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Abstract
This paper is concerned with the (p,q)-analog of Bernstein operators. It is proved that,
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1 Introduction and preliminaries
During the last decade, the applications of q-calculus in the field of approximation theory
has led to the discovery of new generalizations of classical operators. Lupaş [] was first to
observe the possibility of using q-calculus in this context. For more comprehensive details
the reader should consult monograph of Aral et al. [] and the recent references [–].

Nowadays, the generalizations of several operators in post-quantum calculus, namely
the (p, q)-calculus have been studied intensively. The (p, q)-calculus has been used in many
areas of sciences, such as oscillator algebra, Lie group theory, field theory, differential
equations, hypergeometric series, physical sciences (see [, ]). Recently, Mursaleen et
al. [] defined (p, q)-analog of Bernstein operators. The approximation properties for
these operators based on Korovkin’s theorem and some direct theorems were considered.
Also, many well-known approximation operators have been introduced using these tech-
niques, such as Bleimann-Butzer-Hahn operators [] and Szász-Mirakyan operators [].

In the present paper, we prove new approximation properties of (p, q)-analog of Bern-
stein operators. First of all, we recall some notations and definitions from the (p, q)-
calculus. Let  < q < p ≤ . For each non-negative integer n ≥ k ≥ , the (p, q)-integer
[k]p,q, (p, q)-factorial [k]p,q!, and (p, q)-binomial are defined by

[k]p,q :=
pk – qk

p – q
,

[k]p,q! :=

⎧
⎨

⎩

[k]p,q[k – ]p,q · · · []p,q, k ≥ ,

, k = ,
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and
[

n
k

]

p,q

:=
[n]p,q!

[n – k]p,q![k]p,q!
.

As a special case when p = , the above notations reduce to q-analogs.
The (p, q)-power basis is defined as

(x � a)n
p,q = (x – a)(px – qa)

(
px – qa

) · · · (pn–x – qn–a
)
.

The (p, q)-derivative of the function f is defined as

Dp,qf (x) =
f (px) – f (qx)

(p – q)x
, x �= .

Let f be an arbitrary function and a ∈R. The (p, q)-integral of f on [, a] is defined as

∫ a


f (t)dp,qt = (q – p)a

∞∑

k=

f
(

pk

qk+ a
)

pk

qk+ , if
∣
∣
∣
∣
p
q

∣
∣
∣
∣ < ,

∫ a


f (t)dp,qt = (p – q)a

∞∑

k=

f
(

qk

pk+ a
)

qk

pk+ , if
∣
∣
∣
∣
q
p

∣
∣
∣
∣ < .

The (p, q)-analog of Bernstein operators for x ∈ [, ] and  < q < p ≤  are introduced
as follows:

Bp,q
n (f ; x) =

n∑

k=

bp,q
n,k(x)f

(
pn–k[k]p,q

[n]p,q

)

,

where the (p, q)-Bernstein basis is defined as

bp,q
n,k(x) =

[
n
k

]

p,q

p[k(k–)–n(n–)]/xk( � x)n–k
p,q .

Lemma . For x ∈ [, ],  < q < p ≤ , we have

Bp,q
n (e; x) = , Bp,q

n (e; x) = x,

Bp,q
n (e; x) =

pn–

[n]p,q
x +

q[n – ]p,q

[n]p,q
x,

where ei(x) = xi and i ∈ {, , }.

Lemma . Let n be a given natural number, then

Bp,q
n

(
(t – x); x

)
=

pn–

[n]p,q
φ(x) ≤ 

[n]p,q
φ(x),

where φ(x) =
√

x( – x) and x ∈ [, ].
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2 Monotonicity for convex functions
Oru and Phillips [] proved that when the function f is convex on [, ], its q-Bernstein
operators are monotonic decreasing. In this section we will study the monotonicity of
(p, q)-Bernstein operators.

Theorem . If f is convex function on [, ], then

Bp,q
n (f ; x) ≥ f (x),  ≤ x ≤ ,

for all n ≥  and  < q < p ≤ .

Proof We consider the knots xk = pn–k [k]p,q
[n]p,q

, λk =
[n

k

]

p,qp[k(k–)–n(n–)]/xk(�x)n–k
p,q ,  ≤ k ≤ n.

Using Lemma ., it follows that

λ + λ + · · · + λn = ,

xλ + x + λ + · · · + xnλn = x.

From the convexity of the function f , we get

Bp,q
n (f ; x) =

n∑

k=

λkf (xk) ≥ f

( n∑

k=

λkxk

)

= f (x). �

Example . Let f : R → R, f (x) = xex+. Figure  illustrates that Bp,q
n (f ; x) ≥ f (x) for the

convex function f and x ∈ [, ].

Theorem . Let f be convex on [, ]. Then Bp,q
n–(f ; x) ≥ Bp,q

n (f ; x) for  < q < p ≤ ,  ≤
x ≤ , and n ≥ . If f ∈ C[, ] the inequality holds strictly for  < x <  unless f is linear in
each of the intervals between consecutive knots pn––k [k]p,q

[n–]p,q
,  ≤ k ≤ n – , in which case we

have the equality.

Figure 1 Approximation process by Bp,q
n (f ; x) for

f (x) = xex+1.
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Proof For  < q < p ≤  we begin by writing

n–∏

s=

(
ps – qsx

)–[Bp,q
n–(f ; x) – Bp,q

n (f ; x)
]

=
n–∏

s=

(
ps – qsx

)–
[ n–∑

k=

[
n – 

k

]

p,q

p[k(k–)–(n–)(n–)]/xk( � x)n–k–
p,q f

(
pn––k[k]

[n – ]

)

–
n–∑

k=

[
n
k

]

p,q

p[k(k–)–n(n–)]/xk( � x)n–k
p,q f

(
pn–k[k]

[n]

)]

=
n–∑

k=

[
n – 

k

]

p,q

p[k(k–)–(n–)(n–)]/xk
n–∏

s=n–k–

(
ps – qsx

)–f
(

pn––k[k]
[n – ]

)

–
n∑

k=

[
n
k

]

p,q

p[k(k–)–n(n–)]/xk
n–∏

s=n–k

(
ps – qsx

)–f
(

pn–k[k]
[n]

)

.

Denote

�k(x) = p
k(k–)

 xk
n–∏

s=n–k

(
ps – qsx

)–, (.)

and using the following relation:

pn–p
k(k–)

 xk
n–∏

s=n–k–

(
ps – qsx

)– = pk�k(x) + qn–k–�k+(x),

we find

n–∏

s=

(
ps – qsx

)–[Bp,q
n–(f ; x) – Bp,q

n (f ; x)
]

=
n–∑

k=

[
n – 

k

]

p,q

p– (n–)(n–)
 p–(n–){pk�k(x) + qn–k–�k+(x)

}
f
(

pn––k[k]p,q

[n – ]p,q

)

–
n∑

k=

[
n
k

]

p,q

p– n(n–)
 �k(x)f

(
pn–k[k]p,q

[n]p,q

)

= p– n(n–)


{ n–∑

k=

[
n – 

k

]

p,q

pk�k(x)f
(

pn––k[k]p,q

[n – ]p,q

)

+
n∑

k=

[
n – 
k – 

]

p,q

qn–k�k(x)f
(

pn–k[k – ]p,q

[n – ]p,q

)

–
n∑

k=

[
n
k

]

�k(x)f
(

pn–k[k]p,q

[n]p,q

)}

= p– n(n–)


n–∑

k=

{[
n – 

k

]

p,q

pkf
(

pn––k[k]p,q

[n – ]p,q

)

+

[
n – 
k – 

]

p,q

qn–kf
(

pn–k[k – ]p,q

[n – ]p,q

)

–

[
n
k

]

p,q

f
(

pn–k[k]p,q

[n]p,q

)}

�k(x)



Kang et al. Journal of Inequalities and Applications  (2016) 2016:169 Page 5 of 10

= p– n(n–)


n–∑

k=

[
n
k

]

p,q

{
[n – k]p,q

[n]p,q
pkf

(
pn––k[k]p,q

[n – ]p,q

)

+
[k]p,q

[n]p,q
qn–kf

(
pn–k[k – ]p,q

[n – ]p,q

)

– f
(

pn–k[k]p,q

[n]p,q

)}

�k(x)

= p– n(n–)


n–∑

k=

[
n
k

]

p,q

ak�k(x),

where

ak =
[n – k]p,q

[n]p,q
pkf

(
pn––k[k]p,q

[n – ]p,q

)

+
[k]p,q

[n]p,q
qn–kf

(
pn–k[k – ]p,q

[n – ]p,q

)

– f
(

pn–k[k]p,q

[n]p,q

)

.

From (.) it is clear that each �k(x) is non-negative on [, ] for  < q < p ≤  and, thus, it
suffices to show that each ak is non-negative.

Since f is convex on [, ], then for any t, t ∈ [, ] and λ ∈ [, ], it follows that

f
(
λt + ( – λ)t

) ≤ λf (t) + ( – λ)f (t).

If we choose t = pn–k [k–]p,q
[n–]p,q

, t = pn––k [k]p,q
[n–]p,q

, and λ = [k]p,q
[n]p,q

qn–k , then t, t ∈ [, ] and λ ∈
(, ) for  ≤ k ≤ n – , and we deduce that

ak = λf (t) + ( – λ)f (t) – f
(
λt + ( – λ)t

) ≥ .

Thus Bp,q
n–(f ; x) ≥ Bp,q

n (f ; x).
We have equality for x =  and x = , since the Bernstein polynomials interpolate f on

these end-points. The inequality will be strict for  < x <  unless when f is linear in each of
the intervals between consecutive knots pn––k [k]p,q

[n–]p,q
,  ≤ k ≤ n – , then we have Bp,q

n–(f ; x) =
Bp,q

n (f ; x) for  ≤ x ≤ . �

Example . Let f (x) = sin(πx), x ∈ [, ]. Figure  illustrates the monotonicity of (p, q)-
Bernstein operators for p = . and q = .. We note that if f is increasing (decreasing)
on [, ], then the operators is also increasing (decreasing) on [, ].

Figure 2 Monotonicity of (p, q)-Bernstein
operators.
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3 A global approximation theorem
In the following we establish a global approximation theorem by means of Ditzian-Totik
modulus of smoothness. In order to prove our next result, we recall the definitions of the
Ditzian-Totik first order modulus of smoothness and the K-functional []. Let φ(x) =√

x( – x) and f ∈ C[, ]. The first order modulus of smoothness is given by

ωφ(f ; t) = sup
<h≤t

{∣
∣
∣
∣f

(

x +
hφ(x)



)

– f
(

x –
hφ(x)



)∣
∣
∣
∣, x ± hφ(x)


∈ [, ]

}

. (.)

The corresponding K-functional to (.) is defined by

Kφ(f ; t) = inf
g∈Wφ [,]

{‖f – g‖ + t
∥
∥φg ′∥∥}

(t > ),

where Wφ[, ] = {g : g ∈ ACloc[, ],‖φg ′‖ < ∞} and g ∈ ACloc[, ] means that g is abso-
lutely continuous on every interval [a, b] ⊂ [, ]. It is well known ([], p.) that there
exists a constant C >  such that

Kφ(f ; t) ≤ Cωφ(f ; t). (.)

Theorem . Let f ∈ C[, ] and φ(x) =
√

x( – x), then for every x ∈ [, ], we have

∣
∣Bp,q

n (f ; x) – f (x)
∣
∣ ≤ Cωφ

(

f ;


√
[n]p,q

)

,

where C is a constant independent of n and x.

Proof Using the representation

g(t) = g(x) +
∫ t

x
g ′(u) du,

we get

∣
∣Bp,q

n (g; x) – g(x)
∣
∣ =

∣
∣
∣
∣B

p,q
n

(∫ t

x
g ′(u) du; x

)∣
∣
∣
∣. (.)

For any x ∈ (, ) and t ∈ [, ] we find that

∣
∣
∣
∣

∫ t

x
g ′(u) du

∣
∣
∣
∣ ≤ ∥

∥φg ′∥∥
∣
∣
∣
∣

∫ t

x


φ(u)

du
∣
∣
∣
∣. (.)

Further,

∣
∣
∣
∣

∫ t

x


φ(u)

du
∣
∣
∣
∣ =

∣
∣
∣
∣

∫ t

x

√
u( – u)

du
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t

x

(
√
u

+
√

 – u

)

du
∣
∣
∣
∣

≤ 
(|√t –

√
x| + |√ – t –

√
 – x|)
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= |t – x|
(

√
t +

√
x

+
√

 – t +
√

 – x

)

< |t – x|
(

√
x

+
√

 – x

)

≤ 
√

|t – x|
φ(x)

. (.)

From (.)-(.) and using the Cauchy-Schwarz inequality, we obtain

∣
∣Bp,q

n (g; x) – g(x)
∣
∣ < 

√

∥
∥φg ′∥∥φ–(x)Bp,q

n
(|t – x|; x

)

≤ 
√


∥
∥φg ′∥∥φ–(x)

(
Bp,q

n
(
(t – x); x

))/.

Using Lemma ., we get

∣
∣Bp,q

n (g; x) – g(x)
∣
∣ ≤ 

√


√
[n]p,q

∥
∥φg ′∥∥.

Now, using the above inequality we can write

∣
∣Bp,q

n (f ; x) – f (x)
∣
∣ ≤ ∣

∣Bp,q
n (f – g; x)

∣
∣ +

∣
∣f (x) – g(x)

∣
∣ +

∣
∣Bp,q

n (g; x) – g(x)
∣
∣

≤ 
√


(

‖f – g‖ +


√
[n]p,q

∥
∥φg ′∥∥

)

.

Taking the infimum on the right-hand side of the above inequality over all g ∈ Wφ[, ],
we get

∣
∣Bp,q

n (f ; x) – f (x)
∣
∣ ≤ CKφ

(

f ;


√
[n]p,q

)

.

Using equation (.) this theorem is proven. �

4 Voronovskaja type theorem
Using the first order Ditzian-Totik modulus of smoothness, we prove a quantitative
Voronovskaja type theorem for the (p, q)-Bernstein operators.

Theorem . For any f ∈ C[, ] the following inequalities hold:
(i) |[n]p,q[Bp,q

n (f ; x) – f (x)] – pn–φ(x)
 f ′′(x)| ≤ Cωφ(f ′′,φ(x)n–/),

(ii) |[n]p,q[Bp,q
n (f ; x) – f (x)] – pn–φ(x)

 f ′′(x)| ≤ Cφ(x)ωφ(f ′′, n–/),
where C is a positive constant.

Proof Let f ∈ C[, ] be given and t, x ∈ [, ]. Using Taylor’s expansion, we have

f (t) – f (x) = (t – x)f ′(x) +
∫ t

x
(t – u)f ′′(u) du.

Therefore,

f (t) – f (x) – (t – x)f ′(x) –



(t – x)f ′′(x) =
∫ t

x
(t – u)f ′′(u) du –

∫ t

x
(t – u)f ′′(x) du

=
∫ t

x
(t – u)

[
f ′′(u) – f ′′(x)

]
du.
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In view of Lemma . and Lemma ., we get

∣
∣
∣
∣B

p,q
n (f ; x) – f (x) –

pn–

[n]p,q
φ(x)f ′′(x)

∣
∣
∣
∣ ≤ Bp,q

n

(∣
∣
∣
∣

∫ t

x
|t – u|∣∣f ′′(u) – f ′′(x)

∣
∣du

∣
∣
∣
∣; x

)

. (.)

The quantity | ∫ t
x |f ′′(u) – f ′′(x)||t – u|du| was estimated in [], p., as follows:

∣
∣
∣
∣

∫ t

x

∣
∣f ′′(u) – f ′′(x)

∣
∣|t – u|du

∣
∣
∣
∣ ≤ 

∥
∥f ′′ – g

∥
∥(t – x) + 

∥
∥φg ′∥∥φ–(x)|t – x|, (.)

where g ∈ Wφ[, ]. On the other hand, for any m = , , . . . and  < q < p ≤ , there exists a
constant Cm >  such that

∣
∣Bp,q

n
(
(t – x)m

p,q; x
)∣
∣ ≤ Cm

φ(x)

[n]

m+

 �
p,q

, (.)

where x ∈ [, ] and 
a� is the integer part of a ≥ .
Throughout this proof, C denotes a constant not necessarily the same at each occur-

rence.
Now, combining (.)-(.) and applying Lemma ., the Cauchy-Schwarz inequality,

we get

∣
∣
∣
∣B

p,q
n (f ; x) – f (x) –

pn–φ(x)
[n]p,q

f ′′(x)
∣
∣
∣
∣

≤ 
∥
∥f ′′ – g

∥
∥Bp,q

n
(
(t – x); x

)
+ 

∥
∥φg ′∥∥φ–(x)Bp,q

n
(|t – x|; x

)

≤ 
∥
∥f ′′ – g

∥
∥φ(x)

[n]p,q
+ 

∥
∥φg ′∥∥φ–(x)

{
Bp,q

n (t – x); x
}/{Bp,q

n
(
(t – x); x

)}/

≤ 
∥
∥f ′′ – g

∥
∥φ(x)

[n]p,q
+ 

C
[n]p,q

∥
∥φg ′∥∥ φ(x)

√
[n]p,q

≤ C
[n]p,q

{
φ(x)

∥
∥f ′′ – g

∥
∥ + [n]–/

p,q φ(x)
∥
∥φg ′∥∥}

.

Since φ(x) ≤ φ(x) ≤ , x ∈ [, ], we obtain

∣
∣
∣
∣[n]p,q

[
Bp,q

n (f ; x) – f (x)
]

–
pn–φ(x)


f ′′(x)

∣
∣
∣
∣ ≤ C

{∥
∥f ′′ – g

∥
∥ + [n]–/

p,q φ(x)
∥
∥φg ′∥∥}

.

Also, the following inequality can be obtained:

∣
∣
∣
∣[n]p,q

[
Bp,q

n (f ; x) – f (x)
]

–
pn–φ(x)


f ′′(x)

∣
∣
∣
∣ ≤ Cφ(x)

{∥
∥f ′′ – g

∥
∥ + [n]–/

p,q
∥
∥φg ′∥∥}

.

Taking the infimum on the right-hand side of the above relations over g ∈ Wφ[, ], we get

∣
∣
∣
∣[n]p,q

[
Bp,q

n (f ; x) – f (x)
]

–
pn–φ(x)


f ′′(x)

∣
∣
∣
∣ ≤

{
CKφ(f ′′;φ(x)[n]–/

p,q ),
Cφ(x)Kφ(f ′′; [n]–/

p,q ).
(.)

Using (.) and (.) the theorem is proved. �
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5 Better approximation
In , King [] proposed a technique to obtain a better approximation for the well-
known Bernstein operators as follows:

(
(Bnf ) ◦ rn

)
(x) =

n∑

k=

f
(

k
n

)(
n
k

)
(
rn(x)

)k( – rn(x)
)n–k , (.)

where rn is a sequence of continuous functions defined on [, ] with  ≤ rn(x) ≤  for
each x ∈ [, ] and n ∈ {, , . . .}. The modified Bernstein operators (.) preserve e and
e and present a degree of approximation at least as good. In [], the authors consider
the sequence of linear Bernstein-type operators defined for f ∈ C[, ] by Bn(f ◦ τ–) ◦ τ , τ
being any function that is continuously differentiable ∞ times on [, ], such that τ () = ,
τ () = , and τ ′(x) >  for x ∈ [, ].

So, using the technique proposed in [], we modify the (p, q)-Bernstein operators as
follows:

Bp,q
n (f ; x) =

n∑

k=

bp,q
n,k(x)

(
f ◦ τ–)

(
pn–k[k]p,q

[n]p,q

)

,

where

bp,q
n (x) =

[
n
k

]

p,q

p[k(k–)–n(n–)]/τ (x)k( � τ (x)
)n–k

p,q .

Then we have

Bp,q
n (e; x) = , Bp,q

n
(
τ (t); x

)
= τ (x),

Bp,q
n

(
τ (t); x

)
=

pn–

[n]p,q
τ (x) +

q[n – ]p,q

[n]p,q
τ (x),

Bp,q
n

((
τ (t) – τ (x)

); x
)

=
pn–

[n]p,q
φ

τ (x),

where φ
τ (x) := τ (x)( – τ (x)).

Figure 3 Approximation process by Bp,q
n

and B
p,q
n .
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Example . We compare the convergence of (p, q)-analog of Bernstein operators Bp,q
n f

with the modified operators Bp,q
n f . We have considered the function f (x) = sin(x) and

τ (x) = x+x
 . For x ∈ [ 

 , ], p = ., q = ., n = , the convergence of the operators Bp,q
n

and Bp,q
n to the function f is illustrated in Figure . Note that the approximation by Bp,q

n f
is better than using (p, q)-Bernstein operators Bp,q

n f .
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19. Cárdenas-Morales, D, Garrancho, P, Raşa, I: Bernstein-type operators which preserve polynomials. Comput. Math.

Appl. 62(1), 158-163 (2011). doi:10.1016/j.camwa.2011.04.063

http://dx.doi.org/10.1016/j.amc.2015.03.032
http://dx.doi.org/10.1080/01630563.2014.970646
http://dx.doi.org/10.1007/s00025-015-0441-7
http://dx.doi.org/10.2478/s11533-009-0057-9
http://dx.doi.org/10.1186/s13660-015-0729-x
http://dx.doi.org/10.1002/mma.3784
http://dx.doi.org/10.2991/jnmp.1995.2.3-4.18
http://dx.doi.org/10.1016/j.jmaa.2007.01.072
http://dx.doi.org/10.1016/j/amc.2015.04.090
http://dx.doi.org/10.2298/FIL1603639M
http://dx.doi.org/10.1002/mma.3721
http://dx.doi.org/10.1017/S0013091500020332
http://dx.doi.org/10.1023/A:1024571126455
http://dx.doi.org/10.1016/j.camwa.2011.04.063

	Some approximation properties of (p,q)-Bernstein operators
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Monotonicity for convex functions
	A global approximation theorem
	Voronovskaja type theorem
	Better approximation
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


