and summing
over o, where {x,},_; are the coordinate functions of R”, we have

k k n
nY st =2 <Y 80k — 1) / > Fothipaidpe
i=1 i=1 Q2 -1
n

L )»k+1 Ui A 2
Py == Z (Vite Viti) + == du, (4.1)

i=1 a=1

where py; = =2(Vixe, AVu;) + u; Lpxe.
By a similar computation to (3.11), we have

/ Zxauipaidﬂ < nEZ' (42)
Q2 a=1

Since f = %, we have

Arsa = A — V(P2 v, ) = -2
g = AXy 4 » VXg | = me

hence, we infer from the above equality that

- iA KXoy 2
/Z((an,vm>+u—f> dp
Q2 a=1 2

n ) ,

u; (Arx
- / Z(Wf% Vi) + u; Ay (Vig, Viig) + %) du
2 a=1

2 Ko Ui
/<|Vul| +Zxaul (XZ; 16 )du. (4.3)
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From integration by parts, we have

o

n

ou; _|x2
E u,-xaa e+ dy
a=1 Q2 x

n

X ou; %2 1 "
|- [ v [ gte v e ol
@ Q 3xa 2 o

a=1
= —n—zn:a/ UiXy —— 0ut _L T dv+ 1/ u2|x|2e’¥ dv,
—~ Ja 3% 2Jo !
which implies that
—22;4:/ uixa%du:n—l/ w?|x>du. (4.4)
~Ja 0% 2Jo "

By a similar computation to (3.12), we have
1

A
[V ||* < 5 (4.5)

Using (4.4), we have

. wixe \” - 1 du; w22
Z/ <(onn Vul> — z40t> d/,,l, / ( an, Vul 2 a—luixa + A) d/"l‘
a=1Y% Q X 16

o=

1 (it Lt )

4
n A,
<—4+2_ = 4.6
4- 1 16 £{|x| } (4.6)
Taking (4.2) and (4.6) into (4.1), we have
k k
nY (k= 2i)* <Y 80w — 1) ks
i=1 i=1
N Og=A) (n a1
+1 = A
RS (. . 4.7
+21: 5 (4 & 16 mnli }> 7
Taking
N { YOk = ALY + 3 — £ min,g{|x2}) }%
S (ar — 2)2nE
we obtain (1.7). This finishes the proof of Theorem 1.5. O

Proof of Theorem 1.7 Let a=0,b=1,V =0,p=11in (2.1), Set x = (x,¢) € 2, where x €
%, t € R. By a direct computation, we know that |V¢| = 1, Art = —«t, then taking & = £, we
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have
k k
Z(?»ku -0 < Z (M1 — M)Z/ tup;du
i=1 i1 &

k
)Vk+l_)\i
e

i=1 2

2
((Vt,Vui) - ";””) du, (4.8)

where p; = -2(Vt,AVu;) + u; &5t
In the following, let us estimate the right side of (4.8), first of all, by a similar computation
to (3.11), we infer from A < &1 that

f tup; dp = / i (-2(Vt, AVu;) + u; Spt) dp = f u?(Vt,AVt)du < &. (4.9)
Q Q Q
By a direct computation,

/tui(Vt,Vui)d/L:—/u?IVt|2du—/tui(Vt,Vui)du—/tu?Aftdpc,
Q Q Q Q

which implies that

2/ tui(Vt,Vui)dM=—1+K/ Cudpu. (4.10)
Q Q

From the above equality, we have
ictu; \* K2
2/<<w,vm>— 5 ) m :/((Vt,Vui)z—Ktui(Vt,Vui)+Zﬁuf) du
Q Q

2
_ / ((Vt,Vu,->2 +1- K—ﬂu?) du
o 4

2
K
<1+|[IVu|* — = min {¢]*}
4 (e
A K2
<1+—=—— min {|z]*}. (4.11)
& 4 (e

Taking (4.9) and (4.11) into (4.8), we have

k k
Z()»ku -0 < Z 8(hks1 — 1i)*E

i=1 i=1

k
Ades1 = A riookE 2
+ 1+ == — t . 4.12
E 3 < + 5 a m1n7{| | } ( )

1 (xt)eQ

. 2 .
5 { ier (hiert = A {1+ - — 7 ming, o {12%)) }%
Zf‘(zl()‘-kﬂ - )Li)ZSZ

we obtain (1.9). This finishes the proof of Theorem 1.7. a
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