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Abstract
In this paper, we construct a new family of refinable functions from generalized
Bernstein polynomials, which include pseudo-splines of Type II. A comprehensive
analysis of the refinable functions is carried out. We then prove the convergence of
cascade algorithms associated with the new masks and construct Riesz wavelets
whose dilation and translation form a Riesz basis for L2(R). Stability of the subdivision
schemes, regularity and approximation orders are obtained. We also illustrate the
symmetry of the corresponding refinable functions.
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1 Introduction
During the last decades, the study of refinable functions has attracted considerable at-
tention. This will be followed by a description of the development of refinable func-
tions. Initially, B-splines appeared as a special family of refinable functions, which sat-
isfied the scaling equation in []. After that, pseudo-splines of Type I were introduced
by Daubechies et al. [] and Selesnick [], along with the appearance of pseudo-splines
of Type II in []. Especially, the properties of them, such as stability, regularity, approxi-
mation orders etc., were fully analyzed in [, , ]. Later, there appeared other refinable
functions that had been discovered, for instance, dual pseudo-splines [, ], pseudo-box
splines [], Battle-Lemarie refinable functions [–], Butterworth refinable functions [,
], pseudo-Butterworth refinable functions [], generalized pseudo-Butterworth refin-
able functions [], and so on. Notice that almost all contributions above focus on the
extensions based upon pseudo-splines. However, we discover that pseudo-Butterworth
refinable functions, as an extension of pseudo-splines, lack compact support, although
they have exponential decay to compensate the lack. It is natural to consider a new exten-
sion of pseudo-splines, which has compact support and exponential decay, in particular,
masks of new refinable functions derived from generalized Bernstein polynomials [] by
substitution and summation.
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We start with generalized Bernstein polynomials, defined as

S(n)
k (t) =

(
n
k

)
t(t + α) · · · (t + [k – ]α)( – t)( – t + α) · · · ( – t + [n – k – ]α)

( + α)( + α) · · · ( + [n – ]α)
, ()

where α ≥ . New masks with order (m, l,α) for given nonnegative integers m, l, satisfying
l < m – , and  ≤ α < 

(m+l)– , are defined by substituting t = sin( ω
 ), n = m + l in () and

the summation of l +  terms of them as follows:

τ
m,l,α
 (ω) :=

l∑
j=

(
m + l

j

)( j–∏
i=

(
sin

(
ω



)
+ iα

) m+l–j–∏
i=

(
cos

(
ω



)
+ iα

))

/ m+l–∏
i=

( + iα). ()

They include almost all masks of pseudo-splines of Type II [] when α = . Furthermore,
the properties of the new refinable functions corresponding to the masks () are addressed.
Convergence of cascade algorithms is implemented, which guarantees the existence of
refinable functions. At the same time, we construct their Riesz wavelets whose dilation
and translation form a Riesz basis for L(R). Finally, stability of the subdivision schemes,
regularity, approximation orders, and symmetry are analyzed.

The remainder of this paper is organized as follows: Section  collects some notations.
Section  elaborates the convergence of cascade algorithms based on the masks. Sec-
tion  constructs a Riesz basis for L(R). Section  analyzes the stability of the subdivision
schemes. Section  shows the regularity and the influences of the parameters m, l, α on
the decay rate. Section  gives the approximation order of the new refinable functions.
Section  illustrates the symmetry of the refinable functions.

2 Preliminaries
For the convenience of the reader, we review some definitions and properties as regards
refinement masks in this section.

By L(R), we denote all the functions f (x) satisfying

∥∥f (x)
∥∥

L(R) :=
(∫

R

∣∣f (x)
∣∣ dx

) 


< ∞

and by l(Z) the set of all sequences c defined on Z such that

‖c‖l(Z) :=
(∑

i∈Z

∣∣c(i)
∣∣

) 


< ∞.

A compactly supported function φ ∈ L(R) is refinable if it satisfies the refinement equa-
tion

φ = 
∑
k∈Z

τ (k)φ( · –k), ()
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where τ , called the refinement mask of φ, is a finitely supported sequence. The Fourier
transform of φ is

φ̂(ξ ) =
∫
R

φ(t)e–iξ t dt, ξ ∈R.

For a given finitely supported sequence c, its corresponding Laurent polynomial is de-
fined by

c̃(z) :=
∑
i∈Z

c(i)zi, for z ∈ C\{}.

The corresponding trigonometric polynomial is

ĉ(ξ ) = c̃
(
e–iξ ), ξ ∈R.

With the above, the refinement equation () can be written in terms of its Fourier trans-
form as

φ̂(ξ ) = τ̂ (ξ /)φ̂(ξ /), ξ ∈R. ()

We call τ̂ the refinement mask for convenience, too.
By the iteration of equation (), the corresponding refinable function φ can be written

in terms of its Fourier transform as

φ̂(ω) :=
∞∏
j=

τ̂
(
–jω

)
. ()

Define T := R/[πZ] and define L,∞(R) as the subspace of all f ∈ L(R) such that

‖f ‖L,∞(R) :=
∥∥∥∥
∑
k∈Z

∣∣f̂ (ω + πk)
∣∣

∥∥∥∥



L∞(T)
< ∞,

where L∞(T) denotes the space of all π-periodic measurable functions with finite essen-
tial upper bound. The notation T and the space L,∞(R) were introduced in [] and [],
respectively.

A system X(ψ) = {ψn,k = n/ψ(n · –k) : n, k ∈ R} is a Riesz basis if there exist  < C ≤
C < ∞ such that, for all sequences c ∈ l(Z),

C‖c‖l(Z) ≤
∥∥∥∥

∑
(n,k)∈Z

c[n, k]ψn,k

∥∥∥∥
L(R)

≤ C‖c‖l(Z)

holds and the span of {ψn,k : n, k ∈ Z} is dense for L(R). The function ψ is called a Riesz
wavelet if the X(ψ) form a Riesz basis for L(R), which is also called a Riesz wavelet system.

A function φ ∈ L(R) is called stable if there exist two positive constants A, B, such
that for any sequence c ∈ l(Z)

A‖c‖l(Z) ≤
∥∥∥∥
∑
i∈Z

c(i)φ(· – i)
∥∥∥∥

L(R)
≤ B‖c‖l(Z).
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It is well known that this condition is equivalent to the existence of two other positive
constants A, B, such that

A ≤
∑
k∈Z

∣∣φ̂(ξ + πk)
∣∣ ≤ B,

for almost all ξ ∈R []. The upper bound always holds if φ has compact support and the
lower bound is equivalent to

(
φ̂(ξ + πk)

)
k∈Z �= , ()

for all ξ ∈R, where  denotes the zero sequence. In particular, we consider the stability of
the compactly supported centered B-splines,

B̂m(ξ ) = e–im ξ


(
sin(ξ /)

ξ /

)m

.

Since it is obvious that there is C > , such that |̂Bm(ξ )| >
√

C for all ξ ∈ [–π ,π ], we have

[̂
Bm(ξ ), B̂m(ξ )

]
(ξ ) =

∣∣̂Bm(ξ )
∣∣ +

∑
k∈Z

∣∣̂Bm(ξ + kπ )
∣∣ ≥ ∣∣̂Bm(ξ )

∣∣ ≥ C.

Hence all B-splines are stable.
We use

Pn : f 	→
∑
k∈Z

〈f ,φn,k〉φn,k

to approximate f ∈ L(R). A function φ satisfies the Strang-Fix condition of order m if

φ̂() �= , Djφ̂(πk) = , ∀k ∈ Z \ {},∀|j| < m.

Under certain conditions on φ (e.g., if it is compactly supported and φ̂() = ), the Strang-
Fix condition is equal to the requirement that τ̂ has a zero of order m at each of the points
in {,π} \ . In [], if φ satisfies the Strang-Fix condition of order m and the correspond-
ing mark τ̂ satisfies  – |τ̂(·)| = O(| · |m ) at the origin, then the approximation order is
min{m, m}.

In the following, we will adopt some of the notations from []. The transition operator
Tâ for π-periodic functions â and f can be defined as

[Tâf ](w) :=
∣∣â(ω/)

∣∣f (ω/) +
∣∣â(ω/ + π )

∣∣f (ω/ + π ), ω ∈R.

For τ ∈R, a quantity is defined by

ρτ (â,∞) := lim sup
n→∞

∥∥∥∥Tn
â

(∣∣∣∣sin

(
ω



)∣∣∣∣
τ)∥∥∥∥

/n

L∞(T)
.

The notation ρ(â) is defined by

ρ(â) := inf
{
ρτ (â,∞) :

∣∣â(ω + π )
∣∣∣∣sin(ω/)

∣∣τ ∈ L∞(T) and τ ≥ 
}

.
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A function f belongs to the Hölder class Cβ (T) with β > , if f is a π-periodic contin-
uous function such that f is n times continuously differentiable and there exists a positive
number C satisfying

∣∣f (n)(x) – f (n)(y)
∣∣ ≤ C|x – y|β–n

for all x, y ∈ T, where n is the largest integer such that n ≤ β .

3 Convergence of cascade algorithms based on the masks
In this section, a demonstration of the convergence of cascade algorithms in the space
L,∞(R) is given. For notational simplicity, we will introduce the following three defini-
tions:

Bm,l,α
j (ω) :=

( j–∏
i=

(
sin

(
ω



)
+ iα

) m+l–j–∏
i=

(
cos

(
ω



)
+ iα

)) / m+l–∏
i=

( + iα),

Gm,l,α
j (ω) :=

(
m + 

j

)( j–∏
i=

(
sin

(
ω



)
+ iα

) m+l–j–∏
i=

(
cos

(
ω



)
+ iα

)) / m+l–∏
i=

( + iα),

Tm,l,α
 (ω) :=

l∑
j=

(
m + l

j

)( j–∏
i=

(
sin

(
ω



)
+ iα

) m+l–j–∏
i=

(
cos

(
ω



)
+ iα

))

/ m+l–∏
i=

( + iα).

We will provide three lemmas about the relations of the quantities ρτ (â,∞) associated
with masks and a condition of the convergence of cascade algorithms which are necessary
for the following theorem.

Lemma  ([], Theorem .) Let â be a π -periodic measurable function such that |â| ∈
Cβ (T) with |â|() �=  and β > . If |â(ω)| = | + e–iω|τ |Â(ω)| a.e. ω ∈ R for some τ ≥ 
such that Â(ω) ∈ L∞(T), then

ρτ (â,∞) = inf
n∈N

∥∥Tn
â 

∥∥ 
n
L∞(T) = lim

n→∞
∥∥Tn

â 
∥∥ 

n
L∞(T) = ρ(Â,∞).

Lemma  ([], Theorem .) Let â and ĉ be π -periodic measurable functions such that

∣∣â(ω)
∣∣ ≤ ∣∣ĉ(ω)

∣∣

for almost every ω ∈R. Then

ρτ (â,∞) ≤ ρτ (ĉ,∞), τ ∈R.

Lemma  ([], Theorem .) Let â ∈ Cβ (T) with â() =  and β > . If ρ(â) < , then the
cascade algorithm associated with the mask â converges in the space L,∞(R).

A useful condition of proving the convergence of cascade algorithms is described in the
following lemma.



Cheng and Yang Journal of Inequalities and Applications  (2016) 2016:166 Page 6 of 29

Lemma  For two positive integers l, m, l < m – , if

 ≤ α <


(m + l) – 
, ()

then

max
ω∈T

Bj(ω) ≤
(




)m+l–

, j = , , . . . , l. ()

Proof For j = , , . . . , l, it is obvious that

Bj(ω) =
cos( ω

 ) + (m + l –  – j)α
sin( ω

 ) + jα
Bj+(ω).

We claim that

Bj(ω)
Bj+(ω)

=
cos( ω

 ) + (m + l –  – j)α
sin( ω

 ) + jα
> . ()

Since l < m – , for j = , , . . . , l, we have

j < m + l –  – j. ()

There are two cases to consider: Case I: Suppose that cos(ω) ≥ . By () and (), it is easy
to see that

α >  >
– cos(ω)

m + l –  – j
.

Then

cos
(

ω



)
+ (m + l –  – j)α > sin

(
ω



)
+ jα. ()

This implies Condition (). Case II: Suppose that cos(ω) < . In the same way, we get

α >
– cos(ω)

m + l –  – j
,

for j = , , . . . , l. Then () holds. This concludes the claim (). By using (), one gets

(
(m + l – ) – (m + l – )

)
α <

(m + l – ) – (m + l – )
(m + l) – 

= .

Then

(m + l – )α
( + α)( + (m + l – )α)

<
(m + l – )α

 + (m + l – )α
<




. ()

Thus

(
(m + l – ) – (m + l – )

)
α <

(m + l – ) – (m + l – )
m + l – 

= .
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Similarly, one has

(m + l – )α
 + (m + l – )α

<



. ()

For any x, notice that

(
x

 + ( + x)

)′
>  ()

and B(ω), which is a continuous function on [–π ,π ] and is differentiable on (–π ,π ), has
the maximum value at ω = π . The reason as follows: the equation [B(ω)]′ =  has three
zeros, at ω = , ±π . Since [B(ω)]′′ > , B() is the minimum of B(ω) on [–π ,π ]. Thus
B(±π ) is the maximum of B(ω) on [–π ,π ]. Therefore, applying (), (), (), (), and

B(ω) =

(
sin

(
ω



) m+l–∏
i=

(
cos

(
ω



)
+ iα

)) / m+l–∏
i=

( + iα)

≤
m+l–∏

i=

iα
/ m+l–∏

i=

( + iα)

≤
m+l–∏

i=

iα
 + (i + )α

· (m + l – )α
( + α)( + (m + l – )α)

≤
(

(m + l – )α
 + (m + l – )α

)m+l–

· 


=
(




)m+l–

,

we get the inequality (). �

Theorem  If we let τ
m,l,α
 (ω) be the mask (), then the cascade algorithm associated with

the mask τ
m,l,α
 (ω) converges in the space L,∞(R).

Proof For | cos( ω
 )| = | +e–iω

 |, one has

∣∣τm,l,α
 (ω)

∣∣ = –( + e–iω)∣∣T(ω)
∣∣

=
(
 + e–iω)∣∣–T(ω)

∣∣.

Applying

B(ω) =
m+l–∏

i=

(
cos

(
ω



)
+ iα

) / m+l–∏
i=

( + iα)

≤
m+l–∏

i=

( + iα)
/ m+l–∏

i=

( + iα) = 
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and Lemma , we obtain

max
ω∈T


∣∣–Tm,l,α

 (ω)
∣∣ = max

ω∈T
–

∣∣∣∣∣B(ω) +
l∑

j=

(
m + l

j

)
Bj(ω)

∣∣∣∣∣


< max
ω∈T

–

∣∣∣∣∣ +
(

max
ω∈[–π ,π ]

Bj(ω)
) l∑

j=

(
m + l

j

)∣∣∣∣∣


< max
ω∈T

–
∣∣∣∣
(

 +
(




)m+l–

()m+l–
)∣∣∣∣



=



. ()

Bringing Lemma  and Lemma  together yields

ρ
(
τ

m,l,α
 (ω)

) ≤ ρ
(
τ

m,l,α
 (ω),∞)

= ρ
(
–T(ω),∞)

< .

Thus, by Lemma , the cascade algorithm associated with the mask τ
m,l,α
 (ω) converges in

the space L,∞(R). �

4 Riesz wavelets
In this section, we shall construct Riesz wavelets based on the masks (). The following
two lemmas analyze recurrence relations of τ

m,l,α
 (ω), which are useful for the construction

of Riesz wavelets.

Lemma  If let τ
m,l,α
 (ω) be the mask (), then τ

m,l,α
 (ω) satisfies

τ
m+,l,α
 (ω) = τ

m+,l–,α
 (ω) +

(
cos( ω

 ) + mα

 + (m + l)α

)
Gm,l,α

l (ω) ()

and

τ
m+,l,α
 (ω) = τ

m,l,α
 (ω) –

(
sin( ω

 ) + lα
 + (m + l)α

)
Gm,l,α

l (ω). ()

Proof By the summation of l +  terms of generalized Bernstein polynomials satisfying the
recurrence []

S(n+)
k (t) =

(
 – t + (n – k)α

 + nα

)
S(n)

k (t) +
(

t + (k – )α
 + nα

)
S(n)

k–(t),

we can derive that

l∑
j=

S(m+l+)
j (t) =

l∑
j=

(
 – t + (m + l – j)α

 + (m + l)α

)
S(m+l)

j (t)

+
l∑

j=

(
t + (j – )α

 + (m + l)α

)
S(m+l)

j– (t). ()
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Substituting t = sin( ω
 ) in (), one gets

l∑
j=

S(m+l+)
j

(
sin

(
ω



))

=
l∑

j=

(
cos( ω

 ) + (m + l – j)α
 + (m + l)α

)
S(m+l)

j

(
sin

(
ω



))

+
l∑

j=

(
sin( ω

 ) + (j – )α
 + (m + l)α

)
S(m+l)

j–

(
sin

(
ω



))

=
l–∑
j=

S(m+l)
j

(
sin

(
ω



))
+

(
cos( ω

 ) + mα

 + (m + l)α

)
Gm,l,α

l (ω). ()

By using (), one obtains

l∑
j=

S(m+l+)
j

(
sin

(
ω



))
=

l–∑
j=

S(m+l)
j

(
sin

(
ω



))
+

(
cos( ω

 ) + mα

 + (m + l)α

)
Gm,l,α

l (ω)

+ S(m+l)
l

(
sin

(
ω



))
– S(m+l)

l

(
sin

(
ω



))

=
l∑

j=

S(m+l)
j

(
sin

(
ω



))
–

(
sin( ω

 ) + lα
 + (m + l)α

)
Gm,l,α

l (ω).

Thus, the conditions () and () are demonstrated. �

Lemma  If let τ
m,l,α
 (ω) be the mask (), then we derive

∣∣τm,l,α
 (ω)

∣∣ +
∣∣τm,l,α

 (ω + π )
∣∣ >

√



, ω ∈ T. ()

Proof When l = , one has m > ,

∣∣τm,,α
 (ω)

∣∣ =

((
m + 



) m∏
i=

(
cos

(
ω



)
+ iα

) / m∏
i=

( + iα)

+
(

m + 


)
sin

(
ω



) m–∏
i=

(
cos

(
ω



)
+ iα

) / m∏
i=

( + iα)

)

=

((
m sin

(
ω



)
+  + mα

) m–∏
i=

(
cos

(
ω



)
+ iα

) / m∏
i=

( + iα)

)

,

and

∣∣τm,,α
 (ω + π )

∣∣ =

((
m cos

(
ω



)
+  + mα

) m–∏
i=

(
sin

(
ω



)
+ iα

) / m∏
i=

( + iα)

)

.
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It follows from the above two equalities of |τm,,α
 (ω)| and |τm,,α

 (ω + π )| that

∣∣τm,,α
 (ω)

∣∣ +
∣∣τm,,α

 (ω + π )
∣∣

=
(m sin( ω

 ) +  + mα

 + mα

)
(m–∏

i=

(
cos

(
ω



)
+ iα

) / m∏
i=

( + iα)

)

+
(m cos( ω

 ) +  + mα

 + mα

)
(m–∏

i=

(
sin

(
ω



)
+ iα

) / m∏
i=

( + iα)

)

=
(

 +
m sin( ω

 )
 + mα

)
(m–∏

j=

(
 –

sin( ω
 )

 + jα

))

+
(

 +
m cos( ω

 )
 + mα

)
(m–∏

j=

(
 –

cos( ω
 )

 + jα

))

≥
(

 +
m sin( ω

 )
 + mα

)
(

 +
m–∑
j=

– sin( ω
 )

 + jα

)

+
(

 +
m cos( ω

 )
 + mα

)
(

 +
m–∑
j=

– cos( ω
 )

 + jα

)

≥
(

 +
m sin( ω

 )
 + mα

)(
 – m sin

(
ω



))

+
(

 +
m cos( ω

 )
 + mα

)(
 – m cos

(
ω



))

. ()

The first inequality follows from the general formula of the Bernoulli inequality. Substi-
tuting y = sin( ω

 ) in (), let

f (y) =
(

 +
ym

 + mα

)

( – my) +
(

 +
( – y)m
 + mα

)(
 – ( – y)m

).

We claim that

f (y) >
√




. ()

First of all, f ′(y) is derived as follows:

f ′(y)

= 
(

 +
ym

 + mα

)(
m

 + mα

)
( – my) + 

(
 +

ym
 + mα

)

( – my)(–m)

+ 
(

 +
( – y)m
 + mα

)(
–

m
 + mα

)(
 – ( – y)m

)

+ m
(

 +
( – y)m
 + mα

)(
 – ( – y)m

)
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=
{


(

 +
ym

 + mα

)
( – my)

[
( – my)

m
 + mα

– m
(

 +
ym

 + mα

)]}
– 

×
(

 +
( – y)m
 + mα

)(
 – m( – y)

)[(
 – m( – y)

) m
 + mα

– m
(

 +
( – y)m
 + mα

)]
.

Additionally,

f ′′(y) = 
(

m
 + mα

)
( – my)

[
( – my)

m
 + mα

– m
(

 +
ym

 + mα

)]

+ (–m)
(

 +
ym

 + mα

)[
( – my)

m
 + mα

– m
(

 +
ym

 + mα

)]

+ 
(

 +
ym

 + mα

)
( – my)

(
–

m

 + mα

)

+ 
(

m
 + mα

)(
 – m( – y)

)[(
 – m( – y)

) m
 + mα

– m
(

 +
( – y)m
 + mα

)]

+ (–m)
(

 +
( – y)m
 + mα

)[(
 – m( – y)

) m
 + mα

– m
(

 +
( – y)m
 + mα

)]

+ 
(

 +
( – y)m
 + mα

)(
 – m( – y)

)(
–

m

 + mα

)
.

Combining f ′( 
 ) =  and f ′′( 

 ) >  yields

f (y) ≥ min

{
f (), f

(



)
, f ()

}
.

Here,

f
(




)
=

(
 +


 m

 + mα

)(
 –




m
)

+
(

 +

 m

 + mα

)(
 –

(
 –




m
))

= 
(

 +


/m + α

)( 


m – 
)

>
√




. ()

Let

g(x) = 
(

 +


/x + α

)( 


x – 
)

.

The condition () follows from the fact that g(x) is increasing on [, +∞]. It is obviously
true for f () >

√


 and f () >
√


 . This concludes the claim (). Assume () holds when

l = k – . Consider the case l = k. By using () in Lemma , we have

∣∣τm+,l,α
 (ω)

∣∣ =
∣∣τm+,l–,α

 (ω)
∣∣ + 

(
τ

m+,l–,α
 (ω)

)(cos( ω
 ) + mα

 + (m + l)α

)

× S(m+l)
l

(
sin

(
ω



))

+
((

cos( ω
 ) + (m – )α

 + (m + l – )α

)
S(m+l–)

l

(
sin

(
ω



)))

.
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Adding that

∣∣τm,l,α
 (ω + π )

∣∣ =
∣∣τm,l–,α

 (ω + π )
∣∣ + 

(
τ

m,l–,α
 (ω + π )

)( sin( ω
 ) + (m – )α

 + (m + l – )α

)

× S(m+l–)
l

(
cos

(
ω



))

+
((

sin( ω
 ) + (m – )α

 + (m + l – )α

)
S(m+l–)

l

(
cos

(
ω



)))

.

Combining together the above equalities so that

∣∣τm,l,α
 (ω)

∣∣ +
∣∣τm,l,α

 (ω + π )
∣∣ =

∣∣τm,l–,α
 (ω)

∣∣ +
∣∣τm,l–,α

 (ω + π )
∣∣ + f (ω) + f (ω + π ),

where

f (ω) = 
(
τ

m,l–,α
 (ω)

)(cos( ω
 ) + (m – )α

 + (m + l – )α

)
S(m+l–)

l

(
sin

(
ω



))

+
((

cos( ω
 ) + (m – )α

 + (m + l – )α

)
S(m+l–)

l

(
sin

(
ω



)))

.

The condition () follows from the fact that

∣∣τm,k–,α
 (ω)

∣∣ +
∣∣τm,k–,α

 (ω + π )
∣∣ >

√



.

This concludes the proof of Lemma . �

Conditions for constructing a Riesz wavelet basis are given by the following lemma.

Lemma  ([], Theorem .) Let â ∈ Cβ (T) with â() =  and β > . Let φ be the refin-
able function corresponding to the refinement mask â. Denote b̂(ω) = e–iωâ(ω + π ). Define a
wavelet ˆψ(π ) := b̂(ω)φ̂(ω). Then the shifts of φ are stable in L(R) and φ generates a Riesz
wavelet basis in L(R) if and only if

(i) b̂() =  and d(ω) := â(ω)b̂(ω + π ) – â(ω + π )b̂(ω) �=  for all ω ∈ R.
(ii) ρ(â) <  and ρ( ˆ̃a) < , where ˆ̃a(ω) := b̂(ω + π )/d(ω).

Theorem  Let φm,l,α be the refinable functions from generalized Bernstein polynomials
with the refinement mask (). Define a wavelet �m,l,α such that

�̂m,l,α(ω) := e–iωτ
m,l,α
 (ω + π )φ̂m,l,α(ω).

Then �m,l,α generates a Riesz wavelet basis in L(R).

Proof Note that b̂(ω) = e–iωτ
m,l,α
 (ω + π ), thus b̂() = τ

m,l,α
 (π ) = , and

d(ω) = τ
m,l,α
 (ω)b̂(ω + π ) – τ

m,l,α
 (ω + π )b̂(ω)

= τ
m,l,α
 (ω)

(
–e–iω)

τ
m,l,α
 (ω + π ) – τ

m,l,α
 (ω + π )e–iωτ

m,l,α
 (ω + π )

= –e–iω(∣∣τm,l,α
 (ω)

∣∣ +
∣∣τm,l,α

 (ω + π )
∣∣) �= , ω ∈R.
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Therefore, condition (i) in Lemma  holds true. ρ(τm,l,α
 (ω)) <  has been proved in Theo-

rem . Noting that

˜
τ

m,l,α
 (ω) =

b̂(ω + π )
d(ω)

–e–iωτ
m,l,α
 (ω + π )

–e–iω(|τm,l,α
 (ω)| + |τm,l,α

 (ω + π )|)

=
τ

m,l,α
 (ω)

|τm,l,α
 (ω)| + |τm,l,α

 (ω + π )| ,

we obtain

∣∣ ˜
τ

m,l,α
 (ω)

∣∣ =
∣∣∣∣ τ

m,l,α
 (ω)

|τm,l,α
 (ω)| + |τm,l,α

 (ω + π )|
∣∣∣∣


=
∣∣( + e–iω)∣∣ –|Tm,l,α

 (ω)|
(|τm,l,α

 (ω)| + |τm,l,α
 (ω + π )|)

.

Combining () and () in Lemma  yields

max
ω∈T

|–Tm,l,α
 (ω)|

(|τm,l,α
 (ω)| + |τm,l,α

 (ω + π )|)
<




(
√


 )

= .

By using Lemma  and Lemma , it is derived that

ρ
( ˜
τ

m,l,α
 (ω)

) ≤ ρ
( ˜
τ

m,l,α
 (ω),∞)

= ρ

(
–Tm,l,α

 (ω)
(|τm,l,α

 (ω)| + |τm,l,α
 (ω + π )|)

,∞
)

< .

Consequently, condition (ii) in Lemma  holds true. �

5 Stability of the subdivision schemes
In this section, we will prove the stability of refinable functions based on the masks ().
The following lemma gives the recurrence relations of Tm,l,α

 (ω).

Lemma  If we let τ
m,l,α
 (ω) be the mask (), then Tm,l,α

 (ω) satisfies

Tm+,l,α
 (ω) = Tm+,l–,α

 (ω) +
(

cos( ω
 ) + mα

cos( π
 )( + (m + l)α)

)
Gm,l,α

l (ω), for |ω| �= π , ()

and

Tm,l,α
 (±π ) =


 + (m + l – )α

Tm,l–,α
 (±π ) +

l∑
j=

(
m + l – 

j

)
Bm,l,α

j (±π ). ()

Proof We consider into two cases. Suppose that |ω| �= π . Equation () is applied in
Lemma  so that

Tm+,l,α
 (ω) = Tm+,l–,α

 (ω) +
(

cos( ω
 ) + mα

cos( π
 )( + (m + l)α)

)
Gm,l,α

l (ω).
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Suppose, on the other hand, that |ω| = π ; we check the condition (). Note that

Tm,l,α
 (±π ) =

l∑
j=

(
m + l

j

)
Bm,l,α

j (±π )

=
(

m + l


)
Bm,l,α

 (±π ) +
l∑

j=

((
m + l – 

j

)
+

(
m + l – 

j – 

))
Bm,l,α

j (±π )

=


 + (m + l – )α
Tm,l–,α

 (±π ) +
l∑

j=

(
m + l – 

j

)
Bm,l,α

j (±π ).

This establishes the lemma. �

Theorem  Let τ
m,l,α
 (ω) be the mask (), then the refinable functions φ

m,l,α
 with the masks

τ
m,l,α
 (ω) are stable.

Proof We claim that the condition () holds. Indeed, the refinable functions with the
masks τ

m,l,α
 (ω), which belong to L(R) as shown in Theorem , have been proved. They

are compactly supported for finite refinement masks. In the following, we derive the in-
equality

∣∣τm,l,α
 (ω)

∣∣ >

∣∣∣∣∣
l∑

j=

(
m + l

j

) (sin( ω
 ))j(cos( ω

 ))m+l–j

( + α)( + α) · · · ( + [m + l – ]α)

∣∣∣∣∣
=


( + α)( + α) · · · ( + [m + l – ]α)

×
∣∣∣∣∣

l∑
j=

(
m + l

j

)(
sin

(
ω



))j(
cos

(
ω



))m+l–j
∣∣∣∣∣

=


( + α)( + α) · · · ( + [m + l – ]α)

∣∣∣∣cosm
(

ω



)∣∣∣∣

×
∣∣∣∣∣

l∑
j=

(
m + l

j

)(
sin

(
ω



))j(
cos

(
ω



))l–j
∣∣∣∣∣

>


( + α)( + α) · · · ( + [m + l – ]α)

∣∣∣∣cosm
(

ω



)∣∣∣∣. ()

Applying the stability of B-splines yields the existence of two positive constants A, B,
such that

A ≤
∑
k∈Z

∣∣̂Bm(ξ + πk)
∣∣ ≤ B, for almost all ξ ∈R,

where Bm denotes the B-spline of order m. It implies that |̂Bm(ω)| has the finite func-
tional value. Combining () with () yields

∣∣φ̂m,l,α
 (ω)

∣∣ =
∞∏
j=

∣∣τm,l,α


(
–jω

)∣∣

>
∞∏
j=


( + α)( + α) · · · ( + [m + l – ]α)

∣∣cosm(
–j–ω

)∣∣
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= lim
M→+∞

M∏
j=


( + α)( + α) · · · ( + [m + l – ]α)

∣∣cosm(
–j–ω

)∣∣

= lim
M→+∞

((


( + α)( + α) · · · ( + [m + l – ]α)

)M

×
M∏
j=

∣∣cosm(
–j–ω

)∣∣
)

≥ lim
M→+∞

((


( + α)( + α) · · · ( + [m + l – ]α)

)M

× ∣∣cosm(
–ω

)∣∣ M∏
j=

∣∣cosm(
–j–ω

)∣∣
)

.

Since

 <


( + α)( + α) · · · ( + [m + l – ]α)
< ,

this leads to

lim
M→+∞

(


( + α)( + α) · · · ( + [m + l – ]α)

)M

= . ()

Moreover,

∣∣φ̂m,l,α
 (ω)

∣∣ =
∣∣̂Bm(ω)

∣∣
∣∣∣∣
(

lim
M→+∞


( + α)( + α) · · · ( + [m + l – ]α)

)M∣∣∣∣ = .

Thus, there exist two positive constants A, B, such that

A ≤
∑
k∈Z

∣∣φ̂m,l,α
 (ξ + πk)

∣∣ ≤ B, for almost all ξ ∈ R.

This concludes the theorem. �

6 Regularity
This section is devoted to an analysis of the regularity of refinable functions φ

m,l,α
 with

the mask τ
m,l,α
 (ω) defined by (). Our primary goal is to obtain the lower bound of the

regularity exponents γ
m,l,α
 of refinable functions φ

m,l,α
 by estimating the decay rates β

m,l,α


of their Fourier transform. The relation is expressed by

γ
m,l,α
 ≥ β

m,l,α
 –  – ε,

for any small enough ε > ; see []. Consequently, φ
m,l,α
 ∈ Cγ

m,l,α
 . Next, we will give an

estimate of the decay rates β
m,l,α
 of the Fourier transform of refinable functions φ

m,l,α
 with

the mask τ
m,l,α
 (ω). By [, ], for any stable, compactly supported refinable functions φ

in L(R) with φ̂() = , the refinement mask τ must satisfy τ () =  and τ (π ) = . Thus, τ
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can be factorized as

τ (ω) = cosn
(

ω



)
L(ω),

where n is the maximal multiplicity of the zeros of τ at π and L(ω) is a trigonometric
polynomial with L() = . Therefore, one obtains

φ̂(ω) =
∞∏
j=

τ
(
–jω

)
=

∞∏
j=

cosn
(

–j ω



) ∞∏
j=

L
(
–jω

)
= sin cn

(
ω



) ∞∏
j=

L
(
–jω

)
,

which shows the decay of |φ| can be characterized by |τ | as stated in the following theorem.

Theorem  ([], Lemma .) Let τ be the refinement mask of the refinable function φ of
the form

∣∣τ (ω)
∣∣ = cosn

(
ω



)∣∣L(ω)
∣∣, ω ∈ [–π ,π ].

If

∣∣L(ω)
∣∣ ≤

∣∣∣∣L
(

π



)∣∣∣∣ for |ω| ≤ π


,

∣∣L(ω)L(ω)
∣∣ ≤

∣∣∣∣L
(

π



)∣∣∣∣


for
π


≤ |ω| ≤ π ,

()

then φ̂(ω) ≤ C( + |ω|)–n+K with K = log(|L( π
 )|)/ log , and this decay is optimal.

By using the following theorem, the decay rate of Fourier transforms of refinable func-
tions φ

m,l,α
 with the mask τ

m,l,α
 (ω) is analyzed. Especially, the case α =  was demonstrated

in [], Theorem .. We will give the discussion of the case  < α < 
(m+l)– .

Theorem  Let φ
m,l,α
 be refinable functions with the mask τ

m,l,α
 (ω). Then

∣∣φ̂m,l,α


∣∣ ≤ C
(
 + |ω|)–+K,

where K = log(|Tm,l,α
 ( π

 )|)/ log , and the decay rate β
m,l,α
 =  – log(|Tm,l,α

 ( π
 )|)/ log  is

optimal. As a result, φm,l,α
 ∈ Cγ

m,l,α
 , where γ

m,l,α
 ≥ β

m,l,α
 –  –ε, for any small enough ε > .

Proof It is obvious that |τm,l,α
 (ω)| = cos( ω

 )|Tm,l,α
 (ω)|, ω ∈ [–π ,π ]. We claim that

∣∣Tm,l,α
 (ω)

∣∣ ≤
∣∣∣∣Tm,l,α



(
π



)∣∣∣∣, for |ω| ∈
[

,
π



]
. ()

Indeed, Tm,l,α
 (ω) is a continuous function on [– π

 , π
 ] and is differentiable on (– π

 , π
 ).

The maximum value of Tm,l,α
 (ω) on [– π

 , π
 ] can be derived as follows: We find ω =  is

the only zero of equation [Tm,l,α
 (ω)]′ = . Since [Tm,l,α

 ()]′′ > , Tm,l,α
 () is the minimum
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of Tm,l,α
 (ω) on [– π

 , π
 ]. Consequently, Tm,l,α

 () ≤ Tm,l,α
 (± π

 ). Here, Tm,l,α
 (ω) is an even

function. Hence, () holds. Next we show

∣∣Tm,l,α
 (ω)Tm,l,α

 (ω)
∣∣ ≤

∣∣∣∣Tm,l,α


(
π



)∣∣∣∣


, for |ω| ∈
[

π


,π

]
.

Here, Tm,l,α
 (ω)Tm,l,α

 (ω) is a continuous function on |ω| ∈ [ π
 ,π ] and is differentiable on

|ω| ∈ ( π
 ,π ). Since the equation [Tm,l,α

 (ω)Tm,l,α
 (ω)]′ =  has no zeros on |ω| ∈ [ π

 ,π ],
we are required to compare Tm,l,α

 (π )Tm,l,α
 (π ) with Tm,l,α

 ( π
 )Tm,l,α

 ( π
 ). As a result of

Tm,l,α
 (π )Tm,l,α

 (π ) = Tm,l,α
 (π )Tm,l,α

 () = Tm,l,α
 (π )

and

Tm,l,α


(
π



)
Tm,l,α



(
π



)
= Tm,l,α



(
π



)
Tm,l,α



(
–

π



)

=
(

Tm,l,α


(
π



))

,

only Tm,l,α
 (π ) and (Tm,l,α

 ( π
 )) need to be compared. Let m, α, ω be fixed. For l = , we

claim that

(
Tm,,α



(
π



))

> Tm,,α
 (π ).

Here,

Tm,,α


(
π



)
=

((



m +  + mα

) m–∏
i=

(



+ iα
)) / m∏

j=

( + jm)

and

Tm,l,α
 (π ) =

(
(m +  + mα)

m–∏
i=

iα

) / m∏
i=

( + iα).

Setting g(m) = (Tm,,α
 ( π

 )) – Tm,,α
 (π ), in which α is fixed, then

g(m) =

(((



m +  + mα

) m–∏
i=

(



+ iα
)) / m∏

j=

( + jm)

)

–

(
(m +  + mα)

m–∏
i=

iα

) / m∏
i=

( + iα).

Notice that

g(m) > . ()
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Indeed, since l =  and l < m – , m ≥ . When m = , one has

g() =

((
(/ +  ∗ α)

∏
i=

(



+ iα
)) / ∏

i=

(i + α)

)

–

((
( +  ∗ α)α) / ∏

i=

(i + α)

)
> ,

for  ≥ α < /. Assuming that g(m – ) > , we now prove g(m) > . Let

g(m) = Tm,,α


(
π



)
=

((



m +  + mα

) m–∏
i=

(



+ iα
)) / m∏

i=

( + iα)

and

g(m) = Tm,l,α
 (π ) =

(
(m +  + mα)

m–∏
i=

iα

) / m∏
i=

( + iα).

Then it is obvious that

g(m) =
( 

 + (m – )α)( 
 m +  + mα)

( + mα)( 
 (m – ) +  + (m – )α)

g(m – )

and

g(m) =
((m – )α)(m +  + mα)

( + mα)((m – ) +  + (m – )α)
g(m – ).

Thus,

g(m) =
(
g(m)

) – g(m)

=
(
g(m – )

)
( ( 

 + (m – )α)( 
 m +  + mα)

( + mα)( 
 (m – ) +  + (m – )α)

)

– g(m – )
((m – )α)(m +  + mα)

( + mα)((m – ) +  + (m – )α)

> g(m – )g(m – )
(( ( 

 + (m – )α)( 
 m +  + mα)

( + mα)( 
 (m – ) +  + (m – )α)

)

–
((m – )α)(m +  + mα)

( + mα)((m – ) +  + (m – )α)

)
.

Let

h(α) =
(( 

 + (m – )α
 + mα

)( 
 m +  + mα


 (m – ) +  + (m – )α

))

–
(

(m – )α
 + mα

)(
m +  + mα

(m – ) +  + (m – )α

)
.
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h′(α) is derived as follows:

h′(α) =
{(

–m – m + m + m – m + m)α +
(
 + m

– m – ,m + ,m + ,m – ,m + m)α +
(
–

– m + ,m – ,m – m + ,m – ,m + ,m)α

+
(
 – m – m + ,m – ,m + ,m – ,m

+ ,m)α +
(
m – ,m + ,m – m + ,m – ,m

+ ,m)α +
(
m – m + m + m – m + m)α}

/
{(


(
m + (– + m)α

)( + m + (– + m)α
)( + mα))}.

Note that for any fixed m > , h′(α) >  on α ≥ . Thus, h(α) is increasing on α ≥ . This
together with h() >  implies that g(m) > . This concludes the claim (). Supposing
(Tm,l,α

 ( π
 )) > Tm,l,α

 (π ), we verify

(
Tm,l+,α



(
π



))

> Tm,l+,α
 (π ). ()

It follows from Lemma  that () is equivalent to

(
Tm,l,α



(
π



)
+

 + mα

 + (m + l)α
Gm,l,α

l+

(
π



))

>


 + (m + l)α
Tm,l,α

 (π ) +
l+∑
j=

(
m + l

j

)
Bm,l+,α

j (π ). ()

Since

(m + l)α
 + (m + l)α

Tm,l,α


(
π



)

>
l∑

j=

(
m + l

j

)
Bm,l+,α

j (π ),

it is obvious that () holds. Hence, by Theorem  , φ̂m,l,α
 satisfies

∣∣φ̂m,l,α


∣∣ ≤ C
(
 + |ω|)–+K,

where K = log(|Tm,l,α
 ( π

 )|)/ log , and the decay rate β
m,l,α
 =  – log(|Tm,l,α

 ( π
 )|)/ log  is

optimal. As a result, φ
m,l,α
 ∈ Cγ

m,l,α
 , where γ

m,l,α
 ≥ β

m,l,α
 –  – ε, for any small enough

ε > . �

The following table gives the decay rates β
m,l,α
 of the Fourier transform of refinable func-

tions φ
m,l,α
 with the mask τ

m,l,α
 (ω). To satisfy the constraint condition () of m, l, α, we

set α = . in Table .
Table  shows that for fixed l, α, βm,l,α

 increases as m increases and for fixed m, α, βm,l,α


decreases as l increases. This is true indeed as presented in the following proposition.

Proposition . Let the decay rate β
m,l,α
 =  – log(|Tm,l,α

 ( π
 )|)/ log  be as given in Theo-

rem , then:
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Table 1 Decay rates βm,l,α
0 of refinable functions with the mask τ m,l,α

0 (ω), for 7 ≤ m ≤ 13,
1 ≤ l < m – 5, and α = 0.01

(m, l) l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7

m = 7 10.6157
m = 8 12.2067 11.6886
m = 9 13.7834 11.7927 10.2549
m = 10 15.3438 13.2786 11.6088 10.2745
m = 11 16.8868 14.6887 12.9622 11.448 10.3499
m = 12 18.4116 16.1224 14.3121 11.7464 11.506 10.4583
m = 13 19.9179 17.5444 15.6561 14.0890 12.7551 10.8736 10.5870

() For fixed m, α, βm,l,α
 decreases as l increases.

() For fixed l, α, βm,l,α
 increases as m increases.

Proof Applying β
m,l,α
 =  – log

(Tm,l,α
 ( π

 ))
 , Tm,l,α

 ( π
 ) > , yields  – β

m,l,α
 = log

(Tm,l,α
 ( π

 ))
 ,

which is equivalent to –β
m,l,α
 = log

(Tm,l,α
 ( π

 ))
 = Tm,l,α

 ( π
 ). Following the formula given by

Lemma , one has

Tm+,l,α


(
π



)
= Tm+,l–,α



(
π



)
+ ( + mα)

(
 + (m + l)α

)
Gm,l,α

l

(
π



)
.

Thus,

–β
m+,l,α
 = –β

m+,l–,α
 +

 + mα

( + (m + l)α)
Gm,l,α

l

(
π



)
.

Let

Im+,l–,α
 = –β

m+,l–,α
 .

For +mα
(+(m+l)α) S(m+l)

l ( 
 ) > , it shows that Im+,l,α

 > Im+,l–,α
 , which is equivalent to saying

for fixed m, α, Im,l,α
 increases as l increases. Hence, for fixed m, α, β

m,l,α
 decreases as l

increases. Applying Lemma  to the following expression, one obtains

Tm+,l,α


(
π



)
= Tm,l,α



(
π



)
–

( ( 
 + lα)

 + (m + l)α

)
Gm,l,α

l

(
π



)
.

Furthermore, we have

Im+,l,α
 = Im,l,α

 –
( 

 + lα

 ( + (m + l)α)

)
Gm,l,α

l

(
π



)
.

For ( ( 
 +lα)

+(m+l)α )Gm,l,α
l ( π

 ) > , we similarly get Im+,l,α
 < Im,l,α

 , which means that for fixed l, α,
Im,l,α

 decreases as m increases. Therefore, for fixed l, α, βm,l,α
 increases as m increases. �

7 Approximation orders
In this section, the approximation orders of refinable functions with the mask τ

m,l,α
 (ω) are

analyzed in the following theorem.
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Theorem  Let φ
m,l,α
 be refinable functions with the mask τ

m,l,α
 (ω). Then φ

m,l,α
 provides

the approximation orders l + .

Proof In fact, the approximation orders of  – |τm,l,α
 (ω)| and τ

m,l,α
 (ω) are independent

on α. For convenience, we set α = . Following [], let

Rm,l(y) =
l∑

j=

(
m + l

j

)
yj( – y)m+l–j,

where y = sin( ω
 ), then

 –
∣∣∣∣Rm,l

(
sin

(
ω



))∣∣∣∣


= O
(|ω|l+).

Since

R′
m,l(y) = –(m + l)

(
m + l – 

l

)
yl( – y)m–

and sin( ω
 ) is equal to  when ω = π , cos(m–)( ω

 ) has a zero of order (m–). We conclude
that

Rm,l(y) = O
(|ω|(m–)+).

For

min
{

l + , (m – )
}

= l + ,

then φ
m,l,α
 provides the approximation orders l + . �

8 Symmetry
Symmetric coefficients of the mask are of great significance in image processing. In the
following, we will give a symmetry proof and provide a graphical illustration.

Lemma  For m, l ∈ Z
+, α ≥ , j = , , . . . , l, z = e–iω , we derive

j–∏
i=

(



–



(
z– + z

)
+ iα

) m+l–j–∏
i=

(



+



(
z– + z

)
+ iα

)
=

m+l∑
k=

bj,m,l,α
k

(
z– + z

)k ,

where

bj,m,l,α
k =

Dk

D
, k = , , . . . , m + l, ()

D =

∣∣∣∣∣∣∣∣∣

 
 ( 

 ) . . . ( 
 )m+l

 ( 
 ) (( 

 )) . . . (( 
 ))m+l

. . . . . . . . . . . . . . .
 ( 

 )m+l+ (( 
 )m+l+) . . . (( 

 )m+l+)m+l

∣∣∣∣∣∣∣∣∣
,
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and

Dk =

∣∣∣∣∣∣∣∣∣

 . . . ( 
 )k– f ( 

 ) (/)k+ . . . ( 
 )m+l

 . . . (( 
 ))k– f (( 

 )) ((/))k+ . . . (( 
 ))m+l

. . . . . . . . . . . . . . . . . .
 . . . (( 

 )m+l+)k– f (( 
 )m+l+) ((/)m+l+)k+ . . . (( 

 )m+l+)m+l

∣∣∣∣∣∣∣∣∣
,

where

f (x) =
j–∏
i=

(



–



x + iα
) m+l–j–∏

i=

(



+



x + iα
)

, x ∈ [–, ].

Proof Set x(z) = z– + z, then x ∈ [–, ] and

j–∏
i=

(



–



x + iα
) m+l–j–∏

i=

(



+



x + iα
)

=
m+l∑
k=

bj,m,l,α
k xk . ()

Fixing x = 
 , ( 

 ), . . . , ( 
 )m+l+, by using (), we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

.
( 

 )bj,m,l,α
 + ( 

 )bj,m,l,α
 + · · · + ( 

 )m+lbj,m,l,α
m+l = f ( 

 ),

(( 
 ))bj,m,l,α

 + (( 
 ))bj,m,l,α

 + · · · + (( 
 ))m+lbj,m,l,α

m+l = f (( 
 )),

. . .

(( 
 )m+l+)bj,m,l,α

 + (( 
 )m+l+)bj,m,l,α

 + · · · + (( 
 )m+l+)m+lbj,m,l,α

m+l = f (( 
 )m+l+).

()

Since the coefficient determinant of ()

D =

∣∣∣∣∣∣∣∣∣

 
 ( 

 ) . . . ( 
 )m+l

 ( 
 ) (( 

 )) . . . (( 
 ))m+l

. . . . . . . . . . . . . . .
 ( 

 )m+l+ (( 
 )m+l+) . . . (( 

 )m+l+)m+l

∣∣∣∣∣∣∣∣∣
�= ,

applying Cramer’s rule yields

bj,m,l,α
k =

Dk

D
, k = , , . . . , m + l,

where

Dk =

∣∣∣∣∣∣∣∣∣

 . . . ( 
 )k– f ( 

 ) (/)k+ . . . ( 
 )m+l

 . . . (( 
 ))k– f (( 

 )) ((/))k+ . . . (( 
 ))m+l

. . . . . . . . . . . . . . . . . .
 . . . (( 

 )m+l+)k– f (( 
 )m+l+) ((/)m+l+)k+ . . . (( 

 )m+l+)m+l

∣∣∣∣∣∣∣∣∣
.

�

Lemma  For k ∈N, we have

(
z + z–)k =

⎧⎨
⎩

∑(k–)/
i=

(k
i
)
(zk–i + z–(k–i)), if k is an odd number,∑k/–

i=
(k

i
)
(zk–i + z–(k–i)) +

( k
k/

)
z, else.

()
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Proof We consider into two cases. Suppose that k is an odd number. One gets

(
z + z–)k =

k∑
j=

(
k
j

)
zk–j =

(k–)/∑
j=

(
k
j

)
zk–j +

k∑
j=(k+)/

(
k
j

)
zk–j.

Let i = k – j, then

k∑
j=(k+)/

(
k
j

)
zk–j =

(k–)/∑
i=

(
k
i

)
z–(k–i).

Thus,

(
z + z–)k =

(k–)/∑
j=

(
k
j

)
zk–j +

k∑
j=(k+)/

(
k
j

)
zk–j

=
(k–)/∑

i=

(
k
i

)
zk–i +

(k–)/∑
i=

(
k
i

)
z–(k–i)

=
(k–)/∑

i=

(
k
i

)(
zk–i + z–(k–i)).

Suppose, on the other hand, that k is an even number. It is clear that

(
z + z–)k =

k∑
j=

(
k
j

)
zk–j =

k/–∑
j=

(
k
j

)
zk–j +

k∑
j=k/+

(
k
j

)
zk–j +

(
k

k/

)
z.

Let i = k – j, then

k∑
j=k/+

(
k
j

)
zk–j =

k/–∑
i=

(
k
i

)
z–(k–i).

Therefore,

(
z + z–)k =

k/–∑
j=

(
k
j

)
zk–j +

k∑
j=k/+

(
k
j

)
zk–j +

(
k

k/

)
z

=
k/–∑

i=

(
k
i

)
zk–i +

k/–∑
i=

(
k
i

)
z–(k–i) +

(
k

k/

)
z

=
k/–∑

i=

(
k
i

)(
zk–i + z–(k–i)) +

(
k

k/

)
z.

This concludes the proof. �

Theorem  Let τ
m,l,α
 (ω) be the mask (), then the coefficients of the mask are symmetric.
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Proof Since sin( ω
 ) = 

 – 
 (eiω +e–iω), cos( ω

 ) = 
 + 

 (eiω +e–iω), we set z = e–iω and obtain

τ
m,l,α
 (ω) =

l∑
j=

(
m + l

j

)( j–∏
i=

(
sin

(
ω



)
+ iα

) m+l–j–∏
i=

(
cos

(
ω



)
+ iα

))

/ m+l–∏
i=

( + iα)

=
l∑

j=

(
m + l

j

)( j–∏
i=

(



–



(
eiω + e–iω)

+ iα
)

×
m+l–j–∏

i=

(



+



(
eiω + e–iω)

+ iα
)) / m+l–∏

i=

( + iα)

=
l∑

j=

(
m + l

j

)( j–∏
i=

(



–



(
z– + z

)
+ iα

)

×
m+l–j–∏

i=

(



+



(
z– + z

)
+ iα

)) / m+l–∏
i=

( + iα).

Let am,l,α
j =

(m+l
j

)
/
∏m+l–

i= ( + iα), by using Lemma , one can obtain

τ
m,l,α
 (ω) =

l∑
j=

(
m + l

j

)( j–∏
i=

(



–



(
z– + z

)
+ iα

)

×
m+l–j–∏

i=

(



+



(
z– + z

)
+ iα

)) / m+l–∏
i=

( + iα)

=
l∑

j=

am,l,α
j

m+l∑
k=

bj,m,l,α
k

(
z + z–)k

=
l∑

j=

m+l∑
k=

am,l,α
j bj,m,l,α

k
(
z + z–)k ,

where {bj,m,l,α
k }m+l

k= is () in Lemma . Let cj,m,l,α
k = am,l,α

j bj,m,l,α
k and dm,l,α

k =
∑l

j= cj,m,l,α
k , then

τ
m,l,α
 (ω) =

l∑
j=

m+l∑
k=

am,l,α
j bj,m,l,α

k
(
z + z–)k

=
l∑

j=

m+l∑
k=

cj,m,l,α
k

(
z + z–)k

=
m+l∑
k=

( l∑
j=

cj,m,l,α
k

)(
z + z–)k

=
m+l∑
k=

dm,l,α
k

(
z + z–)k .
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We consider into two cases. Suppose that m + l is an even number. Applying Lemma 
yields

τ
m,l,α
 (ω) =

m+l∑
k=

dm,l,α
k

(
z + z–)k

=
(m+l–)/∑

j=

dm,l,α
j+

j∑
i=

(
j + 

i

)(
z(j–i)+ + z–((j–i)+))

+
(m+l)/∑

j=

dm,l,α
j

j–∑
i=

(
j
i

)(
z(j–i) + z–((j–i))) +

(m+l)/∑
j=

dm,l,α
j

(
j
j

)

=
(m+l–)/∑

j=

j∑
i=

(
j + 

i

)
dm,l,α

j+
(
z(j–i)+ + z–((j–i)+))

+
(m+l)/∑

j=

j–∑
i=

(
j
i

)
dm,l,α

j
(
z(j–i) + z–((j–i))) +

(m+l)/∑
j=

dm,l,α
j

(
j
j

)

=
m+l∑
k=

hm,l,α
k

(
zk + z–k) + hz,

where h =
∑(m+l)/

j=
(j

j
)
dm,l,α

j ,

hk =

⎧⎪⎨
⎪⎩

∑
j–i=(k–)/

j∈{,,...,(m+l–)/}

(j+
i

)
dm,l,α

j+ , if k is an odd number,
∑

j–i=k/
j∈{,,...,(m+l)/}

(j
i
)
dm,l,α

j , else.
()

Suppose, on the other hand, that m + l is an odd number. We have

τ
m,l,α
 (ω) =

m+l∑
k=

dm,l,α
k

(
z + z–)k

=
(m+l–)/∑

j=

dm,l,α
j+

j∑
i=

(
j + 

i

)(
z(j–i)+ + z–((j–i)+))

+
(m+l–)/∑

j=

dm,l,α
j

j–∑
i=

(
j
i

)(
z(j–i) + z–((j–i))) +

(m+l–)/∑
j=

dm,l,α
j

(
j
j

)

=
(m+l–)/∑

j=

j∑
i=

(
j + 

i

)
dm,l,α

j+
(
z(j–i)+ + z–((j–i)+))

+
(m+l–)/∑

j=

j–∑
i=

(
j
i

)
dm,l,α

j
(
z(j–i) + z–((j–i))) +

(m+l–)/∑
j=

dm,l,α
j

(
j
j

)

=
m+l∑
k=

hm,l,α
k

(
zk + z–k) + hz,
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where h =
∑(m+l–)/

j=
(j

j
)
dm,l,α

j ,

hk =

⎧⎪⎨
⎪⎩

∑
j–i=(k–)/

j∈{,,...,(m+l–)/}

(j+
i

)
dm,l,α

j+ , if k is an odd number,
∑

j–i=k/
j∈{,,...,(m+l–)/}

(j
i
)
dm,l,α

j , else.
()

This establishes the proof. �

In the end, we provide two examples of symmetric refinable functions from the mask
τ

m,l,α
 (ω) for m = , l = , α = . and τ

m,l,α
 (ω) for m = , l = , α = ..

Example  Consider the refinable function with the mask τ
m,l,α
 (ω), where l = , m = ,

α = ., i.e.

τ
,,.
 (ω) =

∑
j=

(

j

)( j–∏
i=

(
sin

(
ω



)
+ i

) –j∏
i=

(
cos

(
ω



)
+ i

)) / ∏
i=

( + i)

= h +
∑

k=

h±ke±ikω.

In the following, Table  shows the symmetric coefficients {h±k}
 of the mark τ

m,l,α
 (ω)

and Figure  gives the corresponding refinable function when l = , m = , α = ..
The graph gives the symmetry and compactly supported refinable function correspond-

ing to the mask τ
,,.
 (ω), which has approximation order  and decay rate ..

Example  Consider the refinable function with the mask τ
m,l,α
 (ω), where m = , l = ,

and α = ., i.e.

τ
,,.
 (ω) =

∑
j=

(

j

)( j–∏
i=

(
sin

(
ω



)
+ i

) –j∏
i=

(
cos

(
ω



)
+ i

)) / ∏
i=

( + i)

= h +
∑

k=

h±ke±ikω.

In the following, Table  shows the symmetric coefficients {h±k}
 of the mark τ

m,l,α
 (ω)

and Figure  gives the corresponding refinable function when m = , l = , and α = ..

Table 2 Symmetric coefficients of the mask τ 8,2,0.02
0 (ω)

i hk h–k

0 3.4461×10–1 3.4461×10–1

1 2.6646×10–1 2.6646×10–1

2 1.0703×10–1 1.0703×10–1

3 –5.4041×10–3 –5.4041×10–3

4 –3.0354×10–2 –3.0354×10–2

5 –1.3589×10–2 –1.3589×10–2

6 –3.6648×10–6 –3.6648×10–6

7 2.3424×10–3 2.3424×10–3

8 1.0108×10–3 1.0108×10–3

9 1.9281×10–4 1.9281×10–4

10 1.4706×10–5 1.4706×10–5
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Figure 1 The refinable function with τ 8,2,0.02
0 (ω).

Table 3 Symmetric coefficients of the mask τ 16,3,0.01
0 (ω)

i hk h–k

0 2.2376 2.2376
1 2.0725 2.0725
2 1.6492 1.6492
3 1.1334 1.1334
4 6.8036×10–1 6.8036×10–1

5 3.6390×10–1 3.6390×10–1

6 1.7807×10–1 1.7807×10–1

7 8.1210×10–2 8.1210×10–2

8 3.4068×10–2 3.4068×10–2

9 1.2378×10–2 1.2378×10–2

10 3.4314×10–3 3.4314×10–3

11 4.7361×10–4 4.7361×10–4

12 –1.4408×10–4 –1.4408×10–4

13 1.2584×10–4 1.2584×10–4

14 4.7943×10–5 4.7943×10–5

15 1.2022×10–5 1.2022×10–5

16 2.0920×10–6 2.0920×10–6

17 2.4584×10–7 2.4584×10–7

18 1.7688×10–8 1.7688×10–8

19 5.9141×10–10 5.9141×10–10

The graph gives the symmetry and compactly supported refinable function correspond-
ing to the mark τ

,,.
 (ω), which has approximation order  and decay rate ..

9 Results and discussion
In this paper, a further family of refinable functions is constructed, which includes pseudo-
splines of Type II, based on refinement masks, which are generalized Bernstein polyno-
mials. They possess beside a compact support also a certain Hölder regularity (Table ),
this implies a suitable decay in Fourier domain and the approximation order in the corre-
sponding shift-invariant space. The integer shifts of the refinable functions form a Riesz
basis of their span and the corresponding univariate wavelets can be constructed in the
usual manner.
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Figure 2 The refinable function with
τ 16,3,0.01

0 (ω).

10 Conclusions
We study new masks

τ
m,l,α
 (ω) :=

l∑
j=

(
m + l

j

)( j–∏
i=

(
sin

(
ω



)
+ iα

) m+l–j–∏
i=

(
cos

(
ω



)
+ iα

))

/ m+l–∏
i=

( + iα),

which include almost all masks of pseudo-splines of Type II [] when α = , to provide de-
rived properties. We obtain the convergence of cascade algorithms in Theorem , which
guarantees the existence of refinable functions. In Theorem , Riesz wavelets whose di-
lation and translation form a Riesz basis for L(R) are constructed. Theorem  analyzes
the stability of the subdivision schemes. Regularity and the influences of parameters m, l,
α on the decay rate are showed in Section . Section  gives the approximation order of
the new refinable functions. Finally, the symmetry of the refinable functions, which is of
importance, is illustrated in Theorem .
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