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Abstract
In this paper we prove a two weighted inequality for Riesz potentials Iα,γ f
(B-fractional integrals) associated with the Laplace-Bessel differential operator
�B =

∑n
i=1

∂2

∂x2i
+

∑k
j=1

γj
xj

∂
∂xj
. This result is an analog of Heinig’s result (Indiana Univ.

Math. J. 33(4):573-582, 1984) for the B-fractional integral. Further, the Stein-Weiss
inequality for B-fractional integrals is proved as an application of this result.
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1 Introduction
Let Rn

k,+ = {x = (x, . . . , xn) ∈ R
n : x > , x > , . . . , xk > },  ≤ k ≤ n, and w be a weight

function on R
n
k,+, i.e., w is a non-negative and measurable function on R

n
k,+. The weighted

Lebesgue space Lp,w,γ ≡ Lp,w,γ (Rn
k,+),  ≤ p < ∞, is the set of all classes of measurable func-

tions f with finite norm

‖f ‖p,w,γ =
(∫

R
n
k,+

∣
∣f (x)

∣
∣pw(x)

(
x′)γ dx

) 
p

,

where (x′)γ = xγ
 · . . . · xγk

k and γ = (γ, . . . ,γk) is a multi-index consisting of fixed positive
numbers such that |γ | = γ + · · · + γk .

If p = ∞, we assume

L∞,w,γ
(
R

n
k,+

)
= L∞

(
R

n
k,+

)
=

{
f : ‖f ‖L∞,w = ess sup

x∈Rn
k,+

∣
∣w(x)f (x)

∣
∣ < ∞}

.

The fractional integral operators play an important role in the theory of harmonic anal-
ysis, differentiation theory and PDE’s. Many mathematicians have dealt with the fractional
integrals and related topics associated with the Laplace-Bessel differential operator �B =
∑n

i=
∂

∂x
i

+
∑k

j=
γj
xj

∂
∂xj

such as Aliev and Gadjiev [], Guliyev [], Gadjiev and Hajibayov [],
Guliyev et al. [] and others. In this paper we consider fractional (B-fractional) integrals
in the weighted Lebesgue space Lp,w,γ (Rn

k,+) associated with the generalized shift operator
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defined by (see, for example [, ])

Tyf (x) = Ck,γ

∫ π


· · ·

∫ π


f
((

x′, y′)
α

, x′′ – y′′)dν(α),

where

Ck,γ = π– k


k∏

i=

�( γi+
 )

�( γi
 )

,
(
x′, y′)

α
=

(
(x, y)α , . . . , (xk , yk)αk

)
,

(xi, yi)αi =
√

x
i – xiyi cosαi + y

i ,
(
x′, x′′) ∈R

k ×R
n–k , and

dν(α) =
k∏

i=

sinγi– αi dαi,  ≤ i ≤ k,  ≤ k ≤ n.

It is well known that the generalized shift operator Ty is closely related to the Laplace-
Bessel differential operator �B. Furthermore, Ty generates the corresponding B-convo-
lution

(f ⊗ g)(x) =
∫

R
n
k,+

f (y)
(
Tyg(x)

)(
y′)γ dy.

The B-fractional integral (or B-Riesz potential) is defined by

Iα,γ f (x) =
∫

R
n
k,+

Ty(|x|α–n–|γ |)f (y)
(
y′)γ dy,  < α < n + |γ |.

The properties of the B-fractional integral has been examined extensively. We refer to
[–, –] and for more general case to [, ].

In the case w = , for the classical Riesz potential Iαf , the classical Hardy-Littlewood-
Sobolev theorem [] states that, if  < p < ∞ and αp < n, then Iαf is an operator of strong
type (p, q), where 

q = 
p – α

n , and if p = , then Iαf is an operator of weak type (, q), where

q =  – α

n .
In the following we give the Heinig’s result [] for the boundedness of the classical

Riesz potential Iαf in weighted Lebesgue spaces which is a generalization of the Hardy-
Littlewood-Sobolev theorem for Iαf .

Theorem A ([]) Suppose u and v are defined on Rn and U = u∗, 
V = ( 

v )∗. If  ≤ p ≤ q ≤
∞, p < ∞, and, for some r,  < r < n

α
,

sup
s>

(∫ ∞

s

[
U(t)tα–n]qtn– dt

) 
q
(∫ s


V (t)–p′

tn– dt
) 

p′
< ∞

and

sup
s>

(∫ s



[
U(t)tα– n

r
]qtn– dt

) 
q
(∫ ∞

s

[
V (t)t

n
r′
]–p′

tn– dt
) 

p′
< ∞,

then Iα : Lp,v(Rn) → Lq,u(Rn) is bounded.
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Our purpose in this paper is to give an analog of Heinig’s result for the B-fractional in-
tegral Iα,γ f . Further, the Stein-Weiss inequality for B-Riesz potential is proved as an appli-
cation of this result. Note that the Stein-Weiss inequality for the classical Riesz potentials
was given in []. For the B-fractional integrals, this inequality was proved in [] and [].

2 Preliminaries
Let  ≤ p ≤ ∞. In the case w = , if f is in Lp,γ (Rn

k,+) and ϕ is in L,γ (Rn
k,+), then the function

f ⊗ ϕ belongs to Lp,γ (Rn
k,+) and

‖f ⊗ ϕ‖p,γ ≤ ‖f ‖p,γ ‖ϕ‖,γ .

Suppose f is a measurable function defined on R
n
k,+. For any measurable set E ⊂ R

n
k,+, let

|E|γ =
∫

E(x′)γ dx. The distribution function f∗,γ of the function f is given by

f∗,γ (s) =
∣
∣
{

x : x ∈R
n
k,+,

∣
∣f (x)

∣
∣ > s

}∣
∣
γ

, for s ≥ .

The distribution function f∗,γ is non-negative, non-increasing, and continuous from the
right (see []). With the distribution function we associate the non-increasing rearrange-
ment of f on [,∞) defined by

f ∗,γ (t) = inf
{

s >  : f∗,γ (s) ≤ t
}

.

If f ∈ Lp,γ (Rn
k,+),  ≤ p < ∞, then

(∫

R
n
k,+

∣
∣f (x)

∣
∣p(x′)γ dx

) 
p

=
(

p
∫ ∞


sp–f∗,γ (s) ds

) 
p

=
(∫ ∞



(
f ∗,γ (t)

)p dt
) 

p
.

In the following we give several inequalities which we will need in the proof of our main
results.

Lemma  (Hardy inequalities [–]) Suppose ξ and θ are non-negative locally integrable
functions defined on (,∞) and  < p ≤ q < ∞. Then there exists a constant C >  such that
for all non-negative Lebesgue measurable function ψ on (,∞), the inequality

[∫ ∞



(∫ t


ψ(s) ds

)q

ξ (t) dt
] 

q
≤ C

(∫ ∞



(
ψ(t)

)p
θ (t) dt

) 
p

()

is satisfied if and only if

sup
s>

(∫ ∞

s
ξ (t) dt

) 
q
(∫ s



(
θ (t)

)–p′
dt

) 
p′

< ∞. ()

Similarly for the dual operator,

[∫ ∞



(∫ ∞

t
ψ(s) ds

)q

ξ (t) dt
] 

q
≤ C

(∫ ∞



(
ψ(t)

)p
θ (t) dt

) 
p

()
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is satisfied if and only if

sup
s>

(∫ s


ξ (t) dt

) 
q
(∫ ∞

s

(
θ (t)

)–p′
dt

) 
p′

< ∞. ()

Lemma  ([, , ]) Let f and g be non-negative measurable functions on R
n
k,+. Then

∫

R
n
k,+

f (x)g(x)
(
x′)γ dx ≤

∫ ∞


f ∗,γ (t)g∗,γ (t) dt ()

and
∫ ∞


f ∗,γ (t)


( 

g )∗,γ (t)
dt ≤

∫

R
n
k,+

f (x)g(x)
(
x′)γ dx. ()

Lemma  ([]) Let  ≤ p < p < ∞ and  ≤ q < q < ∞. A sublinear operator T satisfies
weak-type hypotheses (p, q) and (p, q) if and only if

(Tf )∗,γ (t) ≤ C
(

t– 
q

∫ t
σ
σ


s


p

–f ∗,γ (s) ds + t– 
q

∫ ∞

t
σ
σ

s


p
–f ∗,γ (s) ds

)

, ()

where σ = 
q

– 
q

and σ = 
p

– 
p

.

3 Two weighted inequalities for B-fractional integrals
In this section we prove an analog of Heinig’s result for the B-fractional integral Iα,γ f .
Further, the Stein-Weiss inequality for B-Riesz potential is proved as an application of
this result. In the following theorem we formulate analog of the Heinig’s result for the
B-fractional integral Iα,γ f .

Theorem  Let  < α < n + |γ |,  < r < n+|γ |
α

,  < p ≤ q < ∞. Suppose that u and v are
non-negative locally integrable functions on R

n
k,+ with conditions

sup
s>

(∫ ∞

s
u∗,γ (t)t–q(– α

n+|γ | ) dt
) 

q
(∫ s



((

v

)∗,γ

(t)
)p′–

dt
) 

p′
< ∞ ()

and

sup
s>

(∫ s


u∗,γ (t)t–q( 

r – α
n+|γ | ) dt

) 
q
(∫ ∞

s

((

v

)∗,γ

(t)
)p′–

tp′( 
r –) dt

) 
p′

< ∞. ()

Then Iα,γ is a bounded operator from Lp,v,γ (Rn
k,+) to Lq,u,γ (Rn

k,+), that is, there exists a con-
stant C >  such that for any f ∈ Lp,v,γ (Rn

k,+),

‖Iα,γ f ‖q,u,γ ≤ C‖f ‖p,v,γ .

Proof It is known that Iα,γ f is an operator of weak type (, 
– α

n+|γ |
) and is an operator of

strong type (r, 

r – α

n+|γ |
), where  < r < ∞. Refer to Iα,γ f , Lemma , taking

p = , q =


 – α
n+|γ |

, p = r, q =



r – α

n+|γ |
.
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Then

σ =

q

–


q
=  –


r

, σ =

p

–


p
=  –


r

,
σ

σ
= ,

and

[∫ ∞



(
(Iα,γ f )∗,γ (t)

)qu∗,γ (t) dt
] 

q

≤ C
[∫ ∞



(

t
α

n+|γ | –
∫ t


f ∗,γ (s) ds + t

α
n+|γ | – 

r

∫ ∞

t
s


r –f ∗,γ (s) ds

)q

u∗,γ (t) dt
] 

q
.

Applying the Minkowski inequality we obtain

[∫ ∞



(
(Iα,γ f )∗,γ (t)

)qu∗,γ (t) dt
] 

q

≤ C
[∫ ∞


u∗,γ (t)t( α

n+|γ | –)q
(∫ t


f ∗,γ (s) ds

)q

dt
] 

q

+ C
[∫ ∞


u∗,γ (t)t( α

n+|γ | – 
r )q

(∫ ∞

t
s


r –f ∗,γ (s) ds

)q

dt
] 

q
. ()

If we take the notation

ξ (t) = u∗,γ (t)t( α
n+|γ | –)q, ψ(t) = f ∗,γ (t), θ (t) =


( 

v )∗,γ (t)
,

then we have () from () and applying ()

[∫ ∞


u∗,γ (t)t( α

n+|γ | –)q
(∫ t


f ∗,γ (s) ds

)q

dt
] 

q

≤ C
(∫ ∞




( 

v )∗,γ (t)
(
f ∗,γ (t)

)p dt
) 

p
. ()

Now if we take

ξ (t) = u∗,γ (t)t( α
n+|γ | – 

r )q, ψ(t) = t

r –f ∗,γ (t), θ (t) =


( 

v )∗,γ (t)
tp( 

r –),

then we have () from () and applying () we can assert that

[∫ ∞


u∗,γ (t)t( α

n+|γ | – 
r )q

(∫ ∞

t
s


r –f ∗,γ (s) ds

)q

dt
] 

q

≤
(∫ ∞



(
t


r –f ∗,γ (t)

)p 
( 

v )∗,γ (t)
tp( 

r –) dt
) 

p

=
(∫ ∞




( 

v )∗,γ (t)
(
f ∗,γ (t)

)p dt
) 

p
. ()
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Combining (), (), () yields

[∫ ∞



(
(Iα,γ f )∗,γ (t)

)qu∗,γ (t) dt
] 

q
≤ C

(∫ ∞




( 

v )∗,γ (t)
(
f ∗,γ (t)

)p dt
) 

p
. ()

Applying (), (), and () we have

[∫

R
n
k,+

((
Iα,γ f (x)

))qu(x)
(
x′)γ dx

] 
q

≤
[∫ ∞



(
(Iα,γ f )∗,γ (t)

)qu∗,γ (t) dt
] 

q

≤ C
(∫ ∞




( 

v )∗,γ (t)
(
f ∗,γ (t)

)p dt
) 

p

≤ C
[∫

R
n
k,+

(
f (x)

)pv(x)
(
x′)γ dx

] 
p

.

Thus the proof the theorem is completed. �

In the following theorem we prove the Stein-Weiss inequality for B-fractional integrals
by using Theorem . Note that the Stein-Weiss inequality for classical Riesz potentials was
given in []. For B-fractional integrals, this inequality was proved in [] and [].

Theorem  Let  < α < n + |γ |,  < p < n+|γ |
α

, β < ,  < β + αp < (n + |γ |)(p – ), u(x) =
|x|β , and v(x) = |x|β+αp, for x ∈ R

n
k,+. Then Iα,γ is a bounded operator from Lp,v,γ (Rn

k,+) to
Lq,u,γ (Rn

k,+), that is, there exists a constant C >  such that, for any f ∈ Lp,v,γ (Rn
k,+),

(∫

R
n
k,+

∣
∣Iα,γ f (x)

∣
∣p|x|β(

x′)γ dx
) 

p
≤ C

(∫

R
n
k,+

∣
∣f (x)

∣
∣p|x|β+αp(x′)γ dx

) 
p

.

Proof It is known that |B(, r)|γ = w(n, k,γ )rn+|γ |, where w(n, k,γ ) = |B(, )|γ . Since β < 
we have

u∗,γ (s) =
∣
∣
{

x ∈R
n
k,+ : |x|β > s

}∣
∣
γ

=
∣
∣
{

x : x ∈R
n
k,+, |x| < s


β
}∣
∣
γ

=
∣
∣B

(
, s


β
)∣
∣
γ

= w(n, k,γ )r
n+|γ |

β

and

u∗,γ (t) = inf
{

s >  : u∗,γ (s) ≤ t
}

=
(


w(n, k,γ )

) β
n+|γ |

t
β

n+|γ | .
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Since β + αp >  we can write

(

v

)

∗,γ
(s) =

∣
∣
{

x : x ∈R
n
k,+|x|–(β+αp) > s

}∣
∣
γ

=
∣
∣
{

x : x ∈R
n
k,+, |x| < s– 

β+αp
}∣
∣
γ

=
∣
∣B

(
, s– 

β+αp
)∣
∣
γ

= w(n, k,γ )r– n+|γ |
β+αp

and

(

v

)∗,γ

(t) = inf

{

s >  :
(


v

)

∗,γ
(s) ≤ t

}

=
(


w(n, k,γ )

)– β+αp
n+|γ |

t– β+αp
n+|γ | .

Take p = q = r and examine () and (). Since β +αp < (n + |γ |)(p – ) we have β+αp
n+|γ | – p < –

and – β+αp
n+|γ | (p

′ – ) > –. Then

sup
s>

(∫ ∞

s
u∗,γ (t)t–q(– α

n+|γ | ) dt
) 

q
(∫ s



((

v

)∗,γ

(t)
)p′–

dt
) 

p′

= sup
s>

(∫ ∞

s

(


w(n, k,γ )

) β
n+|γ |

t
β

n+|γ | t–p(– α
n+|γ | ) dt

) 
p

×
(∫ s



((


w(n, k,γ )

)– β+αp
n+|γ |

t– β+αp
n+|γ |

)p′–

dt
) 

p′

=
(


w(n, k,γ )

) –αp
(n+|γ |)p

sup
s>

(


β+αp
n+|γ | – p + 

t
β+αp
n+|γ | –p+

∣
∣
∣
∣

∞

s

) 
p

×
(


– β+αp

n+|γ | (p′ – ) + 
t– β+αp

n+|γ | (p′–)+
∣
∣
∣
∣

s



) 
p′

=
(


w(n, k,γ )

) –αp
(n+|γ |)p (

–
β+αp
n+|γ | – p + 

) 
p
(


– β+αp

n+|γ | (p′ – ) + 

) 
p′

× sup
s>

s( β+αp
n+|γ | –p+) 

p +(– β+αp
n+|γ | (p′–)+) 

p′

=
(


w(n, k,γ )

) –αp
(n+|γ |)p (

–
β+αp
n+|γ | – p + 

) 
p
(


– β+αp

n+|γ | (p′ – ) + 

) 
p′

< ∞.

Now examine (). Since β + αp >  we have β+αp
n+|γ | –  > – and – β+αp

n+|γ | (p
′ – ) –  < –. Then

sup
s>

(∫ s


u∗,γ (t)t–q( 

r – α
n+|γ | ) dt

) 
q
(∫ ∞

s

((

v

)∗,γ

(t)
)p′–

tp′( 
r –) dt

) 
p′

= sup
s>

(∫ s



(


w(n, k,γ )

) β
n+|γ |

t
β

n+|γ | t–p( 
p – α

n+|γ | ) dt
) 

p
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×
(∫ ∞

s

((


w(n, k,γ )

)– β+αp
n+|γ |

t– β+αp
n+|γ |

)p′–

tp′( 
p –) dt

) 
p′

=
(


w(n, k,γ )

) α
n+|γ |

sup
s>

(
n + |γ |
β + αp

t
β+αp
n+|γ |

∣
∣
∣
∣

s



) 
p

×
(

n + |γ |
(β + αp)( – p′)

t– β+αp
n+|γ | (p′–)

∣
∣
∣
∣

∞

s

) 
p′

=
(


w(n, k,γ )

) α
n+|γ | n + |γ |

β + αp

(


p′ – 

) 
p′

sup
s>

s
β+αp
n+|γ |


p – β+αp

n+|γ |
p′–

p′

=
(


w(n, k,γ )

) α
n+|γ | n + |γ |

β + αp

(


p′ – 

) 
p′

< ∞.

Therefore () and () are satisfied and from Theorem , we have the result of the corol-
lary. �
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