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1 Introduction

During the last decades, the study of refinable functions has attracted considerable at-
tention. This will be followed by a description of the development of refinable func-
tions. Initially, B-splines appeared as a special family of refinable functions, which sat-
isfied the scaling equation in [1]. After that, pseudo-splines of Type I were introduced
by Daubechies et al. [2] and Selesnick [3], along with the appearance of pseudo-splines
of Type II in [4]. Especially, the properties of them, such as stability, regularity, approxi-
mation orders etc., were fully analyzed in [2, 4, 5]. Later, there appeared other refinable
functions that had been discovered, for instance, dual pseudo-splines [6, 7], pseudo-box
splines [8], Battle-Lemarie refinable functions [9-11], Butterworth refinable functions [12,
13], pseudo-Butterworth refinable functions [14], generalized pseudo-Butterworth refin-
able functions [15], and so on. Notice that almost all contributions above focus on the
extensions based upon pseudo-splines. However, we discover that pseudo-Butterworth
refinable functions, as an extension of pseudo-splines, lack compact support, although
they have exponential decay to compensate the lack. It is natural to consider a new exten-
sion of pseudo-splines, which has compact support and exponential decay, in particular,
masks of new refinable functions derived from generalized Bernstein polynomials [16] by
substitution and summation.
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We start with generalized Bernstein polynomials, defined as

) @)

S(")(t)— n\tt+a) --(E+k-1a)1-)A-t+a)---Q—-t+[n—k-1]a)
k _(k) A+o)1+2a)---(1+[n-1]a)

where o > 0. New masks with order (m, [, a) for given nonnegative integers m, /, satisfying
l<m—5,and0§o¢< (m+l)

the summation of [ + 1 terms of them as follows:

5, are defined by substituting ¢ = sin ( ),n=m+[in (1) and

w3 (") [((5) ) T ((5) )

m+l-1

/ ]‘[ L+ i), 2

They include almost all masks of pseudo-splines of Type II [4] when « = 0. Furthermore,
the properties of the new refinable functions corresponding to the masks (2) are addressed.
Convergence of cascade algorithms is implemented, which guarantees the existence of
refinable functions. At the same time, we construct their Riesz wavelets whose dilation
and translation form a Riesz basis for L,(R). Finally, stability of the subdivision schemes,
regularity, approximation orders, and symmetry are analyzed.

The remainder of this paper is organized as follows: Section 2 collects some notations.
Section 3 elaborates the convergence of cascade algorithms based on the masks. Sec-
tion 4 constructs a Riesz basis for L,(R). Section 5 analyzes the stability of the subdivision
schemes. Section 6 shows the regularity and the influences of the parameters m, [, @ on
the decay rate. Section 7 gives the approximation order of the new refinable functions.

Section 8 illustrates the symmetry of the refinable functions.
2 Preliminaries
For the convenience of the reader, we review some definitions and properties as regards

refinement masks in this section.

By L,(R), we denote all the functions f (x) satisfying

= ( [0 ) <o

and by [;(Z) the set of all sequences ¢ defined on Z such that

el (Z\C(z ) <o,
i€Z

A compactly supported function ¢ € L,(R) is refinable if it satisfies the refinement equa-

tion

¢=2) (k)2 k), (3)

keZ
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where 7, called the refinement mask of ¢, is a finitely supported sequence. The Fourier
transform of ¢ is

P(&) = /R d()e®tdt, &eRR.

For a given finitely supported sequence ¢, its corresponding Laurent polynomial is de-
fined by

c(z) = Z ci)z!, forz e C\{0}.

i€Z
The corresponding trigonometric polynomial is
iE)=¢(e™®), geRr

With the above, the refinement equation (3) can be written in terms of its Fourier trans-

form as

PE)=1(E/2)p(E/2), £ eR. (4)

We call T the refinement mask for convenience, too.
By the iteration of equation (4), the corresponding refinable function ¢ can be written
in terms of its Fourier transform as

p():=[[2(27w). (5)

=1

~.

Define T := R/[277Z] and define L, »(R) as the subspace of all f € L,(R) such that

1
2

<00,
Loo(T)

Z[f(w + 271k)’2

keZ

Ny ®) =

where L (T) denotes the space of all 277 -periodic measurable functions with finite essen-
tial upper bound. The notation T and the space L, - (R) were introduced in [17] and [18],
respectively.

A system X(/) = (¥x = 2729 (2" - —k) : n,k € R} is a Riesz basis if there exist 1 < C; <
C, < oo such that, for all sequences c € [,(Z?),

Y el Ky

(nk)ez?

< Gllellgyz2)
Ly (R)

Gillellyyz2y = ‘

holds and the span of {,,x : 1,k € Z} is dense for L,(R). The function v is called a Riesz
wavelet if the X (1) form a Riesz basis for L, (R), which is also called a Riesz wavelet system.

A function ¢ € Ly(R) is called stable if there exist two positive constants A, By, such
that for any sequence c € [5(Z)

> elp(-— i)

i€l

Alllellzzy) < < Bilcllz@)-

Ly (R)
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It is well known that this condition is equivalent to the existence of two other positive
constants A,, Bs, such that

Ay <Y |$(€ +27k)|* < By,

keZ

for almost all £ € R [19]. The upper bound always holds if ¢ has compact support and the
lower bound is equivalent to

($(& +27k)),_, 70, (6)

for all ¢ € R, where 0 denotes the zero sequence. In particular, we consider the stability of
the compactly supported centered B-splines,

= ooy -imé ((SINE/2) "
51 (D)

Since it is obvious that there is C; > 0, such that |§m(§)| > 4/C; for all £ € [-m, ], we have

[Bn(€), Bu(®)](€) = [Bu®)|* + Y |Bun(e + 2km)|* > [Bu(®)[* = .

keZ

Hence all B-splines are stable.
We use

Pn :f = Z(fﬁ ¢n,k>¢n,k

keZ

to approximate f € Ly(R). A function ¢ satisfies the Strang-Fix condition of order m if

$(0)#0,  Dp(2rk)=0, VkeZ\{0},V|j|<m.

Under certain conditions on ¢ (e.g,, if it is compactly supported and ¢(0) = 1), the Strang-
Fix condition is equal to the requirement that 7, has a zero of order m at each of the points
in {0,7}\ 0. In [2], if ¢ satisfies the Strang-Fix condition of order m and the correspond-
ing mark 7, satisfies 1 — |7y(-)|> = O(| - |") at the origin, then the approximation order is
min{m, m; }.

In the following, we will adopt some of the notations from [18]. The transition operator
T, for 27 -periodic functions 4 and f can be defined as

[T 1w) = |a(@/2)|*f(@/2) + |a(w/2 + 7)*f(@/2 + ), @ €R.
For 7 € R, a quantity is defined by
o
TZ\ |sin| —
H((3)

The notation p(a) is defined by

1/n

)

p<(a,00) := limsup

n—00

Loo(T)

ola):= inf{,or(&, 00) |Zz(w + n)|2|sin(a)/2)|t € Loo(T)and 7 > O}.
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A function f belongs to the Holder class C#(T) with 8 > 0, if f is a 27 -periodic contin-
uous function such that f is # times continuously differentiable and there exists a positive
number C satisfying

[F@) - ") < Cle—y1P~"
for all x,y € T, where n is the largest integer such that n < 8.

3 Convergence of cascade algorithms based on the masks

In this section, a demonstration of the convergence of cascade algorithms in the space
Ly~ (R) is given. For notational simplicity, we will introduce the following three defini-
tions:

We will provide three lemmas about the relations of the quantities p, (a, 00) associated
with masks and a condition of the convergence of cascade algorithms which are necessary
for the following theorem.

Lemma 1 ([18], Theorem 4.1) Let a be a 27 -periodic measurable function such that |a|* €
CP(T) with |4*(0) # 0 and B > 0. If |a(w)|* = 1 + e|*"|A(w)|? a.e. w € R for some T > 0
such that zzl(w) € Loo(T), then

1 , 1 .
P (@, 00) = ;2{,” T;fl”foomr) = lim | 771 |ZOC(’J1‘) = po(A, 00).

n—00

Lemma 2 ([18], Theorem 4.3) Let a and ¢ be 25 -periodic measurable functions such that
|a(w)] < |é(w)|

for almost every w € R. Then
0 (@,00) < p(c,00), T€ER.

Lemma 3 ([18], Theorem 2.1) Let a € C#(T) with a(0) =1 and B > 0. If p(a) < 1, then the
cascade algorithm associated with the mask a converges in the space Ly~ (R).

A useful condition of proving the convergence of cascade algorithms is described in the
following lemma.
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Lemma 4 For two positive integers |, m, [ <m -5, if

1
0< _ 7
_a<3(m+l)—7 @
then
m+l-1
B; — , j=12,...,L
max i(w) < <2> j l (8)

Proof Forj=1,2,...,1, it is obvious that

cos?(£) + (m+1-1-))a

Bj(w) = Bj.i(w).

sin®( 3) +ja
We claim that

Bi(w) cos?(£) + (m+1-1-))a

= - , 9)
Bj1(w) smz(%)) +jou
Since l<m -5,forj=1,2,...,1, we have
j<m+l-1-j. (10)

There are two cases to consider: Case I: Suppose that cos(w) > 0. By (7) and (10), it is easy
to see that

—cos(w)
a>0>——.
m+l-1-2j

Then
cos2<%) +(m+l—1—j)a>sin2<§> +jo. (11)

This implies Condition (9). Case II: Suppose that cos(w) < 0. In the same way, we get

—cos(w)
o> —"
m+l-1-2j

forj=1,2,...,1 Then (11) holds. This concludes the claim (9). By using (7), one gets

dm+1-2)—(m+1-1)

(4(m+l—2)—(m+l—1))a< 3 D)7 =1.
Then
m+1-2) (m+1-2)a l 12)
1+a)1+m+1-1a) < 1+ (m+[-1a <%

Thus

2m+1-3)-(m+1-2)

1.
m+l—4

(2(m+l—3)—(m+l—2))oz<
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Similarly, one has

(m+1-3)a 1

_ < —, 13
T+m+i-2a 2 (13)
For any x, notice that
x i
P 0 14
<1+(1+x)) g 14)

and B;(w), which is a continuous function on [-m, 7] and is differentiable on (-, ), has
the maximum value at w = 7. The reason as follows: the equation [B;(w)]’ = 0 has three
zeros, at w = 0, £. Since [Bi(w)]” > 0, B1(0) is the minimum of B;(w) on [-7,7]. Thus
B, (+£m) is the maximum of By (w) on [-7,7]. Therefore, applying (9), (12), (13), (14), and

m+l-2 m+l-1
Bi(w) = sin2(g) (cosz(g> + ia)) 1 +ia)
o= (s (5) TT((3) ) /T1

m+l-2 m+l-1
< T1 ia/ [ a+ia)

i=1 i=1

mil 3 io m+1-2)
<

LU T+ G+ D A+ @)1+ (m+1-1)a)

- m+1-3) ™2 1
1+(m+1-2)a

4
1 m+l-1
10
we get the inequality (8). d

Theorem 1 Ifwe let r(’f”l“’ (w) be the mask (2), then the cascade algorithm associated with

the mask 15”’1’0‘ (w) converges in the space Ly »(R).

iw

Proof For |cos(5)| = |1*ET_|, one has

o (@)|* =274 (1 + ¢@) " | T(w)

=(1+ e“"‘))4 |2_2T(w)|2.
Applying

By(w) =

IA |
- 3
3 T
— 4‘::13
_ /N
+ 8
~. w
Q [\
- A~
~
=i I
— g
= ~
+
)
< 3
I S
— P
—_
+
§,
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and Lemma 4, we obtain

2

!
m+
max2|2‘2T6"’l'°‘(a))|2 =max 27> |By(w) + Z ( . )B,(w)
weT weT i ]

weT

1 m+l-1
< max273 (1 + <—> (2)’””_1)
weT 2

Bringing Lemma 1 and Lemma 2 together yields

1
<max2’31+(max B )Z<m+l>
j=1

2
(15)

P (@) < pa (5" (@), 00) = po (22 T(w), 00) < 1.

Thus, by Lemma 3, the cascade algorithm associated with the mask 7" 1% () converges in
the space Ly o (R). d

4 Riesz wavelets
In this section, we shall construct Riesz wavelets based on the masks (2). The following
two lemmas analyze recurrence relations of t;" L (w), which are useful for the construction

of Riesz wavelets.

Lemma 5 Iflet tj" le (w) be the mask (2), then 7" ) satisfies

m+1La m+1,1-1,a COSZ(%)-'-WIO{ m, o
— o M2 545 1
7 (w) =1 (w) + < T+ on+Da G (w) (16)
and
m+1,La m,lo Sinz(g) +lo m,lo
o (@)= (e) - Trmeda )0 @ a7

Proof By the summation of / + 1 terms of generalized Bernstein polynomials satisfying the

recurrence [16]

s = (PR g (LD N

1+ no 1+ no

we can derive that

l ! .
1-t+(m+1-)o I

S§m+l+1 S(m+) ¢

Z/ Z( 1+ (m+ Do )1 )

j=0 =0

L/t (-1
* (1+(m+l)a) Y. (18)

\M



Cheng and Yang Journal of Inequalities and Applications (2016) 2016:166 Page 9 of 29

Substituting ¢ = sinz(%) in (18), one gets

()

]
! cos* (§) + (m+1-ja\ uun( . of @
:Z( 1+ (m+ )S/ (Sm <§))

7

=0

L /sin? )+(] Do\ i . of @
llS(erl COSZ(§)+ma Gm’l’a 19
(o ())*(m)f “ v

By using (19), one obtains

l -1 w
> s ( i (9» =3 s <sin2(9)) + <7C°SZ(7) . ’”O‘)G,’””'“(w)
i—0 2 s 2 1+ (m+Da

]

Thus, the conditions (16) and (17) are demonstrated. O

Lemma 6 Iflet 7" L (w) be the mask (2), then we derive

@+ e mP s 2, we, 20)

Proof When /=1, one has m > 6,

1\ 1= w "
|tm10‘(a))|2 = (<m+ ) (cosz<—> + ia) (1 + i)

(s ()T (o0 (5) i) / T m))
- (s (2) 1o m) Tl (co2(2) ) / Tl i)

and
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It follows from the above two equalities of |77""*(w)|? and |ty (w + 7)|? that

|t(§”’1’0‘(a))|2 + |15"’1’°‘(w + 7r)|2

msin®(2) + 1+ ma '\ ml N
= cos?| = | +ia
1+ ma s 2

(mcosz(g) +1+ ma
+

1+ ma

msin2(@N\2 (77 sind (9N
=1+ =27 1- 2
( * 1+ ma ) /=o( 1+ja)

< 2wy 2 2
> (1+ men te) (E)) <1—msin2(g>>
1+ ma 2
2(w 2 2
+<1+ M) (l—mcosz(g)> . (21)
1+ ma 2

The first inequality follows from the general formula of the Bernoulli inequality. Substi-

tuting y = sinz(%) in (21), let

2 2
f(y)=(1+ 7 )(l—my)2+<1+(l_y)m) (1= -ym)"

1+ mo 1+ mo
We claim that

fo)> g (22)

First of all, f'(y) is derived as follows:
f'0)
2
= 2(1 + Sl )( " )(l—my)2 +2<1 + ym ) 1 - my)(-m)
1+ ma 1+ mo 1+ moa

A-y)m m 2
+2(1+ 1+ ma )<_1+ma>(1_(1_y)m)




Cheng and Yang Journal of Inequalities and Applications (2016) 2016:166 Page 11 of 29

ym m ym
- {2<1+ 1+ma)(1_my)[(1_my)l+ma —m<1+ 1+ma>]} -2

x(1+(1_y)m)(l—m(l—y))[(l—m(l—y)) “ -m(1+(1_y)m>].

1+ ma 1+ ma 1+ ma

Additionally,

' — i " ym
7o) —2(1+ma>(1—my)[(l—my)l+ma "”(“ 1+m06>:|
+2(—m)(1+ ym )[(1—my) - —M(“ - )}
1+ ma 1+ ma 1+ ma
ym 2m2
+2(1+1+ma>(1_my)<_1+ma)
m m (1 -y)m
+2<1+ma)(1_m(1_y))[(l_m(l_y))1+ma —m<1+ 1+ ma ):|
1-y)m m 1 -y)m
+2(—m)<1+ e >|:(1—m(1—y))1+ma —m(1+ 1+ ma )]
A-y)m 2m?
o S (2

Combiningf/(%) =0 andf”(%) > 0 yields

£0)= min{f(O),f(%),f(l)}.

Here,
1 2 2 1 2 2
1(3)- (i) (-2m) + (o 255) (- (-2)
2 1+ ma 2 1+ ma 2
2 2
:2<1+#> <1m—1) >£. (23)
2/m+ 2a 2 2
Let

1 2N 2
g(x)=2<1+2/x+2a) (Ex_l) )

The condition (23) follows from the fact that g(x) is increasing on [5, +oc]. It is obviously
true for f(0) > % and f(1) > ? This concludes the claim (22). Assume (20) holds when
[ =k —1. Consider the case [ = k. By using (16) in Lemma 5, we have

’t(;)fnﬂ,l,ot (w) ’2 _ ‘t(;«wrl,l—l,a (w) ’2 + 2(t6n+1,l—1,a (a))) (

s (ae(2))
2
s <(0052(%) + (m - l)a)SI(mHD <Sin2<g>)>2'
1+(m+1-1)a 2

cosz(§)+ma)

1+ (m+Da
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Adding that

in2(2 _
| mla(w_l_n | | m,l— 1aw+n)| +2(T6nl 1a(a)+7'[))<81n (2)+(W[ 1)05)

1+(m+1-1)a
x S;””H) <cos2(2>)
2
. ((SinZ(%) +(m— 1)a>5(m+l—1) (COS2<2)>)2
1+(m+l-Da )7 2 '

Combining together the above equalities so that

70" (@ )’ |ty (w+ 7 ’ = |y () ‘ |zg"- 10‘(a)+7r)|2 +f(w) +f(w+ ),

where

m,l-1,a 2(2)+( _1) m+l— .
) =25 ) (S s (s (7))

. ((COSZ(%) + (m — 1)a>5§m+l—1) (sin2<2)>)2'
1+(m+I-1a 2

The condition (20) follows from the fact that

V2

(a)+71)}2 > DR

| mk— la(w)| | mk-1,0

This concludes the proof of Lemma 6. g
Conditions for constructing a Riesz wavelet basis are given by the following lemma.

Lemma 7 ([18], Theorem 3.2) Let a € C#(T) with a(0) =1 and B > 0. Let ¢ be the refin-
able function corresponding to the refinement mask a. Denote b(w) = e ™a(w + 7). Definea
wavelet w(ﬁn) = l;(a))qAb(w). Then the shifts of ¢ are stable in L,(R) and ¢ generates a Riesz
wavelet basis in Ly(R) if and only if

(i) 5(0) =0 and d(w) := &(w)b(w + ) - aw+ 7)b(w) #0 for all » € R.

(i) p(a)<1and p(a) <1, where a(a)) (a) +7)/d(w).

Theorem 2 Let ¢, ;4 be the refinable functions from generalized Bernstein polynomials
with the refinement mask (2). Define a wavelet U, such that

SO () 4 ) Py ().

W, 10(20) = e
Then \V,, ;. generates a Riesz wavelet basis in L,(R).
Proof Note that Z)(w) = e“wm thus b(O) = W =0, and
d(©) = 5" @)b( + 7) = 7" (@ + 7)b(w)
=75" l“(w)(—e_ia’)m — T (w + n)e""’m

=—e"""(‘ mba( a)){ |rml°‘(a)+n)’ )7!0, weR.
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Therefore, condition (i) in Lemma 7 holds true. p(r(;"’l’“ (w)) <1 has been proved in Theo-

rem 1. Noting that

— hw+7) —e‘”"r{f”l‘a(w +27)

Tm,l,at(w) —
0 ; m,la m,lo
d@)  —e-io(|g]"* (w)[2 + |7 (w + ) [2)

B _L_(;n,l,a (w)

I @) + 1 (w4 )

we obtain
—~ m,l,a 2
myla To (w)

2
70" () =
O e e

24 T (@)

1 7 ‘
(Ig" " (@) + |75 (@ + 7))

Jaee

Combining (15) and (20) in Lemma 6 yields

20272 TP () |2

max
oeT (|77 ()2 + |7 (@ + )22 (

“|§ ol

)2

By using Lemma 1 and Lemma 2, it is derived that

p(r%)) < p4(t'"/’l’;(/w) 00) = po< 221 (@) oo)
0 - (2" ()2 + |2 (@ + 7))

Consequently, condition (ii) in Lemma 7 holds true. O
5 Stability of the subdivision schemes
In this section, we will prove the stability of refinable functions based on the masks (2).

The following lemma gives the recurrence relations of TS”‘I’“(a)).

Lemma 8 If we let ' () be the mask (2), then Ty () satisfies

G"(w), forlo|#m,  (24)

cos2(2) + ma
T(;)fn+1,l,oz (w) _ T6n+1,l—l,a (w) : ( ( P ) )

cos?(3)(1 + (m + Dax)

and

!

1 m+l-1
Tm,l,ot + _ Tm,l—l.ot + § B{’Vl'l,vt +77). 25
o " (&) 1+m+l-1a ° ( N)+j=o< / )] ) 29
Proof We consider into two cases. Suppose that |w| # w. Equation (16) is applied in

Lemma 4 so that

G ().

2(w
COS™\5) + ma
T(;n+1,l,a( ) _ T(;n+1,l—l,a (a)) + ( (2) )

cos?(3)(1 + (m + Da)
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Suppose, on the other hand, that |w| = 7; we check the condition (25). Note that

1

Tmloz(:tn zz(mfl)Bmzai )

j=0
_ m+1 Bmz"‘(in) Z m+l-1 + m+l-1 Bm’l’a(in)
Lo = j j-1 J

1
1 m,l-1,a m+l-1 m, Lo

=—F T + B ().

1+(m+1-a ° ( n)+§;< j )’ (&)

This establishes the lemma. O

Theorem 3 Let 7" L2 () be the mask (2), then the refinable functions ¢, Y with the masks

o () are stable.

Proof We claim that the condition (6) holds. Indeed, the refinable functions with the
masks 7y’ 5 (w), which belong to L,(R) as shown in Theorem 1, have been proved. They
are compactly supported for finite refinement masks. In the following, we derive the in-

equality
|t ()] > i (m ' l) (sin’ ()Y (cos? ()"
pn j I+a)d+2a)---A+[m+1-1]a)
B 1
S (@+a)d+2a) (Lt [m+ - 1]a)
i j m+l—j
"E) = E)
X ) sin“{ — cos”| —
; ( j 2 2
= ! cos? (2
T lt+a)l+2) A+ [m+1-1]a) 2
! j I
G ((3))
P j 2 2
1 om | @
"l = || 26
T Ura)1+20)- A+ m+l-1a)| (2)‘ (26)
Applying the stability of B-splines yields the existence of two positive constants A,, B,
such that

Ay < Z|§2m($ + 27rk)|2 <B,, foralmostall £ €R,
keZ

where B,,, denotes the B-spline of order 2m. It implies that |§2m(a))| has the finite func-
tional value. Combining (26) with (27) yields

mla( )| _l—[|rmla —/w

= 1
g [1[(1+a)(1+2a)---(1+[m+1-1]a)

|cos™ (27 w)|
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1 )
li 2m 2—]—1
e L T )@ 20 Ty 15 7

. 1
Ml—lg-loo(((l +o)(1+2a)---

xl_[’cos 2’1 ’)

M
(1+[m+l—1]a))

. 1
leiTm(((l +a)1+2a)---

><|cos 2 w H|cos 2’1 |>

M
1+ [m+l—1]ot))

Since

1
< QI+o)Q+2a)---A+[m+1-1]a)

<1,

this leads to

! 27)

M
Ml—i>+oo((1 +a)1+20)---(1+ [Wl+l—1]0l)> -

Moreover,

1

M
(1+a)(1+2a)---(1+[m+l—1]oz)> ‘:0,

S,
37| = [Banto)] | im
Thus, there exist two positive constants A;, B;, such that

Ap < Z|¢mza £+ 271k)}2 <B,, foralmostallé eR.
keZ

This concludes the theorem. O

6 Regularity
This section is devoted to an analysis of the regularity of refinable functions ¢>6”’[’°‘ with
the mask r’"l"‘(a)) defined by (2). Our primary goal is to obtain the lower bound of the

m,lo mla

regularity exponents v, of refinable functions ¢;" il by estimating the decay rates

of their Fourier transform. The relation is expressed by
mba - gmlo 1
Yo =By —1l-8

for any small enough ¢ > 0; see [20]. Consequently, p7*** € C76"" . Next, we will give an

" of the Fourier transform of refinable functions ¢;*"* with

estimate of the decay rates g
the mask ;" be (). By [20, 21], for any stable, compactly supported refinable functions ¢

in Ly(R) with $(0) = 1, the refinement mask v must satisfy 7(0) =1 and t(r) = 0. Thus, t
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can be factorized as
() = cos” (g)z(w),

where # is the maximal multiplicity of the zeros of v at 7 and L(w) is a trigonometric

polynomial with £(0) = 1. Therefore, one obtains

$(w) = ﬁr(Z‘jw) = ﬁ[cosn (2"%) !jﬁ(Z_ja)) = sinc"(%) ﬁ[ﬁ(2"jw),

J=1 =
which shows the decay of |¢| can be characterized by | 7| as stated in the following theorem.

Theorem 4 ([20], Lemma 7.17) Let t be the refinement mask of the refinable function ¢ of
the form

|t(a))| = cosn(%) |£(a)){, w € [-m,7].
If

|L(w)| =

2 2
E(g)‘ for|w| < ?n’

) (28)

2
Sor = = lw| <7,

|L()L2w)| < }L(%’T)

then $(w) < C(L + |w|)™*F with K = log(lﬁ(%”)l)/ log 2, and this decay is optimal.

By using the following theorem, the decay rate of Fourier transforms of refinable func-

tions ¢"** with the mask ;" (w) is analyzed. Especially, the case « = 0 was demonstrated

in [4], Theorem 3.4. We will give the discussion of the case 0 < & < m
Theorem 5 Let ¢y’ be pe refinable functions with the mask t;’ ohe (w). Then

@ee| < C(1+ Jwl) >,

where K = 10g(|T6"’l‘“(%”)|)/log 2, and the decay rate ﬂ(’,”’l’“ =2- log(|T5"’l’“(2T”)|)/log2 is

m,la
optimal. As a result, ¢g"l'“ e CW'" , where yé”’l’a > /36"’1’0‘ —1-¢, for any small enough ¢ > 0.

Proof It is obvious that [7""** ()| = cosz(g)lTS”’l'a(w)I, w € [-m,m]. We claim that

Tm,l,a 21
0
3
2nr 2w 2n 2w

Indeed, T(;”’l’o’(a)) is a continuous function on [-=, 5] and is differentiable on (-, ).
2r 2w

The maximum value of Tg"'l'“(w) on [-, 5] can be derived as follows: We find w = 0 is

the only zero of equation [T(;”’l’a(a))]/ = 0. Since [Tg”l’a(())]” >0, Ty 1 (0) is the minimum

T3 )] <

2
. for |o| € [0, ?’T} (29)
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of TS”’I"" (w) on [-Z, 22], Consequently, TS"’I’“(O) < Tg"’l’“(:i:%”). Here, T(;"’l’“ (w) is an even

373
2w
, for|wle|—,n|.
3

function. Hence, (29) holds. Next we show
| Ty () T (2)| <
Here, 7" l“(w)Tm L (2¢) is a continuous function on || € [ , 7] and is differentiable on

Tmla 2
3

lw| € (& 2, 7). Since the equation [T(’;”“( )Tg”l“(2w)] = 0 has no zeros on |w| € [T’ ],

we are required to compare TS”’I‘“(n)TS”’l'“(Zn) with Tgn’l’“(%)T{,”’l‘“(%). As a result of
To () Tg (2m) = T () Ty (0) = Tg™ ()

and
T(;n,l,(x Tmloz 4 Tmloz 27 Tgn,l,a _2_7[
3 3 3 3
Tmlot 2
3 b

only T’”l“(n) and (T”’l"(?”)) need to be compared. Let m, o, w be fixed. For [ = 1, we

claim that

2
<T"‘1"‘ (2; >) > T (7).

Here,

m-1 m
T(;”l“(z;r) = ((Zm +1 +ma> | (— + wt)) /l_[ (1 +jm)
and
m-1 m
T () = ((m +1+ ma) Hia) / H(l +ia).
i=1 i=1

Setting g(m) = (Tg"‘l""(%”))2 - Tg"‘l’“ (7), in which « is fixed, then

glm) - (((2m+l+ma)m 1<_+la))/1‘[ 1+,m)
<m+1+ma ﬁ )/li[1+la

Notice that

g(m) > 0. (30)
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Indeed, since/=1and [/ <m —5, m > 7. When m =7, one has

6 7 2
g(7) = (((35/4+7*a)1_[(i +ia)> /H(i+a))
i=1 i=1

7
- ((720(8 +7xa)a’) [T+ a)) >0,
i=1

for 0 > o <1/17. Assuming that g(m — 1) > 0, we now prove g(m) > 0. Let

m-1 m
gi(m) = T(;”’lv“ <2§) - ((%m +1+ ma) H(% + ia)) / !:1[(1 +ia)

and

m-1 m
am) = TP () = ((m +1+ ma)ﬂia) [ TTa+ie.
i=1 i=1

Then it is obvious that

(% +(m —l)oz)(%m +1+ ma)

80 = ) Eom—1) + 1+ m D)8 " Y
and
 (m=De)m +1+ ma)
&l = -1 + 1+ - Dy Y-
Thus,

gm) = (g1(m))” = go(m)

) o (4 m=Da)Cm+1+ ma) )2
= (a1(m 1)) ((1+ma)(%(m—1)+1+ (m —1)a)

((m -1Da)(m + 1+ ma)
A+ma)((m—-1)+1+(m-1)a)
(i + (m —l)a)(%m +1+ ma) )2

1+ ma)(%(m -1 +1+(m-1a)

—&(m-1)

> @(m—1)gy(m — 1)((

((m-1)a)(m + 1+ ma)
CQ+ma)((m-1)+1+ (m—1)a))'

Let

) = i+(m—1)a %m+1+ma 2
(@) = (( 1+ ma )(%(m—l)+1+(m—1)a>)

(m-1)a m+1+ma
_( 1+ ma )((m—1)+1+(m—1)oz>'
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W (o) is derived as follows:

H(a) = {(-120m — 224m” + 454m° + 907m"* — 837m® + 108m” o + (16 + 488m

—755m* —1,328m° + 1,754m" +1,320m - 2,079m° + 648m’ )a* + (-128
—224m +1,984m” - 2,228m° - 960m™ + 3,976m° — 3,968m° + 1,548m’ o>
+ (256 — 896m — 96m” + 2,672m”> — 3,584m* + 4,320m° — 4,512m°
+1,840m )a* + (512m - 1,536m” +1,088m° — 256m* +1,920m° — 2,816m°
+1,088m")a” + (256m> — 768m° + 512m™ + 512m° — 768m° + 256m” )a° }
H{(8(m+(-1+ m)a)2(1 +3m+4(-1 + m)a)3(1 +ma)®)}.

Note that for any fixed m > 6, /(@) > 0 on o > 0. Thus, /() is increasing on « > 0. This

together with 4(0) > 0 implies that g(m) > 0. This concludes the claim (30). Supposing
(Tg" (2))% > Ty (), we verify

2 2
(qu'lﬂ'a(?n)) > T(;”’HL“(TL'). (31)

It follows from Lemma 8 that (31) is equivalent to

2
qu‘l,a 2_71 . 1+ 4ma Gln: ’1,’0[ 2_71
3 1+ (m+ D 3

I+1

1 m,la m+l m,l+1,a
I — B (o, 32
“Tim+Da ® (n)+j=20( J ) ! a 32

Since

(m+ Do mde [ 27 2 l m+1l m,l+1,0
1+ (m+ D To 3 g /:ZO j 5 e

it is obvious that (32) holds. Hence, by Theorem 4 , ¢y"** satisfies
5| < Cuv o)™,

where IC = log(|T6”’l’“(%”)|)/log 2, and the decay rate ﬂg”’l"” =2 - log(ng"l’“(%”)|)/log2 is

. mla
optimal. As a result, ¢"** € C%0 ", where ™" > Bi" —1 — ¢, for any small enough
e>0. 0
m,lo

The following table gives the decay rates S5 of the Fourier transform of refinable func-
tions ¢6"’1’°’ with the mask té”’l’“(w). To satisfy the constraint condition (2) of m, [, o, we
set o = 0.01 in Table 1.

Table 1 shows that for fixed /, o, B2 increases as m increases and for fixed m, &, B

decreases as [ increases. This is true indeed as presented in the following proposition.

Proposition 6.1 Let the decay rate ,3(’)“’1’0‘ =2 —log(] TS”’I’“(ZT”)I)/log2 be as given in Theo-
rem 5, then:
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m,l,o m,l,o

Table 1 Decay rates B, of refinable functions with the mask 7

1<l/<m-5,and @ =0.01

(w), for7 <m <13,

(m, 1) I=1 =2 =3 =4 I=5 I=6 1=7
m=7 10.6157

m=38 12.2067 11.6886

m=9 13.7834 11.7927 10.2549

m=10 15.3438 13.2786 11.6088 10.2745

m=11 16.8868 14.6887 129622 11.448 10.3499

m=12 184116 16.1224 143121 11.7464 11.506 104583

m=13 19.9179 17.5444 15.6561 14.0890 12.7551 10.8736 10.5870

(1 ) For fixed m, a, B decreases as  increases.

I3 .
) Forfixed I, o, By""" increases as m increases.

b 2 mle 2w
Proof Applyin ,3’”1“ log (T (3 )), T”‘lvf(_ﬂ) > 0, yields 2 — ﬂmla log, (T (5 )),
pplying > mbe(2) 5 0, y
mila (g )
which is equivalent to 220" = glog2 * " = =Ty la(zn) Following the formula given b
d g given by

Lemma 8, one has

2 2 2
Tg’”l’l’”’ (?71) = T(;’”l’l’l‘“ (g) +(1+ 4ma)(1 +(m+ l)a)G;”’l’“ <§)

Thus,

22_'36;1+1,l,ot _ 22_‘36n+1,l—1,ot 4+ ma m La 2_7T
41+ (m + Da) 3

Let

Jmli-la _ 227;35”*1"‘1'“
5 = .

For %Sw” (%) > 0, it shows that 16”*1’1'“ > I(’)”“'l_l"", which is equivalent to saying

Ay
o, I

. . L
for fixed m, increases as [ increases. Hence, for fixed m, «, B5""* decreases as [

increases. Applying Lemma 8 to the following expression, one obtains

Tm+llot 27 Tmla 27 _ 4(%-'—10[) Gm,l,ot 2_7[
3 3 1+(m+Da) ! 3 )

Furthermore, we have

3
Im+1,l,a _ Im,l,oz _ ( 4 +lo )Gm,l,a (2_7T)
0 =40 1 l :
1L+ (m+ D) 3

4(4 +lar)

m+1,La m, Lo
1+(m+l)a I < 1

For (

1, Ay
I’" “ decreases as m increases. Therefore, for fixed , , )" increases as m increases. [

)Gm 10(2” ) > 0, we similarly get , which means that for fixed /, «,

7 Approximation orders

m, Lo

In this section, the approximation orders of refinable functions with the mask 7y""* (w) are

analyzed in the following theorem.
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Theorem 6 Let ¢ be refinable functions with the mask t0"" (). Then ¢y*"* provides
the approximation orders 21 + 2.

m,l,a

Proof In fact, the approximation orders of 1 — |7y""*(w)|*> and rml“( ) are independent

on «. For convenience, we set & = 0. Following [4], let

d I
Rmyl(y) _ Z <Wl]+ >y1(1 y m+l—/

j=0

where y = sin (g) then

2

1- Rm,1<sin2 <§)> _ (|w|2“2)
Since
R,,(y) = ~(m+1) (m +ll - 1>yl(1 e
and sin®(%) is equal to 1 when w = 77, cos?™~1(£) has a zero of order 4(m —1). We conclude
that

Rmi(y) = O(|w|4(m—1)+1).
For
min{2/ +2,4(m 1)} =20 +2,
then ¢, e provides the approximation orders 2/ + 2. d

8 Symmetry
Symmetric coefficients of the mask are of great significance in image processing. In the
following, we will give a symmetry proof and provide a graphical illustration.

Lemma9 Form,leZ',a>0,j=0,1,...,[,z= e we derive

j-1 m+l-j-1 1 1 m+l )
(——— z 1+z)+ioz) 1_[ (§+Z(zl+z)+ia> =Zb’k’m’l’°‘(z’1+z)k,
i=0 i=0 k=0
where
i D,
B =2 k=0,1,..,m+ ], (33)
D
1oL de L Gy
1 1 1 I
I G2 (G ... ((GH™

D= ,

1 (%)m+l+1 ((%)m+l+1)2 ((%)m+l+1)m+l
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and
Lo G s e L
Do | L GO AGH @it Gehmt |
. ((%)’”‘*‘l;l)k‘lf((%');“;”“) @y ((Lymsterymel
where
f(x)=:_:(%—%x+ia)milj1(%+%x+ia>, x€[-2,2].

Proof Set x(z) = z7! + z, then x € [-2,2] and

j-1 1 1 m+l-j-1 1 1 m+l

, . Z bk
li)[(i—zxﬁ'la) 1_0[ <E+Zx+1a)=k0blk X . (34)
i= 1= =

Fixing x = 1,(3)%,...,(3)™*"1, by using (34), we obtain

'(%)Ob/(’;m,l,a + (%)1b]i,m,l,a s (%)mﬂb/,m,l,oz :f(%)’

m+l
(GPBE™ + (BB + -+ (BD™ B = F(3)), 35)
((%)m+l+1)0b8mvlv“ + ((%)m+l+l)lb11"m'l’a Foeeet ((%)m+l+1)m+lb/}';lm+vllvu :f((%)m+l+1)'
Since the coefficient determinant of (35)
1 % (%)2 (%)”’*l
po|l @GP G
1 (%)m+l+l ((%)m+l+l)2 ((%)m+l+l)m+l
applying Cramer’s rule yields
i D
b’,;m’l’a = —k, k=0,1,...,m+1,
D
where
TR € N £ BN V) L € ot
peo |t GPF @D @2 GRr
1 ... ((%)m+l+1)k—1f((%)m+l+1) ((1/2)m+l+1)k+1 . ((%)m+l+1)m+l O
Lemma 10 For k € N, we have
e+ z’l)k ) T (] (2 4 k2, ifk is an odd number, 36)

U ()@ 26 1 (), else
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Proof We consider into two cases. Suppose that k is an odd number. One gets

k (k-1)/2 k

k ; k . k ,
(z+z‘1)k = Z ( ‘)zk‘zi = Z (,)z"‘zf + Z (,)zk‘2’.
j=0 J j=0 J j=(k+1)/2 J
Leti =k —j, then
k (k-1)/2
Z (k> Y= Z (k> 7~ k=20).
. ] - l
j=(k+1)/2 i=0
Thus,
(k-1)/2 X k
(z+27" ()zk2}+z<>k2’
Jj=0 j=(k+1)12
(k-1)/2 (k-1)/2
— Z ( ) k—2i + Z ( ) —(k—2i)
i=0
(k-1)72 X o
— (Zk 2i +z (k 21)).
i=0 i

Suppose, on the other hand, that & is an even number. It is clear that

Kk k2L Kook X
=2 ()2 =2 ()27 2 () ()
o M o M j=k/2+1 J k/
Let i =k —j, then
k k/2-1
Z k . Z k 7 k=20)
, j - i
Jj=k/2+1 i=0
Therefore,

=0 J j=ki2+41 J kr2
/2-1 ki2-1
K\ ko —(k-2i) kN o
— ( > * Z ( ) ki2)*
ki2-1
k - - k
_ 2 <i>(zk—2t +Z—(k—2t)) + (k/z)z()

This concludes the proof. d

Theorem 7 Let 1§ o (w) be the mask (2), then the coefficients of the mask are symmetric.
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Proof Sincesin*(%) = 1 —1(e +e7*), cos’(£) = 3 + 1 (¢ +€7), we set z = e and obtain
1 m +l j-1 m+l—j-1
" (w Z( )(H(sm ( >+za> 1_[ <cos ( >+za>)
j=0 i=0 i=
m+l-1

/1;[(1+ia)

-3 (") (13- 30 1)

/HWHl 11 +ia), by using Lemma 9, one can obtain

Let amla _ (m+l)

Lmal\((5(1 1
rg”‘l’“(w):Z( ; )(H(5_1(2_1+Z)+ia)

where {b’ " la}"’*l is (33) in Lemma 9. Let cJ mhe_ f"'l’“b],;m’l’a and d,’:”l'“ = Z,l‘:o cjlzm’l’a, then

m+l

mla(w)_zz mlab/mlolz+z )

j=0 k=0

m+l

ZZCIW’M (z+z7!

j=0 k=0

sz(m)w

k=0 \ j=0

m+l

= Z d,’("’l‘“ (z + z‘l)k.
k=0
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We consider into two cases. Suppose that 71 + [ is an even number. Applying Lemma 10

yields
m+l
'EWIIQ((U) — Zd;nla(z_'_z 1)
k=0
(m+1-2)/2 j
2j+1 . .
— Z dg;:rlia Z ( ]l )(22(11)+1 + z—(2(]—1)+1))
j=0 i=0
(m+0)/2 j-1 2} (m+1)/2
A 2(j— 2 e
P D ()@ e 3 ()
j=0 i=0
(m+1-2)/2 .
9+ 1\ i 2 2(j-i
3
j=0 =0
(m+0)/2 j-1 2} (m+1)/2 2]
L, 2(j—i —(2(j—0)) NA
o3 3 (T sy 3 ()
j=0  i=0 j=0
m+l
= Zh,’("’l’“ (& +27%) + ho2®,
k=1

where /1y = Z](ng)/z (21)dmlot,

Y it (21+1)dg}“+11°‘, if k is an odd number,
B = 4 TEO L 2)12) (37)

> ekn (D)t else.

je€{0,1,...,(m+1)/2}

Suppose, on the other hand, that m + [ is an odd number. We have

m+l
mla(w) _ Zdlr(n,l,cx(z_,_z—l)k
k=0
(m+1-1)/ j 2]+ 1 o o
Z dg}l.ff[ Z ( ; )(22(1—1)+1 + Z—(2(1—1)+1))
i=0
(m+1-1) j-1 ) (m+1-1)/
+ Z dmlaZ(/)( ) 4 (2= l) Z dmla(’)
i=0
(m+1-1)/2 j .
Z Z (2/ l+ 1) dZTf'f‘ (Zz(,'_l')+1 + Z—(2(j—i)+1))
j=0 i=0

(m+1-1)/2 j-1

2j N N (m+1-1)/2 2]
+ Z Z ( . )d;;{,l,a (Zz(j—z) + Zf(z(,fl))) + Z dmla( )
j=0

i=0 j=0 J

m+l

thl“ Xtz )+hoz0,
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where hO _ Z}(ng 1)/2 (21)dmlot,

> vz (Mg, if kis an odd number,
b = JE{01,...,(m+1-1)/2} — (38)
Y ik ()™, else.

JE{O,L,....(m+1-1)/2}

This establishes the proof. d

In the end, we provide two examples of symmetric refinable functions from the mask
ml"(w) form=8,1=2,a=0.02 and rml"’(a)) form=16,1=3,a =0.01.

Example 1 Consider the refinable function with the mask rml “(w), where [ =2, m = 8,

o =0.02,ie
210\ (15 1)) il i
r§2°°2(w) = Z (j ) (H(Sin2<§) + i) H(cosz< ) )) /1_[ 1+19)
j=0 i=0 i=0 i=
10
— hO + Zhikeiikwc

k=1

In the following, Table 2 shows the symmetric coefficients {#}{’ of the mark r'"l'“(a))

and Figure 1 gives the corresponding refinable function when /=2, m =8, « = 0.02.

The graph gives the symmetry and compactly supported refinable function correspond-

82002( )

ing to the mask t , which has approximation order 6 and decay rate 11.6886.

Example 2 Consider the refinable function with the mask r(;”‘l‘a(a)), where m =16,1=3

and o = 0.01, i.e.
3 19 j-1 18-j
163001 Z( )(H(sm( ) ) (COS ( ) ))/l_[1+l)

j=0 [ i=0

19

=ho + Z hike:i:ikw.
k=1
In the following, Table 3 shows the symmetric coefficients {14} of the mark 7" )

and Figure 2 gives the corresponding refinable function when m =16, / = 3, and « = 0.01.

Table 2 Symmetric coefficients of the mask 18 2002 (4))
i I h_
34461 %107 34461x107
2.6646x 107" 2.6646x 107"
1.0703%x 107" 1.0703%x 107

-54041x1073  -54041x1073
—-3.0354x102  -3.0354x1072
-1.3589%102  -13589%1072
—36648x10°  -36648x107°

23424x1073 2.3424x1073

O O oo NOYUdhWwN — O

1.0108%x1073 1.0108x1073
1.9281x107* 1.9281x107
] 14706x 107 14706% 10




Cheng and Yang Journal of Inequalities and Applications (2016) 2016:166 Page 27 of 29

47943%x107° 47943107
1.2022%107 1.2022%107
2.0920%107° 2.0920%107°
24584x107 24584x107
1.7688x1078 1.7688x1078
59141x10710 59141x10710

Figure 1 The refinable function with Tés,z,o.oz (w).
Table 3 Symmetric coefficients of the mask rg 6:3.001(4)
i hy h_y

0 22376 2.2376

1 20725 20725

2 1.6492 1.6492

3 1.1334 1.1334

4 6.8036x107 6.8036x 107"
5 3.6390x 107! 3.6390x 107"
6 1.7807% 107 1.7807% 107"
7 8.1210x1072 8.1210x1072
8 34068x1072 34068x1072
9 1.2378x1072 1.2378x1072
0 34314x1073 34314x1073
1 47361x107 47361x107
2 -14408x107* -1.4408x107*
3 1.2584x 1074 1.2584x 107
4

5

6

7

8

9

The graph gives the symmetry and compactly supported refinable function correspond-

ing to the mark 7,®*%%"(w), which has approximation order 8 and decay rate 20.8651.

9 Results and discussion

In this paper, a further family of refinable functions is constructed, which includes pseudo-
splines of Type II, based on refinement masks, which are generalized Bernstein polyno-
mials. They possess beside a compact support also a certain Holder regularity (Table 1),
this implies a suitable decay in Fourier domain and the approximation order in the corre-
sponding shift-invariant space. The integer shifts of the refinable functions form a Riesz
basis of their span and the corresponding univariate wavelets can be constructed in the

usual manner.
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Figure 2 The refinable function with

0.6
T(: 6,3,0.01 (®).

051

041

0.3

021

0.1r

~01 . . . . . . .
=20 -15  -10 -5 0 5 10 15 20

10 Conclusions
We study new masks

which include almost all masks of pseudo-splines of Type II [4] when « = 0, to provide de-
rived properties. We obtain the convergence of cascade algorithms in Theorem 1, which
guarantees the existence of refinable functions. In Theorem 2, Riesz wavelets whose di-
lation and translation form a Riesz basis for L,(R) are constructed. Theorem 3 analyzes
the stability of the subdivision schemes. Regularity and the influences of parameters m, /,
a on the decay rate are showed in Section 6. Section 7 gives the approximation order of
the new refinable functions. Finally, the symmetry of the refinable functions, which is of
importance, is illustrated in Theorem 7.
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