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Abstract

Let Cyy(B) and J(B) be the generalized von Neumann-Jordan and James constants of
a quasi-Banach space B, respectively. In this paper we shall show the relation
between Cy,(B), J(B), and the modulus of convexity. Also, we show that if B is not
uniform non-square then J(B) = Cy,(3) = 2. Moreover, we give an equivalent formula
for the generalized von Neumann-Jordan constant.
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1 Introduction

Among various geometric constants of a Banach space 3, the von Neumann-Jordan con-
stant Cyy(B), and the James constant /() have been treated most widely. In connection
with the famous work [1] (see also [2]) of Jordan and von Neumann concerning inner prod-
ucts, the von Neumann-Jordan constant Cy;(B3) for a Banach space B was introduced by

Clarkson [3] as the smallest constant C for which the estimates

1 - llae1 + x| + [ley — 212
C™  2(lxl? + llx2l?)

hold for any x1,x, € B with (x;,%,) # (0, 0). Equivalently

o1 + 2201 + [l — 212 ,
1 X1, X0 € B with (xl,xz) # (0, 0) .
2(l |1 + 122 11%)

CN](B) = sup{

The classical von Neumann-Jordan constant Cyy(B) was investigated in [4-8].
A Banach space B is said to be uniformly non-square in the sense of James if there exists

a positive number § < 2 such that for any x;,x; € Sgp = {x € B: ||x]| = 1} we have

min(lx; + %2, 1% — %) < 8.
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The James constant J(53) of a Banach space B is defined by
J(B) = sup{min(Jlacy + x|, 1 — %21) : 21,%; € S5}

It is obvious that B is uniformly non-square if and only if J(B) < 2.
In [9], the authors introduced the generalized von Neumann-Jordan constant CA(’;])(B),

which is defined as

lloer + %2117 + floeg — %2 |7 )
101, %9 € B with (x1,%) #(0,0) f,
2771 (Jloey |17 + [l ]17)

CZ,(B) = sup{

and obtained the relationship between CI(\’;])(B) and J(B). Furthermore, they used the con-
stant CA(’;]) (B) to establish some new equivalent conditions for the uniform non-squareness
of a Banach space 5. Both the von Neumann-Jordan Cyy(B) and the James constants J(53)
play an important role in the description of various geometric structures. It is therefore
worthwhile to clarify the relation between them.

In this paper, we shall show the relation between the generalized von Neumann-Jordan
constant Cpay(B) and the James constant /(B) and we also show that if B is not uniform
non-square then J(B) = Cpy(B) = 2. In the second section, we present basic definitions and
define the modulus of convexity of a quasi-Banach space. In the third section, we estab-
lish a relationship between the generalized von Neumann-Jordan constant and the mod-
ulus of convexity, the James constant and the modulus of convexity, the generalized von
Neumann-Jordan constant and the James constant, and we give the equivalent formula of

the generalized von Neumann-Jordan constant.

2 Preliminaries
Definition 2.1 [10] A quasi-norm on | - | on vector space B over a field K (R or C) is a
map B — [0, 00) with the properties:

o x| =0<=x=0.

o Jlax|| = |a|||lx|| if Vo € K, Vx € B.

« There is a constant C > 1 such that if Vx;,xy € B we have
o1 + 2]l < C(lwall + 2 ll)-

Definition 2.2 The generalized von Neumann-Jordan constant CA(K,’])(B) for quasi-Banach

spaces is defined by

lloer + %217 + [[l%1 — %2 |17
2071CP ([l 1P + [l [1P)

co(B) = sup{ 21,2 € B with (x1,%,) 71(0,0)},

where 1 < p < c0.
We will also use the following parametrized formula for the constant C,\(l[’]) (B):

lloer + txa |1 + Jloey — £ |17
Cr2r-1(1 + tP)

q‘g)(B):sup{ X1, % e55,05t51},
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where Sp is the unit sphere. By taking ¢ = 1 and x; = x;, we obtain the estimate

B > [220” 2° 1
~C2(1+1) ~ C2l1+1) C’

e
Definition 2.3 In a quasi-Banach space B the James constant is defined as
1 .
J(B) = sup c min( [l + %2, 161 — %2]) : 51,22 € Si . (2.1)

Definition 2.4 A quasi-Banach space B is said to be uniformly non-square if there exists
a positive number § < 2 such that for any x;,x, € Sg, we have

min )=

Remark 2.5 It is obvious that 3 is uniformly non-square if and only if J(13) < 2.

X1 + X2
C

X1 + X
C

’

Definition 2.6 The modulus of uniform smoothness of the quasi-Banach space B is de-
fined as

lloer + 2x2 || + lloey — Exaf] 1
p5(t) = sup - .

—1x,% €85,t>0
2°C c o B t=

It is clear that pp(t) is a convex function on the interval [0, 00) satisfying pz(0) = 0,
whence it follows that pg(¢) is nondecreasing on [0, 00).

Definition 2.7 A quasi-Banach space B is said to be uniformly smooth if (pg),(0) =

lim,_, o+ 289 = 0.

Definition 2.8 Given any quasi-Banach space I3 and a number p € [0, 00), another func-
tion J,(£) is defined by

1
o1 + txa 1P + [loeg — £ [P\ 7
JBp(t) = SUP{ < 2CP x1,% €SB ¢

Definition 2.9 The modulus of convexity of a quasi-Banach space B is defined as

X1+ Xo
2C

X1 — X3
C

8(e) = inf{l -

> €; VX1, %0 ESB}, 0<e<2.

3 Mainresults
Lemma 3.1 For any number 0 <a <2,0 <b <2 we have

a+b 1\* 1  a*+b?
L I 3.1)
2C C o 4C2
Proof
a+b 1\* 1 a*+b*+2ab 1 (a+b) 1
- st = -+ =
2C C C? 4C2 C2 C? C?

a+b> ab 1 (a+b) 1

iz Tt e e
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——az+bz+i a_b+2 (a+Db)

Co4cr 2
2, 32

Za +b‘ 0
4C?

Lemma 3.2 Let a be a real number and let b > 0, then

at2+bt<a+Voz2+b2

< , Vt=>0.
1+ 2

The first theorem is a relation between Cy;(5) and the modulus of uniform smoothness.

Theorem 3.3 Let B be a quasi-Banach space, then

Cy(B) <1+ Cos)[/ {1- Cos(M)}* +1-{1- Cps1)}]. (32)
Proof We know that

lloer + t22 12 + llv — £ )1
2C2(1 + £2)

Cny(B) = sup{ :Vxp, x5 € Sp with (x1,%,) #(0,0),0 <¢ < 1}.

By using Lemma 3.1

C2

R e T e I R R T2 B A
4C? - 2C C ’

(3.3)
1

I + 212+l — 2 < 4c2{pg(1) . 5}

Also we have
1

Iy + 23]l + o — 2 SZC{pB(1)+ E}' o)
Since

llo1 + txa || = || (e +22) + (L= Oy | < C(Elwr + x| + (1= 8)),

lla1 = txa |l = |£0e1 = 22) + (A = )1 | < C(tll1 = w2l + 1 = 8)),
we have

2 2
lla1 + 2 |1 + |2y — 2 ]|* < CP[(Ellwr + 22| + (1= 2))" + (¢llr =2l + 1= 1))
= C*{(llwr + 22l + llx1 — %2 ]1?) 2

+ (s + 2ol + [laeg — 22]1)26(1 = £) + 2(1 — 2)°]

C2

+ 2(2C<% + ,03(1))1,‘(1 ) +2(1- t)2)i|

= C*[4Cpp(1)(Cps(1) - 1) + 4Ctpp(1) + (L + £2)],

< c2[4cz{p§3(1) + i}tz
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b + 2202 1* + I — 21 _ 2CE2pp(1)(Cpp(1) 1) +2Ctpp(1) +2(1 +£%)
2C2(1 + £2) - 1+¢2

< Cos(){Cps(1) -1}

- \/Czpé(l){CpB(l) ~1)2+ C2p3(1) + 1

(by using Lemma 3.2)
2
=1+ Cpp()y/{Cos) -1} +1-{1- Cpp(D)}. O
The next result is the relation between the James constant and the modulus of convexity.

Theorem 3.4 Let B be a quasi-Banach space then
e
J(B) = sup{s :8(e) <1- 5}
Proof Let
e
o= sup{e :8(e)<1- 5}

We shall show that J(3) < «. For this purpose, if & = 2, then there is nothing to prove. So,
we may assume that o < 2. For any 8 > o, we have for any x1,x, € Sp and M > B

5(5)>1-§.

From the definition of §, we have

Lo mtml é,
2C 2
which implies that
[loer + 22 ]
c b
therefore
min [loe1 +lel, llocr — ol <
C C

As J(B) < B and since 8 was arbitrary we have /() < «.
For the reverse we use the definition of §, so Yy > 0 there exist x;,x, € Sp such that

X — %
%1 = %2l e
o

and

e+l <5
2C -

1 (e) +y,
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where we have e =« -y, so

[loer + 22|
———>2-265(e) - 2y;
e (e) -2y
therefore
J(B) > min( lloer + x2 [l [l —x2||>
- c ’ o

> min(2(1-38(s) - y),¢)

> min(e —2y,¢)

=eg-2y
=a -3y,
where y was arbitrary, so we have J/(B) > «. O

Corollary 3.5 For any quasi-Banach space BB, we have
J(B) = V2.

Corollary 3.6 Let B be any quasi-Banach space and J(B) < 2, then

s0@)=1-"2,

Now, we are going to give an equivalent formula of the generalized von Neumann-Jordan

constant.

Theorem 3.7 We have

ller + 22|17 + [len =22 |1
20 1CP ([l 1P + Nlx2]I)

Cny(B) = SUP{ x1,%2 € Bwith |1 =1, %]l < 1}, (3.5)

where 1 < p < c0.

Proof If 0 # ||l%1]| = [|%2]]

p
X1 X2
ey + 22 17 = floa 1P || — + —— |,
lloeall [l
p
X1 X2
%1 = 22 |1? = [y ||| — — )
lloenll [l
p p
X1 X2 X1 )
||x1+x2||p+||x1—x2||p=||x1||p|: —_—t — —_—— ],
lloenll [l lloeall Il
M mop L m %P
e + 22 ll” + lloer =2 l? Mgy * g 1+ Ny = gt |

wAC (Il + ) 2CP+ (E2)p)

%1l



Kwun et al. Journal of Inequalities and Applications (2016) 2016:171 Page 7 of 10

This shows that

ller + 22|17 + [le1 =22 |1
201CP ([l 1P + Nlx2]1)

Cny(B) = sup{ x1,% € Bwith [lx]| =1, [z ]| < 1}. O

The next theorems show the relation between the generalized von Neumann-Jordan and

James constants.

Theorem 3.8 For any quasi-Banach space B, we have

J*(B)

1 2
51(3) <Cny(B) < JB) -12+1

Proof For any x1,x, € Sp, we have

. 2 _ (I +xall + o - %l
2(min{ll 5l I -] <2 2

2 2
X1+ %12 + [l —x
52(” 1+ x|l 2|| 1= %l )

s+ ol + e — x|
2C2 (|l l1* + ll%211%)

<2CCy(B)(IIxl* + lIx211%)

2C (lall® + llx201%)

= 4C*Cyy(B),

(min{llx; + %, 61 — %2 11})* < 2C*Coy (B),

1 .

c min{[|x; + %), v — %21))} < 2¢/Cay(B).
Hence

1 .
sup(g min{||x; + %, [l — % }) <2y/Cny(B).

Therefore
1
5/2(5) < Cny(B).

To prove the right hand side we use Theorem 3.7, so we only take ||x1|| =1 and |jx;| <1.
Case I: If ||x,|| = £ > J(B) — 1, then

2
2 c .
lloe1 + 22 )1* + [l = 221> < [C (Il ll + l1x211)]” + <E min{ ||x; + %2, [l —lel})

1 . 2
= CZ[(Ilell + |I962||)2 + <E min{[|x; + %], [lv1 — 2 | }) ]

2
lla1 + 211 + 161 = x2[1> < C*[ (Il + llx211)” +72(B)],
lloer + 2212 + ller — 21 - (e[| + llealD)* +J*(B)

2C2(Jla 12 + lle2l12) = 2]l ll? + ll2]l?)

_(1+2)>+J%(B)
T 21+
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The function

1+ +%(B)

J®= 21+ £2)

is increasing on (0, 1) and decreasing on (u, 1) where

A EV/AGET:

2

Since J(B) —1> p and J(B) —1 < t, we have f(¢) <f(J(B) - 1)

lloer + 2212 + Jler — 21 JX(B)
2C2([|ag |12 + lx2]12) 1+ (J(B) - 1)’

taking the supremum, we get

J*(B)
Cny(B) < m (3.7)

Case 2: If ||x,|| =t < J(B) -1, then

2
lloe1 + 22 1* + [loeg = 21> < 2C2(Jlxa ]l + llxa )
=2C*1+1)?,

e + x| + ler — 221> (1+12)?
2C2(Jlxll? + le2l12)  — (1 +£2)

Let

1+2)?

g(t) = m,

since g is increasing on (0,1]

g <g(J(B)-1),
hence

J*(B)

Cny(B) < m (3.8)

Corollary 3.9 If B is not uniformly non-square then
J(B) = Cny(B) = 2.
Theorem 3.10 For any quasi-Banach space B, we have

d(B)

2
CyB) <1+ <T> . 3.9)
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Proof Since Cny(B) = sup{Cny(t, B) : t € [0,1]} where

llo1 + B2 || + ||y — tx2 ]|
2C2(1 + £2)

Cny(t, B) = sup{ 1 Va1, %, € SB}.

First we prove that

C*2J2(B) + 2Ct(1 - t)J(B)

) 1 1
Cy(tB) <1+ e (3.10)
For this purpose
s + a2 + [l — 221 < [CQA+ )] + (minf a1 + 22, 12 - 222 11})
< C*[@+1) +J*(t,B)),
s + a1 + s — 22 |* _ (146 +)°(t, B)
2C2(1 + £2) - 2(1 + £2)
Taking the supremum we get
1L +1)*+J(t, B)
t,B) < ———— 3.11
CuleB) = 57" (3.11)
Also note that
min{ [lx; + 2 || + |61 — 2221} < Cmin{z|lacy + 22|l + (1= 2), £l|21 — %2l + (1 = 1)}, (512)
J(t,B) < (CT(B) + (1 - 1. '
Using (3.11) and (3.12), we get
[CHB)+(1-1)]% + (1 +1)?
) 1
Cny(t,B) < 20+ ) (3.13)
24272 _
1. C*t°J*(B) + 2t(1 t)](B). (3.14)
2(1 + £2)
Taking the supremum over ¢, we get
ag®)\*
CN](B) <1+ T . O
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