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1 Introduction

The almost sure central limit theorem (ASCLT) has served as a basis for a large group of
investigations of fundamental significance both in the theory of probability and in its nu-
merous applications to statistics, natural sciences, engineering, and economics. Its meth-
ods and results continue to have great influence on other fields of probability theory,
mathematical statistics, and their applications. In recent decades, there has been much
work on the ASCLT. Cheng et al. [2], Fahrner and Stadtmiiller [3], and Berkes and Csaki
[4] considered the ASCLT for the maximum of i.i.d. random variables. For more related
work on ASCLT, see [5-13]. An influential work is Csdki and Gonchigdanzan [14], which
proved the almost sure limit theorem for the maximum of stationary weakly dependent
sequence. Furthermore, Lin [15] considered the theorem which ASCLT version of the the-
orem proved by Leadbetter et al. [16]. Chen et al. [17] extended [14] to the multivariate
stationary case. Lin et al. [1] partially extended [14] to the case of strongly dependent non-
stationary Gaussian sequences and obtained the following theorem.

Theorem A Let {&, : n > 1} be a sequence of nonstationary standard Gaussian random
variables with covariances r; satisfying |r;; — ﬁ [In(j — ))(InIn(j — i))**¢ = O(1) for r > 0.

i
If
1
a,=Q2Inn)"2, b,=Q2Inn)"?- 5(2 Inn)™*(Inlnn + In(47)), (1.1)
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then

n 1 00

lim 1 Z —I(ax(My - by) < x) = / exp(—e V) p(2)dz  as., 1.2)

n—ce Inn = k o0
where I denotes an indicator function and ¢ is the standard normal density function.

The purpose of this paper is to give substantial improvements for both weight sequence
and the range of random variables of Theorem A.
Throughout the paper, let {&; = (£;(1),&:(2),...,&(d)) : i > 1} be a standardized nonsta-

tionary Gaussian vector sequence with

E§, = (E&,(1), E&,(2),...,E&,(d)) = (0,0,...,0),

Var§, = (Var§,(1), Var§,(2),..., Var,(d)) = (1,1,...,1),
ri(p) = Cov(&(p), §(p)),

ri(p,q) = Cov(&i(p), §(q)), forl<p#q=<d.

Let {n; = (n;(1),n;(2),...,n:(d)) : i > 1} be a d-dimensional vector sequence. For i > 1, we
define

Em; = (&), EQ)ni(2), ..., Ed)ni(d)).

Let wy; = (4,;(1), u,,;(2),. .., u,:(d)) be a d-dimensional real vector, and u,; > uy; means
uyi(p) > u(p) for p=1,2,...,d. Suppose

rii(p)In(j — i) — r, ri(p, @) In(j —i) - r, asi,j— oo, (1.3)
where throughout r > 0 and i <.

{§, : n > 1} is called weakly dependent for r = 0 and strongly dependent for r > 0.

In the paper, a very natural and mild assumption is

rij(p) — ln(] ln(] )(InDj_;) ) = 0(1),
(1.4)
rl](p q) - (] ln(/ l)(lnD} 1)1+5 o),
where
In* k “ 1
dy = %, D,=Y di, for0=a<3. (15)
< k=1
Let n; = €, + m; where m; = (m;, m;,...,m;) is a real vector. The constant m; satisfies
B. = max |m;| = o((lnn)%), as 1 — o0. (1.6)

1<i<nm
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mi; is defined so that |nf| < B, and

1< 1
- Zlexp(af,(mi -mj) - m) —1, asun— 00, (1.7)
e
where a;; = a, —Inln 5-.

2 Results and proofs

We mainly consider the ASCLT of the maximum of nonstationary Gaussian vector se-
quence satisfying (1.4), which is crucial to consider other versions of the ASCLT such as
that of the maximum of stationary strongly dependent sequence and the function of the
maximum. In the sequel, a,, < b,, denotes the existence of a constant ¢ > 0 such that g, <
cb,, for sufficiently large n. We also define the normalized real vector a; = (a, ax, ..., ak),
bk = (b, bi, - . ., bk), where ay and by are defined by (1.1). The main results are as follows.

Theorem 1 Let {y,:i > 1} be defined by n; = &; + m; where {&,: i > 1} is the standard non-
stationary Gaussian vector sequence with covariances satisfying (1.4). Suppose that {m;}
and mi}, satisfy (1.6) and (1.7), respectively. Then

n

1 .
i, gy e (g i s - <)
d
:H/exp(—e_x@)_” 2’Z) d®(z) as., (2.1)
p=1 R

Sor mj = (my, mp,...,mf) and x = (x(1),%(2),...,%(d)) € R?, where ®(z) denotes the distri-
bution function of a standard normal random variable.

Theorem 2 Let {§;:i > 1} is the standard nonstationary Gaussian vector sequence with
covariances satisfying (1.4), we have

Jim 73 e (g 51 ) =x)
d
:1_[/ exp(—te‘x(”)_’+‘/272) d®(z) as, (2.2)
p1 7R

Sorx = (x(1),%(2),...,%(d)) € RY, where t,, is an increasing sequence of positive integers such
that lim,_, oo 2 =t (£ > 0).

n

In the terminology of summation procedures, we have the following corollary.

Corollary 1 Equations (2.1) and (2.2) remain valid if we replace the weight sequence {dy :
k =1} by {d} : k =1} such that 0 < dj < d, Y po, di = 0.

Remark 1 Our results give substantial improvements for the weight sequence in Theo-

rem A.
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Remark 2 If {§;:i > 1} is a standardized stationary Gaussian sequence, £ =1 and o = 0,

then (2.2) becomes (1.2). Thus Theorem A is a special case of Theorem 2.

Remark 3 Essentially, the problem whether Theorem 1 holds also for some 1/2 <« <1

remains open.

The following lemmas play important roles in the proofs of our theorems. The proofs

are given in the Appendix.

Lemmal Let{§,:n>1}and (&, : n > 1} be two d-dimensional independent standardized

nonstationary Gaussian sequences with

ry(p) = Cov(&().§(),  r;(p.@) = Cov(&:(p), 5(q))
and

rj(p) = Cov(§/(p).5/(®),  ry(p.q) = Cov(§/(p). & (@)

Write

()

pij(p,q) = max(|r)(p,q)

)
i q)|)-

pi(p) = max(|r?j(p)

)

)

Assume that (1.4) holds. Let w,; = (yi(1), 4ni(2), ..., uui(d)) for i > 1 be real vectors such
that n(1 — ®(u,;(p))) is bounded where @ is the standard normal distribution function.
There exist absolute constants Ky, Ky, if

max p;(p) <1l and max py(p,q) <1, fort>0,
1<i<j<ty

1<i<j<ty
1<p=d 1<p#q=<d

then
|]P(§] S unj’j: 1,21"';tn) _]P)(E]/ S unj,j: 1,2,...,tn)|

d u>,(p) + uz(p)
<Ky Y |72(P)—f§j(l’>\exp(‘z(1+4p,y(;)))
u,(p) + uZ(q)
+ K, Z Z |r3(p,q)—rl{/(p,q)|exp<—m)’
i\

1=pfq=<d 1=<i<j<tn

p=1 1<i<j<ty

where t, is an increasing sequence of positive integers such that lim,,_, o, % =t (¢>0).

Lemma 2 Let {§, : n > 1} be a standardized nonstationary Gaussian vector sequence
such that conditions (1.4) holds, and further suppose that n(1 — ®(u,;(p))) is bounded

Jor p=1,2,...,d and max,,(sup,-, |r.(p,q)|) < 1. Let p, = -, r defined in (1.3), w; =

nn’

Page 4 of 15
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max{|7;(p)l, o}, w; = max{|r;(p,q)|, pn}. For some & > 0, then

([9) —(1+¢)
pZ;K;,q e = ol ex p( 20 +] l,|)) < (nDa) (2.3)
and
)+ 142 (q)
> Y vea- pn\exp< 71:|”’|)q)<<(1n0> aro), (2.4)

1<p#q<d1<i<j<ty
where t, is an increasing sequence of positive integers such that lim,_, %” =t(¢>0).

Lemma 3 Let {£ . i n > 1} be a standard nonstationary Gaussian vector sequence with
constant covariance p,(p) = n/lnn forp=1,2,...,d and {§,, : n > 1} satisfy the conditions
of Theorem 1. Assume n(1 — ®(u,;(p))) is bounded for p = 1,2,...,d and (1.4) is satisfied.
Forp=1,2,...,d, then

|E(I(§1(P) = unl(p)’ oo rgn(p) = unn(p)) - 1(‘51(19) = unl(p)» L] 'i:n(p) = Mnn(p))) |
&« (InD,,)"19), for some ¢ > 0. (2.5)

Lemma4 Let{&,:n > 1} bea standardized nonstationary Gaussian d-dimensional vector
sequence with covariances satisfying (1.4). Suppose that the assumptions of Lemma 1 hold,

then
d
ok —x(p)—r+ 2rz

nlingo P(an (lm.a); n;—b, mn> ) Il:!‘éexp ) dd(2), (2.6)
where x = (x(1),%(2),...,x(d)) € R%,
Lemma5 Let (1,82,...,8n - .., be a sequence of bounded random variables. If

n D2

Var kzl:dkg‘k = O(W), forsome ¢ >0, (2.7)
then

Jim — de(gk ~Ez) =0 as. (2.8)

Proof of Theorem 1 By Lemma 4 and the Toeplitz lemma, note that (2.1) is equivalent to

);ngoD—de(( ¢(max n~bi—mi) <x)

- ]P(ak (lmax n;— by — m,t) < x)) =0 as. (2.9)
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Let uy(p) = ) by + mj — m;, by (2.3) in [1], we have n(1 - ®(uy(p))) — 1, for x(p) € R,
0<r1,<00. From Lemma 5, in order to prove (2.9), for p =1,2,...,d, it suffices to prove

k=1

Var(del(El(p) < xﬂ—(l:) +b+mp—my, ..., E(p) < xa—(!;) + by +m,’§—mk>)

D2
= O(m) for some ¢ > 0. (2.10)

Let¢,¢;1,8,,... be d-dimensional independent standardized nonstationary Gaussian se-
quences, where ¢ = (¢,¢...,8), {¢; = (¢:(1),&:(2),...,8i(d)),i > 1}. It can be shown that
Mi(p) = @ = p)V28(p) + p?¢,i > 1,p = 1,2,...,d} have constant covariance p; = r/Ink.

For p =1,2,...,d using the well-known ¢,-inequality, the left-hand side of (2.10) can be
written as

Var(del(&(P) < ) + by +mp —my, ..., E(p) < ) + by + my — mk>
ag ai

k=1

- def (1= o020 @) + 0*¢ <ua@),..., 1= p) 2 8®) + 03¢ < ik (p))

k=1

k=1

+ del((l o) 0®) + 07¢ <ua )., A= p)"28(p) + pi ¢ < ukk(P)))

< Var(Zle (1 Pk)mfl(l?)‘FPl/z{ <unp)...,

k=1

(1 - )" tk(p) + py*¢ < Mkk(P)))

+ Var(z did (&:(p) < wa (), .., 6k (p) < U (p))

k=1
k=1

- def (A= p)0(p) + 0*¢ <wa@),.... - o) 0lp) + 0%¢ < ukk(P)))

=: L} + Lz. (211)

2
We will show L; « TTRE i=1,2.Forp=1,2,...,d, clearly

L =E (Z Al (51(p) < (1= p) ™ (ua @) - %) -,

k=1

&(p) < (- o)™ (i p) — 03¢ )))

_P<de1 1) = (- 0w ) - 1) .

k=1

2
&(p) < (- o)™ (uinp) — 03¢ )))
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/ (del a(p) <A -p) P (wa @) - 04%2), -,

&(p) < (1= pi) ™ (uie(p) - pi*2))
- P(@l(p) < (1-pp)? (ukl(p) - pp 2z), e

2
t(p) < (1= pi) ™ (urc(p) - >z ))) do(z), (2.12)

where

e =1(01(p) < A= )™ (wia (p) — £ %2)5 - Cp) < (1= pi) ™ (i) — 01 *2))
~P(&(p) < - p) ™ (ua(p) - p1%2), ...
a(p) < A= p) ™ (i (p) - p3*2)), forp=1,2,....d.

Write the expectation in (2.12) as

n 2 n
E(de) =Y dBImP+2 Y didi|Enen)|
k=1

k=1 1<k<i<n
= H, + Hy. (2.13)

Noting that |n;| <1, exp(In® x) = exp( J; * O‘OL du), we see that exp(In® x) (¢ <1/2) is a

slowly varying function at infinity. Hence,

Hlsi: dz_zexp(ﬂn k) i 21n k) oo 214)

k=1

For H,, similarly to the proof of the main result in [1], we have

l
3 dkdz(ﬂ @ (- )™ () - p}2))

1<k<l<n i=k+1

_Hq> (A= o)™ (usp) - )"’z )))

i=1

X
< ) dkdlg

1<k<l<n
k
- Y aaks Y aal
1<k<l<n 1<k<l<n
% >In2 D, I3 [ (1n2 Dy
=: T1 + Tg. (215)
For T, we have
dkdl D2
T, < <= 2.16
1= ) ap S (216)

l<k<l<n
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According to Wu [18], for sufficiently large n, 0 < o < %, we have
aD,

. (217)
(InDy) =

D, ~ é(lnl_“ n exp(lno‘ n)), InD,, ~ In“ n, exp(ln"‘ n) ~

Since o < 1/2 implies (1 — )/« > 1, letting 0 < ¢ < (1 — )/« — 1, for sufficiently large n, we

get

n kn? D,

1<y a Y, 2D

k=1 I=k
n kIn2 D,
< exp(ln"‘ n) di
k=1 I=k

o~ =

D?InlnD,

< exp(In® n)D,InlnD,, « —
(In” 1) (InD,)"s

D2
< —r (2.18)
(InD,,)1+¢

Combining (2.15)-(2.18), we can get

2

H, K m (2.19)
By (2.13), (2.14), and (2.19), we have
D2
L« m. (2.20)
Clearly,

Ly = Var(Z did (&1(p) < wa (), ..., &k (p) < u(p))

k=1

—I((p) < u(P),..., \(p) < Mkk(P)))

< Zdl% Var(I(6(p) < wia @), .., & @) < ui(p))

k=1

—1((p) < ua(p), - .., M (p) < usac(p)))
Z did; Cov(I(&(p) < ua(p),....&(p) < ui(p))

1<i<j<m

—I((p) < ua @), ..., 2i(p) < wsP)), 1(E1(p) < up®); ..., &p) < u;(P))

+2

—1()»1(19) = ujl(p)’ .. -,)Lj(P) = M;J(P)))

= Ji + 2. (2.21)



Zeng and Wu Journal of Inequalities and Applications (2016) 2016:159

Similarly to (2.14), we find that /; < }"¢2, d; < 00. Note that

b =< Z did; Cov(I(&(p) < ua(p),..., &(p) < ui(p))
1<i<j<n
—I(M(p) < ua®); ..., 2i(p) < wi(p)), 1(E1(p) < ua®); ..., &(p) < u;(p))
—I(Mm(p) <up(p),..., 2i(p) < ”1'1’(10)) ~ (I(&@) <ua®),.... &) < u;(p))
1) 2 P 0) < 19)|
+ Z did; Cov(I(&(p) < ua(®),..., i(p) < ui(p))
1<i<j<n
—I(M(p) <ua®); ..., Ai(p) < wi(P)), 1(&p) < wi(p), ..., &§(P) < u;(p))
—I(A(p) < uji(),..., 2i(p) < M;’/‘(P)))’
=: o1 + J22.

For J5;, we can get

Ju < Z didi{|Cov(I(51(p) < ua(p),....&(p) < ua(p))

1<i<j<nm

—1(M(p) <ua®),..., 1i(p) < wi(p)), 1(E:() < up(p), ... &p) < u;(p))
—1(&(p) < ui(p), ... §(p) < u;(p)))
+|Cov(I(&(p) < ua(P),.... &(p) < uu(p))
—I(M(p) < ua®), ..., 7i(p) < wi(p)), 1 (M(p) < ua @), ..., A(p) < u;(P))
~1(%(p) < ui(p),-- 4(p) < u(p)))}

<2 Y dd{E[I(&@) < ua(),....§p) < u;p))

1<i<j<n

~1(&(p) < ui®),....&(p) < u(p))|
+E|I(M®) < ua(p),- . A(p) < w;(p))
—I(%ip) <uwi(P),.... 4(p) < u;i(p))|}

=2 > didi{P(&(p) < wip), ... &(p) < u;(p))

1<i<j<n

- ]P)(El(p) = M/l(lﬂ),« . w‘i:j(p) = ij(P)) + P(M(P) =< uji(p)’ .. "}\j(p) = ujj(p))
~P((p) < ua(p),.... 4(p) < u;(p))}
<2 Y did{|P(Ep) < wilp)..... 50) < uy(p))

1<i<j<nm

~P(%ip) < wi(p), .., 4i(p) < u;(p))]
+ ip(gl(p) < ujl(p)’ .. "Ej(p) < ij(lﬂ))
~P(ulp) < up(®),.... 4(p) < u;(p))|

Page 9 of 15

(2.22)
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+ 2|IP()\.i(p) <ui(p), ..., hi(p) < ”}'/(p))
~P(Mp) <), 2(p) < u;(@))|]}-

By Lemma 3 and (2.17), for & > 0, we have

2 > didi{[P(&p) < wip),.... §(p) < uy(p))

1<i<j<nm

_P(Ai(p) = Mji(p)""r}\j(p) = M;;(P))|

Page 10 of 15

(2.23)

+ |P(§1(P) =< Mjl(p);'~~’$j(p) =< M;’;’(P)) - ]P’(M(P) =< Mjl(p)v"’)‘j(p) =< M;'/’(P))”

n j

- In))
didy(n D)0+ = 3 X d;
< Z 1( n 1) Zj(lnDj)1+8 Z

1<i<j<n j=1 i=1

— exp(In“ ) " exp(2In® j)(Inj)'
= — D
Z j(InD;)1+ < 21: j(ln j)(+e)

-1 :

dlnx

/‘ ” exp(2 In® x)(Inx)1~*
. (ll’l x)a+aa

Inn
:/; exp(2ya)yl—2a—a£ d_)/

Inn
~ ﬁ (exp(zya)yl—Za—as +

2-3a-ae
20

2-3a—ae Inn

1 o
- exp(2r)y

)3 DZ D2
< exp(21n® n)(Inn)* 3¢ « " e = Vs
P( ) (InD,) "« (InD,)+¢
By (2.11)-(2.15), forp = 1,2,..., d, we obtain

Y didi[P(hilp) < wi®), .. 2(p) < ui(p)

1<i<j<nm

~P(1(p) < up(p),.... 4 (p) < u;(p))|
= Z did;|P(5i(p) < (1 - o)™ (u(p) - P,‘l/zi), e

1<i<j<n
5(p) < =)™ (;(p) - 0}"*¢))
-P(&a(p) < (- p) ™ (upp) - p}*¢), ..,
5(p) < A= )™ (w(p) - £;¢))|
= Z didf/R(P(fi(P) =(@1- ,0/‘)_1/2 (Mji(P) - P,'MZ),M,

1<i<j<nm
5() < (=) (w;(p) - £ *2))
~P(a(p) = (1~ p) " (ua) - p;%2), ..,

5i(p) < (1= )7 (uj(p) - p;'*2))) d®(2)

exp (2yo¢ )yl—Sa—aS) dy

(2.24)
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Z d.d; </ P (1 ,0]) 1/2(11/1(10) 1/2 ))

1<i<j<nm

- &/((1- o)™ (walp) - 0}z )))dd>(Z))

<Y dd/ do@) = Y. dd—

1<i<j<nm 1<i<j<n
D2
=—"7 (2.25)
(ln Dn)1+8
By (2.23)-(2.25), we have

2

J: Di (2.26)
n K (nD )1+g .

For Jy;, noting that {§;(p) : i > 1} and {A;(p) : i > 1} are independent, by Lemma 3 and
(2.24), we get

Jo =

Y didi{Cov(I(61(p) < ua(p),.... &(p) < ualp)),

1<i<j<n

1(&(P) < wi(p),....&(p) < u;(p)))
+Cov(I(M(p) < ua®), ..., 1) < ua(p)),

1(%i(p) < wi(p), ..., 4(p) < u(p)))}

Z did{P(&(p) < un(p),.... &) < uap), &P) < ui®), ..., &p) < u;(p))

1<i<j<nm

~P(hp) <uap),..., ri(p) < ui(p), Ai(p) < u(p), ..., Ai(p) < Mj/(lﬂ))
-P(&) < ua(p),....&(p) < ua@))P(&P) < ui®), ..., &p) < u;®))

—P(M@) < ua()..., ki(p) < ua(@))P(Li(p) < uji(), ..., Ai(p) < u;(p))}

IA

Z didi{|[P(1(p) < ua(®),.... &) < wi(p), &) < wi(p),....&(p) < uy;(p))

1<i<j<n

~P(Mp) < ua(p)..., i(p) < uap), hi(p) < uji(p),..., 2i(p) < uj/(lﬂ))|
+ [P(&1(0) < ua®), ... &(p) < wi(p)) —P(M(p) < ua(p),..., Ai(p) < uis(p))|
+ [P(6ip) < wilp), .. §(p) < w(p)) = P(Ai(p) < wi(p), ..., 1) < u(p)) |}

2 Z dld] COV([()\l(p) < Mil(p), .. .,)\1(10) =< Mu’(lﬂ))’

1<i<j<n

1(2i(p) < uis(p), ..., 2(p) < uy(p)))

< Z d;d;(In Dj)_(HE)

1<i<j<m

> didi Cov(I(3(p) < ua(p),.... 1i(p) < ui(p)),

1<i<j<nm
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1()\1'(19) = Mji(p)l"")‘-j(p) = u]/(p)))’

D,

< (1n Dn)1+£

+

Z did; Cov(I((p) < ua(p),-.., Ai(p) < ui(p)),

1<i<j<nm

1()\1'([7) = uji(p)’ . ")‘i(p) = M;;(P))) ‘ (2~27)

By (2.25), we have

> didi Cov(I(3(p) < ua(p),..., 1i(p) < ui(p)),

1<i<j<nm

1(7»1‘(1?) = Mji(p)’ . "’)"j(p) = M;/(P)))

Z didi{Cov(I(M(p) < ua(p),..., 1i(p) < uii(p)),

1<i<j<nm
1(i(p) < wi(P)s-.., ;(p) < wy(P)) ~1(Ma(p) < @), .., 2 (p) < ;(p)))
+ Cov(I(M(p) < ua(p),..., Ai(p) < ui(p)),

1(1(p) < up(@),-.., 1(p) < u(p)))}
< Z didiB|1(M(p) < up(p),..., 4(p) < uj(p))

1<i<j<m
—I(7(p) < ui(®), ..., 2i(p) < Mj;’(lﬂ))‘
+ Z did; Cov(I(21(p) < ua(p),..., Ai(p) < ui(p)),

1<i<j<nm

(M) < up@),.... 4(p) < u,,(p)))’
< Y didi(P(hip) < wip),.... i(p) < uy(p))

1<i<j<n
—~P(m@) < up®),-... () < uy(p)))
+ Var(z dil()q(p) <ua(p),..., Ai(p) < Mii([’)))

i=1

+ Y dVar(I((p) < ua(p),..., Mi(p) < ui(p)))

i=1

2 n
< (1n§:)l+s + Var( > did (M (p) < ua®),..., 1ip) < ui,-(p))). (2.28)

By (2.12)-(2.20), we have

n 2
Var(z dil(M(p) < ua(p),.... i(p) < Mii(P))) < (lnlD)n)1+g~ (2.29)
i=1 "
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Together with (2.28) and (2.29), we obtain

Z did; Cov(I(M(p) < ua(®),..., hi(p) < u,-,-(p))y

1<i<j<m

D2
I()Li(p) = uﬁ(p)’ oA (p) = ”/1(19))) m

Hence by (2.27) and (2.30), we have

2

Jn K m

By (2.21), (2.22), (2.26), and (2.31)), for « > 0, we get

2

L [
2 K (1 D )1+s

Thus (2.10)-(2.32) together establish (2.9). The proof is completed.

Proof of Theorem 2 According to Lin et al. [1], we have
i P (e 60) - ) =x)
= / exp(—te”‘(”)’”mz) d®(z), forp=1,2,...,d.
R

By similar methods to the ones used to prove Lemma 4, we can prove

n—00 1<i<

d
lim P £,-by)<x)= / —te V7)1 ().
im (ak<max k) x) g IRexp( e ) z

Page 13 of 15

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

Note lim,,_, o 2 = ¢ (¢>0) and we have Lemma 2, so the remainder of the proof is similar

to that of Theorem 1. We thus omit it.

Appendix
Proof of Lemma 1 See Lemma 3.1 of [17].

Proof of Lemma 2 Using Lemma 2.1 in [15], we have

uz(p) + u(q)
Z Z |r,,(p q) pn|exp< 2(1+|w]|) >

1<p#q<d1<i<j<ty

2 2
Mm(p) + Mn](q)
> \ny(p,q)—pn|exp<——2(1+|wH)
1<i<j<ty J
< 3 fymGerl e | e e
— riln(j—i) —r|+ — -1|=/+)
o j-i>n® ’ a j—i<n® ln(j_i) l ’

1<i<j<ty 1<i<j<t,

d

(A1)
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According to Wu [18], for sufficiently large #, we have InD,, ~ In® i, for 0 < & < % Some
simple calculations immediately induce

1

InD,) 1+ A2
/g‘x (InIn(j — l))“s (ln In n)1+s < (InDy) (A2)

1<i<j<ty

and
J2 < // Inly —x|dxdy < _ ¢ <« (InD,)-0%). a3
In n« 0<x<y<t (]I’l )l+s

Combining (A.1), (A.2), and (A.3), we get the desired result. -

Proof of Lemma 3 For t =1, using Lemmas 1 and 2, the proof can be obtained simply. [

Proofof Lemma 4 Let{&/(p),&;(p),...,&, ()} have the same distribution as {£ (), & (), . . .,
&.(p)}, forp=1,2,...,d, but {%'1(1!’ &(p);...,&,(p)} isindependent of {{(¢), £, (q), ..., &,(9)},
as p #q. Denote um(p) =0y by +m — my, Wy = (Ui (1), Ui (2), ..., uyi(d)) is a real vector.
By (3.2) in [19] and Lemma 1, we have

(o e -mi) <)~ 2o (a1 5) <)

1<i<n
p=1

=P <wi=12,...,n) - P(§ <uui=12,...,1)|

<1<1Z 2 i) -riwle <_2(1+—pij(1;))>

p=1 1<i<j<n

2 2
+ Ky Z Z |7?j(p»Q)—r£j(p,q)|eXp<_M>

Wil 2(1 + pii(p, 9))

=:A1 +A2. (34)
{&/(p), &5(p), ..., &, (p)} has the same distribution as {& (p), &(p), . . ., £,(p)}, which implies
rg(p) =r;(p). Then A; = 0.

Notice that {&(p), &5 (p), ..., &, ()} is independent of {£/(¢),£5(q), .. .,&,(q)}, as p # g, thus
r;j(p, q) = 0. By using Lemma 3.2 in [17], we have

u*,(p) + u2,(q)
1<p§q<dl<;}<n 2(1 + pl](p’ Q))

< (InD,) ™ - 0.

By (3.4),
lim IP(a,,(max N, —b, - mj}) < x)
n—00 1<i<n

= lim Qw(an (max ni(p) — by = ;) < (). (35)
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From Theorem of [16], we get

d d
P . _ ok — _ —x(p)—r+\/272
n&ﬁﬂ?(@(gﬁz ni(p) — by mn) 5x(p)> E/Rexp( e )dCD(z). (3.6)
Combining (3.5) and (3.6), the proof is completed. O
Proof of Lemma 5 The proof can be found in Lemma 2.2 obtained by Wu [18]. d
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