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1 Background, notation, and preliminaries

Let w denote the space of all complex sequences x = (x4)z2g- BY oo, €, €0, and ¢ we denote
the sets of all bounded, convergent, null, and finite sequences, respectively. We write cs
for the set of all convergent series and

€p=<xea):2|xk|p<oo} forl<p<oo.
k=0

By eand e” (1 =0,1,...), we denote the sequences with e; =1 for all k, and egf) =1and
eg(") = 0 for k # n, respectively. For any sequence x = (xx)72,, let

m
A =3 e
k=0

be its m-section.
Letx and y be sequences, X and Y be subsets of w and A = (a);_, be an infinite matrix
of complex numbers. We write xy = (x)x)52,

Z=x'%Y={xcw:azeY}, xf = x71xcs,

o0
XP = ﬂ xlxes={acw: Zakxk converges for all x € X
xeX k=0

for the B-dual of X. Note that zﬁo =cf = cg =/, 61‘6 ={- and Zﬁ =4t

© 2016 Alotaibi et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


http://dx.doi.org/10.1186/s13660-016-1129-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-1129-6&domain=pdf
mailto:mursaleenm@gmail.com

Alotaibi et al. Journal of Inequalities and Applications (2016) 2016:193 Page 2 of 19

By A, = (@), and A¥ = (a,4)%, we denote the sequences in the nth row and the kth
column of A, and we write

A,(x) = Zankxk (n=0,1,...) (1.1)
k=0

and A(x) = (A,,(x))2,, provided A, € X? for all n. The set X4 = X(A) = {z€ w: A(z) € X} is
called the matrix domain of A in X. Finally (X, Y) denotes the class of all matrices A that
map X into Y, that is for which A,, € X for all # and A(x) € Y for all x € X, or equivalently
Ae(X,Y)ifand onlyif X C Xy4.

The theory of BK spaces is the most powerful tool in the characterization of matrix
transformations between sequence spaces.

A sequence space X is called a BK space if it is a Banach space with continuous co-
ordinates p,, : X — C (n € N), where C denotes the complex field and p,(x) = x, for all
x = (x) € X and every n € N. A BK space X D ¢ is said to have AK if every sequence
x = (%) € X has a unique representation x = Y -, xxe®.

The sequence spaces £, ¢, and ¢y are BK spaces with the same sup-norm given by
llles, = supy |xk|, where the supremum is taken over all kK € N. Further, the space ¢, is
a BK space with the usual £,-norm defined by ||x||,, = (O rae |k [P)17, where 1 < p < oo.
Moreover, the BK spaces ¢y and £, (1 < p < 00) have AK [1], Examples 1.13, 1.20.

Let X and Y be Banach spaces. Then B(X, Y) is the set of all bounded linear operators
L:X — Y, a Banach space with the operator norm defined as usual by

ILll = sup{ L) |/llxl <1} (L € BX,Y)).

If Y = C then we write X* for the space of all continuous linear functionals on X with the
norm defined by

11 = sup{|f@)| : I« <1} (f € X7).

If X C wis a normed space and a € w then we write

o0
E ApXk

k=0

lall* = llaly = Sup{ sl = 1}, 1.2)

provided the expression on the right-hand side exists and is finite which is the case when-
ever X D ¢ is a BK space and a € X? [2], p.35.
For any subset X of w, the matrix domain of an infinite matrix A in X is defined by

Xa={xew:Ax e X}.

An infinite matrix T = (£,) is called a triangle if ¢,,, # 0 and ¢, = 0 for all k > n (n € N).
The study of matrix domains of triangles in sequence spaces has a special importance due
to the various properties which they have. For example, if X is a BK space then X7 is also
a BK space with the norm given by ||x| x, = || Tx||x for all x € X7 [1], Theorem 4.3.12.

The following known results are fundamental for our investigation [2], Theorem 4.3.12.
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Lemmal.l
(a) Let X denote any of the spaces cy, ¢, £oo, 1 01 £,. Then we have ||lalk = llallxs for all
a e XP, where || - ||xs is the natural norm on the dual space XP.
(b) Let X and Y be BK spaces. Then every matrix A € (X,Y) defines an operator
La € B(X,Y) by La(x) = Ax for all x € X; we denote this by (X,Y) C B(X,Y).
(c) Let X D ¢ be a BK space and Y be any of the spaces ¢y, c or L. If A € (X, Y), then

ILall = ANl x.bo) = sup [[Anll < 0.
n

Also, let F be the collection of all non-empty and finite subsets of N = {0,1,2,...},
throughout. Then we have the following result.

Lemma 1.2 Let X D ¢ be a BK space. IfA € (X, {1), then
Al eeen < ILall < 4 - 1Al e,

where 1Al ) = supye s | en Anlly < 00.

For the reader’s convenience, we list a few well-known definitions and results concerning
the Hausdorff measure of noncompactness which can be found in [3, 4], and [2].

Let S and M be subsets of a metric space (X, d) and ¢ > 0. Then S is called an ¢-net of M
in X if for every x € M there exists s € S such that d(x, s) < ¢. Further, if the set S is finite,
then the e-net S of M is called a finite e-net of M, and we say that M has a finite e-net in X.
A subset M of a metric space X is said to be totally bounded if it has a finite ¢-net for every
¢ > 0. If X is complete, then M is totally bounded if and only if M is relatively compact (its
closure M is a compact set). Let X and Y be Banach spaces. A linear operator L: X — Y
is called compact if D(L) = X for the domain of L and, for every bounded sequence (x,):°,
in X, the sequence (L(x,))2, has a convergent subsequence in Y.

By My, we denote the collection of all bounded subsets of a metric space (X,d). If Q €
My, then the Hausdorff measure of noncompactness of Q, is defined by

x(Q) =inf{e > 0: Q has a finite e-net in X}.

The function x : Mx — [0, 00) is called the Hausdorff measure of noncompactness.
It is well known that if Q, Q;, and Q, are bounded subsets of a metric space X, then we
have
x(Q) =0 ifandonlyif Q is totally bounded,
Qi CQ, implies x(Qi) < x(Q2),
x(Q) = x(Q) for the closure Q of Q,
x(Q1 U Qy) = max(x(Q1), x(Q2)),
x(Q1NQy) < min(x(Q1), x(Q2)).

Further, if X is a normed space then we also have

x(Qr + Q) < x(Q1) + x(Q2),
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x(@Q) = |a|x(Q) foralla eC.

Let X and Y be Banach spaces and L € B(X,Y). Then the Hausdorff measure of noncom-
pactness of the operator L, denoted by ||L]|,, is defined by

LIy = x (L(Sx)), (1.3)
where S = {x € X : ||»|| <1} is the unit ball in X. Also we have
L is compact ifand onlyif L], =0. (1.4)

Now we shall point out the well-known result of Goldenstein, Gohberg, and Markus [5],
Theorem 1, concerning the Hausdorff measure of noncompactness in Banach spaces. The
Hausdorff measure of noncompactness of a bounded subset of the BK space £, (1 < p < 00)

is given by the following result.

Lemma 1.3 Let X be a BK space with AK and monotone norm, Q € My, and P, : X — X
(n € N) be the operator (projection) defined by P,(x1,%,...) = x" = (x1,%2,...,%,,0,0,...)
forall x = (x1,%,...) € X. Then

x(Q) = lim (supH(I—P,,)x”).
xeQ

n— 00

For some recent related work on this topic, we refer to [5-28], and [29]. For some ap-

plications in differential and integral equations, we refer to [4, 30—33], and [34].

2 Results and discussion
Throughout this paper, let r,£ € U and s € U,, where

U:{M:(uk)ew:uk#Oforallk} and L[,,:{u:(uk)ewzuo 7’0}.

For any sequence x = (x,,) € w, we define the sequence x = (x,) of generalized means of

x by
1 n
Xy = — an—kthk (n e N). (2.1)
'n
k=0

Further, we define the infinite matrix A(r, s, t) of generalized means by

Sn—ktk/rn (O < k =< I’l),

A 19
( (rst)) (k> n)

(2.2)

nk =

for all n, k € N. Then, by using the notation of (1.1), it follows by (2.1) that x is the A(r,s,t)-

transform of x, that is, x = (A(r, s, £))x for all x € w.
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Moreover, it is obvious by (2.2) that A(r,s,t) is a triangle. Thus, it has a unique inverse
(A(r,s,t))"* which is also a triangle. More precisely, we put Df)s) =1/so and

S1 So 0 0 s 0
S S1 So 0 s 0
S3 S S1 So s 0
DS) = — n=1,2,3,...).
So
Sn-1 Sn-2 Su-3 Spu-4 - S0
Sn Sp-1 Su-2  Su-3 e $1
Then the entries of (A(r, s, £))* are given by
—k 1y(s)
_ G DR o (0 <k <m),
(A(rs,0), = nok (2.3)

0 (k> n)

forall n,k € N, that is, (A(r,s,£))! = A(t,s, ), where s’ = (s),) such that s, = (—1)”D(,,S) for all
n € N [35], p.990. Therefore, we have by (2.1) that

n

A= kXO: (-1)"*DY rx  (meN). (2.4)

For an arbitrary subset X of w, the set X(r,s,t) has recently been introduced in [35] as
the matrix domain of the triangle A(r,s, t) in X, that is,

n [o¢]
1
X(r,s,t) = {x:(xk)ew:y: (— E Snkthk> GX}.
Ty
k=0 0

n=

Itis obvious that X(r, s, £) is a sequence space whenever X is a sequence space, and we call
it the sequence space of generalized means. Further, if X is a BK space then X =X(r,s,t)
is also a BK space with the norm given by

lxllx = Iylx  (x€X). (2.5)

Recently, Maji and Srivastava [36] have defined and studied the sequence space X(r,s,
t;B™) for X € {€w0, ¢, co} which is obtained by combining the generalized means and the
mth order generalized difference operator B"(u,v). They characterized some compact
operators on the spaces X(r,s, ;B for X € {€oo,c, o} by using the Hausdorftf measure
of noncompactness. In this paper, we derive some identities or estimates for the operator
norms and the Hausdorff measures of noncompactness of certain matrix operators on the
sequence space £,(r, s, t; B™). By applying the Hausdorff measure of noncompactness, we
obtain the necessary and sufficient conditions for such operators to be compact. Further,
we study some geometric properties of this space.

The generalized difference matrix of order 7 denoted as B" = B (u,v) = (bg,':)), u,v#0
(see [12]) is defined as

(n’fk)um‘”*kv”‘k (max{0,n — m} <k < n),

bg’r;) =10 (0 < k < max{0,n — m}),
0 (k > n).
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The sequence spaces X(r,s,t; B") for X € {{«,c,co} are defined as follows:

X(r,s, t;B(”’)) ={x=(x) ew: ((A(r,s, t)~B(m))x)Zo=0 eX}.
By using the matrix domain, we can write

X(r,8,6:B™) = X (s i50m) = {x = (%) € w: A(r,5,6B™)x € X},

where A(r, s, t; B™) = A(r,s, t)-B". The sequence X = (x,) is A(r,s, £)-B"™
(%), i.e.

Q_C,, _ i(i (:’i’l}) Snr;tz m+} i l })x/ (}’l c N)

j=0 \ i=j

-transform of x =

In this paper, we are interested in the study of £,(r,s,£;B"). We have the following
lemma which is immediate by Theorem 4.5 in [35].

Lemma 2.1 Ifa=(ax) € ({y(r,s, t; BN then a = (a;) € Eﬁ (= €,) and we have

o0 o0
> an=Y ah
k=0 k=0

(2.6)
forall x = (x¢) € Zp with % = (A(r, s, t; B"))x, where
N, kD & (mtji—i- 1\ ()
dr = 1)k i e )
Ak s tku’” Z( ) ti Z ( ]—l > y—itm aj
i= Jj=k+1
00 (s) oo
D m+j—i—1\ (—v)™
i~k ik
' i:Xk;z(_l) i ; ( j-i ) i | 27

The following results will be needed in our study.

Lemma 2.2 We have

R TEATEY
lallz, = llal,

foralla=(ax) € 571’?, where a = (ay) is the sequence defined by (2.7).

Proof Leta = (ax) € Eﬁ. Then it follows by Lemma 2.1 that a = (ax) € eﬁ and the equality

(2.6) holds for all sequences x = (xx) € Zp and ¥ = (¥x) € £, which are connected by the
relation ¥ = (A(r, s, t; B""))x. Further, we see that x € Sgp ifand only ifx € S,

- Therefore,
we derive from (1.2) and (2.6) that
lall} = sup Zakxk = sup Zakxk = llal;,.
x€§ iy | k=0 xeSgp k=0

This concludes the proof.
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Remark 2.3 By combining Lemmas 1.1 and 2.2, we have the following:
(@) Ifa e (44(r,s,t; B™))P, then ||oz||z1 = supy |ax| < co.
(b) Ifa e (Ly(r,s, t; B"))f  then ||a||;§p =" |@x|9)V1 < 0o, where g = p/(p — 1) and
l<p<oo.

Throughout this paper, if A = (a,) is an infinite matrix, we define the associated matrix

A = (@) by

k+1 (s) oo . —i
- Ak i Diy m+j—i—-1\ (=v) '
Ank —VI([W‘FZ(—I) . Z P i Anj

Ds o] i _yVy-i
+ Z ( l)L k - —k Z (Wl +] ll ) (M/:):m aw} (28)
j=i

i=k+2 g

provided the series on the right converge for all #, k € N, which is the case whenever 4, €
(p(r,s, t))? for all n € N [35], Theorem 4.5. Then we have the following.

Lemma 2.4 Let Y be a sequence space and A = (a.) be an infinite matrix. If A €
(€y(1,s, t;B™),Y), then A € (£y,Y) such that Ax = Ax Jor all x € £,(r,s,t) with x =
(A(r,s,t))x, where A = (G,) is the associated matrix defined by (2.8).

Proof Suppose that A € (€,(r,s, £;B),Y) and let x € Ly(r,s, t; B"™). Then A, € p(r,s,t;
B"))# for all n € N. Thus, it follows by Lemma 2.1 that A, € Eﬁ for all n € N and the
equality Ax = A% holds which yields that Ax € Y, where & is the sequence of generalized
means of x, i.e., x = (/_{(r, s, t; B"))x. Further, it is obvious by (2.4) and Remark 2.3 that
every x € £, is the sequence of generalized means of some x € £,(r,s, t; B). Hence, we
deduce that A € (£, Y). This completes the proof. O

Finally, we conclude this section by the following results on operator norms.

Theorem 2.5 Let A = (a,«) an infinite matrix and A = (@) the associated matrix. IfAis
in any of the classes (£,(r, s, £ BY), 0o), (Ly(r,s, B, ¢) or (€p(r,s, £, B, ¢o), then

LN = AN g 150 £0) = S0P 14417, < 0.
n

Proof This is immediate by combining Lemmas 1.1 and 2.2. O

Theorem 2.6 IfA € (£,(r,s,t;B™),¢,), then

||A||(zp(r,s,t;3<rn)),(l) < Lall <4- ||A||(ep(y,s,;;3(m)),zl)r

where

*
< 00,
617

> A,

neN

Al (€p(rst:BM),e1) = Slelg

Proof This result follows from Lemmas 1.2 and 2.2. O
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Theorem 2.7 IfA € (¢4(r,s, t;B(’”)),Ep), then

0 1/p
IZaN = 1Al ¢y 58006, = SUP (Z |Gk |P> < o0,
k

n=0

Proof The proof is elementary and left to the reader. O

Remark 2.8 The characterizations of matrix classes considered in this paper can easily be
obtained as in Corollaries 5.4 and 5.7 of [35]. Thus, we shall omit these characterizations
and only deal with the operator norms and the Hausdorff measures of noncompactness
of some matrix operators which are given by infinite matrices in such classes.

3 Main results
In this section, we derive some identities or estimates for the Hausdorff measures of non-
compactness of certain matrix operators on the spaces of generalized means. Further, we
apply our results to obtain the necessary and sufficient (or only sufficient) conditions for
such operators to be compact.

We may begin with quoting the following lemma [28], Theorem 3.7.

Lemma 3.1 Let X D ¢ be a BK space. Then we have:
(@) IfA e (X, L), then

0 <|lLall, <limsup||Ayllx.

n—00

(b) IfA € (X, co), then

ILallx = limsup [|A, %

n— 00

(c) If X has AK or X = £ and A € (X, ¢), then

1 . .
5 -limsup |4, — |y < [[Lall, <limsup [[A, —ally,
2 n— 00 n— o0

where o = (ax) with oy = limy,— o dux for all k € N.

Now, let A = (a,) be an infinite matrix and A = (4,x) the associated matrix defined by
(2.8). Then, by combining Lemmas 2.2, 2.4 and 3.1, we have the following result.

Theorem 3.2 We have:
(@) IfAe (st B, €.), then

0 < [ILally <limsup | 4,]7, (3.1)
n—00

and

Lya is compact if lim IIA,,H; =0. (3.2)
n—00 P
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(b) IfA € (Ly(r,s, £ B, ¢o), then

ILall, = limsup [ A,]I7, (3:3)
n—o0
and
Ly is compact ifand only if lim ||;l,,||2‘p =0. (3.4)

(c) IfA e (ly(r,s, t; BY), ¢), then

1 . ~ . ~
= -limsup |4, - &1}, < ILall, <limsup |4, - &, (35)
n—0o0 n— 00
and
Ly is compact ifand only if lim IA, - 51||Zp =0, (3.6)
n— 00

where & = (0x) with & = 1imy,_, oo duk for all k € N.

Proof Note that parts (a) and (b) are proved in [37]. Further it is obvious that (3.2), (3.4)
and (3.6) are, respectively, obtained from (3.1), (3.3), and (3.5) by using (1.2). Thus, we have
to prove (3.1), (3.3) and (3.5).

Since £,(r,s, t;B™) is a BK space, we deduce by means of Lemma 2.2 that (3.1) and (3.3)
are immediate by parts (a) and (b) of Lemma 3.1, respectively.

To prove (3.5), we have A € (€,(,s, £;B™), ¢) and hence A € (X, c) by Lemma 2.4. There-
fore, it follows by part (c) of Lemma 3.1 that

1 L . -~
5 *limsup 4, - ally <Ll <limsup |A, — &k, 3.7)

n—00 n—00

where & = (@) and @y = lim,,_, o @, for all k € N,
Now, let us write S = Sy and S = S, (rs580m)» for short. Then we obtain by (1.3) and

Lemma 1.1

[Lally = x(La(S)) = x(AS) (3.8)
and

IZxlly = x (Lz(S)) = X (AS). (3.9)

Further, we see that x € Sifand onlyif ¥ € S, and since Ax = A% by Lemma 2.4, we deduce
that AS = AS. This leads us with (3.8) and (3.9) to the consequence that [|Lall, = [ILz]l4.
Hence, we get (3.5) from (3.7). This completes the proof. a

It is worth mentioning that the condition in (3.2) is only a sufficient condition for the
operator L, to be compact, where A € (€,(r,s, t;B"),£,,) and X is a BK space with AK
or X = £«. More precisely, the following example will show that it is possible for L4 to
be compact while lim,,_, A, I% # 0. Hence, in general, we have just ‘if” in (3.2) of Theo-
rem 3.2(a).
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Example 3.3 Let us define the matrix A = (a,x) by a,0 = soto/ro and a,, = 0 for k > 1
(n € N). Let B™ = I, the identity matrix. Then we have for every x = (x;) € Ly(r,s, t; Bm),
Ax = (sotoxo/ro)e and hence A € (£,(r,s, £ B, £..). Further, it is obvious that L, is of
finite rank and so L4 is compact. On the other hand, by using (2.8), it can easily be seen
that A, = € for all # € N. Thus, we obtain by Lemma 1.1 that ||A,,||§ =1foralln eN,
which implies that lim,,_, ||1:1y, % =1.

Moreover, as an immediate consequence of Theorem 3.2, we have the following corol-

lary.

Corollary 3.4 Ifeither A € (Lso(r,s,t;B"™),co) or A € (€oo(r,5,; B™), ), then the operator
L4 is compact.

Proof Let A € (€0o, o). Then we have by Lemma 2.4 that A € (£os, o) which implies that
limy,— 00 (D "pe0 lank]) = 0, that s, lim,,_ oo A, 7., = 0byLemma1.1. This leads us with The-
orem 3.2(b) to the consequence that L, is compact. Similarly, if A € (€o(r, s, t; B"), ¢) then
A € (s, ¢) and hence limy,— 00 (D "peg la@nk — @) = 0, which can be written as lim,,_, ||zz\,, -
a|l;., =0, where & = (&) and & = lim,, o0 dpnk for all k € N. Therefore, we deduce from
Theorem 3.2(c) that L4 is compact. O

Throughout, let F, (r € N) be the subcollection of F consisting of all non-empty and
finite subsets of N with elements that are greater than r, that is,

F,={NeF:n>rforallme N} (reN).

Then we have the following.

Lemma 3.5 (Theorem 3.11 in [28]) Let X D ¢ be a BK space. If A € (X, ¢,), then

* *
lim(sup ZAn ) <||Lall, <4- lim(sup A, )
r—>00 NeF, -y X r—00 NeF, -y X
Theorem 3.6 IfA € (,(r,s,t; B"), ¢)), then
lim (A" < ILall, <4- lim [|A]" (310)
reoo 1 M ep(rsBr)e) = AT =0 D T g rstiBem) 1) '
and
Ly is compact  if and only if rlirglo ”A”EZ,(r,s,:;B('m),zl) =0, (3.11)
where
) - I
[ZAA— = sup A (reN).
(€p(r.s,6:B0M), 1) NeF, g n X

Proof It is obvious that (3.10) is obtained by combining Lemmas 2.2 and 3.5. Also, by using
(1.2), we get (3.11) from (3.10). O
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Corollary 3.7 Let1<p<oo,q=p/(p—1).IfAc (£,(r,s, t; B™), 0,), then

r)

- ) . (
Jim AN G om0y = WEalle =% HALG o) )

and

=0,

. , : . (r)
L, is compact if and only if rll>no]c ”A”(e,,(r,s,t;BW)),zl)

where

E &nk

neN

00 q 1/q
(r) _
BAIE gm0y = SUP (Z ) (reN).

NeF, k=0

Now, we prove the following result.

Theorem 3.8 Let1 <p<oo.IfA € ({4(r,s, t;B(”‘)),Ep), then

00 Up
ILally = lim (sgp (Z I&nkl”) ) (3.12)

n=r

and

oo
Ly is compact ifand only if lim <sup (Z |Zz,,k|p)> =0. (3.13)
r—0o0 k

n=r

Proof We write S = S; . Then we see by Lemma 1.1 that L4 (S) = AS € My, Thus, it follows
from (1.3) and Lemma 1.3 that

ILall, = x(43) = lim (sup|[(7 - P)(Ax)], ), (3.14)
xeS

where P, : £, — £, (r € N) is the operator defined by P.(x) = (x0,%1,...,%,,0,0,...) for all
x = (xx) € £, and I is the identity operator on £,.

On the other hand, let x € £,(r,s,; B") be given. Then X € £, and since A € (¢;(r,s, t;
B(”‘)),Ep), we obtain from Lemma 2.4 that A € (£1,€,) and Ax = Ax. Thus, we have for
everyreN,
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00 lp
< l&lle, (sup(Z |2:nk|f’> )
k n=r+1
0 l/p
= 1%l ey (sup(Z |énk|l’> )
k n=r+1

This yields

00 1/p
sup|[(1 - Pr)(Ax) |, < Slll(p< > |Zlnk|p) (reN).

xe$ n=r+1

Therefore, we deduce from (3.14) that

00 1/p
ILall, < lim (sup( 3 |Zznk|1’) ) (3.15)
r—00 k

n=r+1

To prove the converse inequality, let %) € ¢,(r,s,t; B") be such that (f_l(r, s, £ BY))pth) =
e (k € N), that is, e is the sequence of generalized means of b¥) for each k € N (see
Corollary 3.5 in [35]). Then we have by Lemma 2.4 that Ab*®) = Ae®) = (Gnk)ye for every

keN.
Now, let B = {b®) : k € N}. Then B C S and hence AB C AS, which implies that x (AB) <
X(AS) = || Lall-

Further, it follows by applying Lemma 1.3 that

00 1/p
x(AB) = lim (sup( > IAn(b(k))|”> )
r—oo\ g

n=r+1

00 1/p
= lim sup(Z |Zzy,k|") )
V*)OO( k n=r+1

Thus, we obtain

00 1/p
rlglolo<81;p<z |Zznklp> ) < ILally- (3.16)

n=r+l

Hence, we get (3.12) by combining (3.15) and (3.16). This completes the proof, since
(3.13) is immediate by (1.2) and (3.12). O

Finally, we end this section with the following example, which shows that the limit in
(3.12) may not be zero, that is, there exist matrix operators in the class B(;, £,) which are

not compact, where 1 < p < co.

Example 3.9 Let A = (a,x) be the infinite matrix defined by A = A(r,s, t; B™). Let B™) =
I, the identity matrix. Since £;(r,s, t;B(”‘)) is the matrix domain of A in £;, we have A €
(€1(r,s, £ B"), ¢1) and hence A € (El,ﬂp) for 1 < p < co. Further, it is trivial to see that the

associated matrix A is the identity matrix, that is, @,, =1 and @, = 0 for k # n (n € N).
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Now, let r € N be given. Then we have, for every k € N,

> 1 (k=r),

Z |ank|p =

ey 0 (k<r).
This implies that

00 1/p
sup (Z Mﬁ) =1 (reN)
k n=r

which leads us with (3.12) of Theorem 3.8 to the conclusion that ||L4||, =1 and hence L,

is not compact.

4 Geometric properties

Recently there has been a lot of interest in investigating geometric properties of sequence
spaces besides topological and some other usual properties. In the literature, there are
many papers concerning geometric properties of various Banach sequence spaces.

A Banach space X is said to be a Kothe sequence space (see [15, 17], and [21]) if X is a
subspace of w such that

(i) ifxew,ye X, and |x(i)| < |y@@)| for all i € N, then x € X and ||| < ||y|I;

(ii) there exists an element x € X such that x(f) > 0 for all i € N.

A Kothe sequence space X is said to have the Fatou property if for any real sequence x
and any {x,} in X such that x, — x coordinatewise and sup,, [|x,|| < co, we have x € X and
%1l = Nl

A Banach space X is said to have the Banach-Saks property if every bounded sequence
{x,} in X admits a subsequence {z,} such that the sequence {£x(z)} is convergent in X with

respect to the norm, where
1
ti(z) = /—(21 +zp+---+2z) VkeN.
k

A Banach space X is said to have the weak Banach-Saks property whenever given any
weakly null sequence {x,} in X there exists its subsequence {z,} such that the sequence
{tr(z)} converges to zero strongly.

Given any p € (1, 00), we say that a Banach space (X, || - ||) has the Banach-Saks property
of type p if there exists a constant ¢ > 0 such that every weakly null sequence {x;} has a
subsequence {xy, } such that (see [22])

1
<cn? VmeNlN.

n
D%

=1

The Banach-Saks property of type p € (1, 00) and weak Banach-Saks property for Cesaro
sequence spaces have been considered in [15].

We say that a Banach space X has the weak fixed point property if every nonexpan-
sive self-mapping defined on a non-empty weakly compact convex subset of X has a fixed

point.
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In [18], Garcia-Falset introduced the following coefficient for a Banach space (X, | - ||):
R(X) = sup{lim inf ||x, —x|| : x € B(X), {x,,} C B(X) and x,, — 0 weakly}

and he proved (see [18, 19]) that a Banach space X with R(X) < 2 has the weak fixed point
property.

A Kothe sequence space X is said to be order continuous if for any sequence {x,} and
any x in X, (the positive cone in X) such that x,(i) < x(i) as n — oo for all i,n € N and
x,(i) = 0 for any i € N, we have ||x,|| — 0 as n — oco.

Clarkson modulus of convexity of a normed space (X, || - ||) is defined (see work by Clark-
son [14] and Day [16]) by the formula

llx +yll

8X(s)=inf{1— %,y € S(X), llx =yl =8}
for any ¢ € [0,2]. The inequality §x(g) > O for all ¢ € (0,2] characterizes the uniform con-
vexity of X and the equality 8x(2) = 1 characterizes strict convexity (= rotundity) of X.

The Gurarii modulus of convexity of a normed space X is defined (see [20]) by
Brle) = inff1- inf [l + (- )y 2.y € 5, -1 = e]
ael0,

for any ¢ € [0, 2]. It is obvious that §x (&) < Bx(e) for any Banach space X and any ¢ € [0,2].
It is also known that Bx(¢) < 28x(¢) for any ¢ € [0,2] and that X is rotund if and only if
Bx(e) =2 and X is uniformly convex if and only if Bx(g) > 0 for any ¢ € [0,2].

Theorem 4.1 The Banach-Saks type of the space £,(r,s, t;B™) is equal to p.

Proof Let (g,) be a sequence of positive numbers for which Y >7; ¢, < % Let {x,} be a
weakly null sequence in £,(r,s, £ B™). Set ty =x0 =0 and #; = %n, =x1. Then there exists
r; € N such that

o]

> ai)e?

i=r1+1

<€1.
p(r,s,t:B0m))

Since the fact that {x,} is a weakly null sequence implies that x, — 0, coordinatewise,

there is an n5 € N such that

<&
(Zp(r,s,t;B<m))

r
3 ()
i=0

for all n > ny. Set ¢, = x,,,. Then there exists an r, > r; such that

o]

> e’

i=ro+1

< &g.
Zp (V,S,t:B(m))
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By using the fact that x, — 0 coordinatewise, there exists an n3 > 1, such that

< &
Ep(r,s,t;BW))

r
Z x,(i)e?
i=0

for all n > n3. Continuing this process, we can find by induction two increasing subse-
quences (r;) and (n;) such that

j
> xui)e?
i=0

<8j
Lp(r,s,t;B0M)
for all # > n;,, and
[e¢]
3 e <&
z'=r/+1 Zp(r,s,t;B(m))
where ¢; = X Hence,
" n /-1 Tj 0
20 I Do OTCRD DTS WO
=0 Nep(rseBomy Il j=0 \i=0 i=rj1+1 i=rj+l Cp(rsB)
" 7j n Tj-1
(o) fS(Se)
j=0 Ni=rj_y+1 £y (r,5,£;B0M)) j=0 \i=0 Ep(uy)
n o0
¢ (Z t;me“))
j=0 \i=rj+1 Lp(rs,t:B0M)
n Ty n
259 DORTR)| S oF
j=0 \i=rj_1+1 Zp(r,s,t;B(m)) j=0

and

p r

3w (k)

k=0

5

ip(r,s,t;B(m)) j=0 i=V,‘,1+1

Z( )3 t/<i>e(”)

j=0 i=V,‘,1+1

n oo p
=

> uviti(k)
k=0

j=0 i=0

Hence we obtain

RSTI

Z( > @-(i)e“)

j:0 i:rj_l +1

< (il) :(n+1)ll’.

j=0
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1
By using the inequality 1 < (n +1)? for allm» € Nand 1 < p < oo, we have

1 1
<(n+1)P +1<2(n+1)>.
Lp(rs,t;B0M)

n
Do
j=0

Therefore, the space £,(7, s, t; B") has the Banach-Saks type p, which completes the proof
of the theorem. O

Theorem 4.2 The Gurarii of modulus of convexity for the normed space £,(r,s, t; B)
satisfies the inequality

e\’\»
IBZp(r,s,t;BW))(«?) <1-(1- 2

forany 0 <e <2.
Proof Letx € £,(r,s, £, B, By using (1.1), we have

1
p

16l 5500, = [ (ACr,8) B™)a], = (Z| ((A(rs,0)-B" ))|") :

Let 0 < & <2 and using (1.2), let us consider the following sequences:

o5 o)
oo Y o),

where H = (A(r,s,£) - B™);1. Since y, = (A(r,s,£) - B™)x), and z, = (A(r, s, £) - B")¢),,, we

have

o(-(2)) o)
(- (Do)

By using the sequences given above, we obtain the following equalities:

1
- e PN p |P e V4
” ”l (rstB(m :”(A(r’s’t)'B(m))x”Z?:'<l_<§) ) * 5
() G)
=1—1 - + | —
2 2
=1,
1
e PN p |P e )4
g =105 0-5), = (1= (5) ) [ o]
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16 = Elly 50y = | (A 5,8) - B )= (A5, 0)-B™)e]

To complete the estimate of the Gurarii on the modulus of convexity, it remains to calcu-

late the infimum of ||ax + (1 — a)t||’2 (s for 0 < o <1. We have
p k2

£:B0m)

inf1||ax+ l-«

0<a<

)t || ép(r,s,t;B(m))

= ngilna(ﬁ(r,s, t) ~B(”’>)x +(1- a)(zzl(r,s, t) oB(m))t”ép
- [Je(- (5)) ra-o(1-(5) )
0<a<l 2 2
o(5)-a-a(5) |
= inf [1 - (f>p 20— 1|P<f)p}p
0<a<l 2 2

»

+

Consequently, we get for p > 1 the inequality

~N
Biyun(€) <1~ (1— (%) ) ,

which is the desired result. O

5 Conclusion

Recently the sequence space X(r,s, t; B™) for X € {€wo, ¢, co} has been studied by Maji and
Srivastava [36] which is obtained by combining the generalized means and the mth order
generalized difference operator B (u,v). They characterized some compact operators on
the spaces X(r, s, t; B"™) for X € {{w, ¢, ¢y} by using the Hausdorff measure of noncompact-
ness. In this paper, we have derived some identities or estimates for the operator norms and
the Hausdorff measures of noncompactness of certain matrix operators on the sequence
space {,(r,s,t; B"™). Further, by applying the Hausdorff measure of noncompactness, we
obtained the necessary and sufficient conditions for such operators to be compact. In the
last section, we have studied some geometric properties of this space, e.g. the property
Banach-Saks type and Gurarii modulus of convexity.

Competing interests
The authors declare that they have no competing interests.



Alotaibi et al. Journal of Inequalities and Applications (2016) 2016:193 Page 18 of 19

Authors’ contributions
All authors of the manuscript have read and agreed to its content and are accountable for all aspects of the accuracy and
integrity of the manuscript.

Author details
'Department of Mathematics, Faculty of Science, King Abdulaziz University, PO. Box 80203, Jeddah, 21589, Saudi Arabia.
?Department of Mathematics, Aligarh Muslim University, Aligarh, 202002, India.

Acknowledgements
The authors gratefully acknowledge the financial support from King Abdulaziz University, Jeddah, Saudi Arabia.

Received: 22 December 2015 Accepted: 11 July 2016 Published online: 04 August 2016

References
1. Wilansky, A: Summability through Functional Analysis. North-Holland Mathematics Studies, vol. 85. Elsevier,
Amsterdam (1984)
2. Malkowsky, E, Rakocevi¢, V: An introduction into the theory of sequence spaces and measures of noncompactness.
In: Zbornik Radova, vol. 9, pp. 143-234. Mat. Institut SANU, Beograd (2000)
3. Banas, J, Goebel, K: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Appl. Math., vol. 60.
Dekker, New York (1980)
4. Banas, J, Mursaleen, M: Sequence Spaces and Measures of Noncompactness with Applications to Differential and
Integral Equations. Springer, New Delhi (2014)
5. Goldenstein, LS, Gohberg, IT, Markus, AS: Investigations of some properties of bounded linear operators with their
g-norms. Ucen. Zap. Kishinevsk. Univ. 29, 29-36 (1957)
6. Abyar, E, Ghaemi, MB: Hausdorff measure of noncompactness of matrix operators on some sequence spaces of a
double sequential band matrix. J. Inequal. Appl. 2015, 406 (2015)
7. Alotaibi, A, Mursaleen, M, Alamri, BAS, Mohiuddine, SA: Compact operators on some Fibonacci difference sequence
spaces. J. Inequal. Appl. 2015, 203 (2015)
8. Basar, F, Malkowsky, E: The characterization of compact operators on spaces of strongly summable and bounded
sequences. Appl. Math. Comput. 217, 5199-5207 (2011)
9. Bagarir, M, Kara, EE: On some difference sequence spaces of weighted means and compact operators. Ann. Funct.
Anal. 2(2), 116-131 (2011)
10. Basarir, M, Kara, EE: On compact operators on the Riesz 8™ difference sequence space. Iran. J. Sci. Technol. 35(A4),
279-285 (2011)
11. Basarir, M, Kara, EE: On the B-difference sequence space derived by generalized weighted mean and compact
operators. J. Math. Anal. Appl. 391(1), 67-81 (2012)
12. Basarir, M, Kara, EE: On compact operators on the Riesz 8™ difference sequence spaces Il. Iran. J. Sci. Technol. 36(A3),
371-376 (2012)
13. Basarir, M, Kara, EE: On the mth order difference sequence space of generalized weighted mean and compact
operators. Acta Math. Sci. 33(3), 797-813 (2013)
14. Clarkson, JA: Uniformly convex spaces. Trans. Am. Math. Soc. 40, 396-414 (1936)
15. Cui, YA, Hudzik, H: On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces. Acta Sci.
Math. 65, 179-187 (1999)
16. Day, MM: Uniform convexity in factor and conjugate spaces. Ann. Math. 45(2), 375-385 (1944)
17. Diestel, J: Sequences and Series in Banach Spaces. Graduate Texts in Math., vol. 92. Springer, Berlin (1984)
18. Garcia-Falset, J: Stability and fixed points for nonexpansive mappings. Houst. J. Math. 20, 495-505 (1994)
19. Garcia-Falset, J: The fixed point property in Banach spaces with NUS-property. J. Math. Anal. Appl. 215(2), 532-542
(1997)
20. Gurarii, VI: On differential properties of the convexity moduli of Banach spaces. Mat. Issled. 2, 141-148 (1969)
21. Hudzik, H, Karakaya, V, Mursaleen, M, Simsek, N: Banach-Saks type and Gurarii modulus of convexity of some Banach
sequence spaces. Abstr. Appl. Anal. 2014, Article ID 427382 (2014)
22. Knaust, H: Orlicz sequence spaces of Banach-Saks type. Arch. Math. 59, 562-565 (1992)
23. Kara, EF, Basarir, M: On some Euler 8™ difference sequence spaces and compact operators. J. Math. Anal. Appl. 379,
499-511 (2011)
24. Kara, EE, Basarir, M, Konca, $: On some new weighted Euler sequence spaces and compact operators. Math. Inequal.
Appl. 17(2), 649-664 (2014)
25. de Malafosse, B, Rakocevi¢, V: Applications of measure of noncompactness in operators on the spaces s, sg, sﬁj), £,
J.Math. Anal. Appl. 323(1), 131-145 (2006)
26. Malkowsky, E: Characterization of compact operators between certain BK spaces. Filomat 27(3), 447-457 (2013)
27. Mursaleen, M, Karakaya, V, Polat, H, Simsek, N: Measure of noncompactness of matrix operators on some difference
sequence spaces of weighted means. Comput. Math. Appl. 62, 814-820 (2011)
28. Mursaleen, M, Noman, AK: Compactness by the Hausdorff measure of noncompactness. Nonlinear Anal. 73(8),
2541-2557 (2010)
29. Mursaleen, M, Noman, AK: Hausdorff measure of noncompactness of certain matrix operators on the sequence
spaces of generalized means. J. Math. Anal. Appl. 417,96-111 (2014)
30. Aghajania, A, Allahyari, R, Mursaleen, M: A generalization of Darbo's theorem with application to the solvability of
systems of integral equations. J. Comput. Appl. Math. 260, 68-77 (2014)
31. Banas, J: Measures of noncompactness in the study of solutions of nonlinear differential and integral equations. Cent.
Eur. J. Math. 10(6), 2003-2011 (2012)
32. Banas, J, Lecko, M: Solvability of infinite systems of differential equations in Banach sequence spaces. J. Comput. Appl.
Math. 137, 363-375 (2001)
33. Mursaleen, M, Mohiuddine, SA: Applications of measures of noncompactness to the infinite system of differential
equations in £, spaces. Nonlinear Anal. 75, 2111-2115 (2012)



Alotaibi et al. Journal of Inequalities and Applications (2016) 2016:193 Page 19 of 19

34

35.

36.

37.

Alotaibi, A, Mursaleen, M, Mohiuddine, SA: Application of measures of noncompactness to infinite system of linear
equations in sequence spaces. Bull. Iran. Math. Soc. 41(2), 519-527 (2015)

Mursaleen, M, Noman, AK: On generalized means and some related sequence spaces. Comput. Math. Appl. 61(4),
988-999 (2011)

Maji, A, Srivastava, PD: On B™-difference sequence spaces using generalized means and compact operators. Analysis
34(3),257-281 (2014)

Maji, A, Srivastava, PD: Applications of the Hausdorff measure of noncompactness on the space £,(r,s, t;8™),

1 < p < o0.In: Mathematics and Computing 2013. Springer Proc. Math. Stat,, vol. 91, pp. 271-281. Springer, New Delhi
(2014)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Compact matrix operators on a new sequence space related to lp spaces
	Abstract
	MSC
	Keywords

	Background, notation, and preliminaries
	Results and discussion
	Main results
	Geometric properties
	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


