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Abstract
As one of the operator splitting methods, the Peaceman-Rachford splitting method
(PRSM) has attracted considerable attention recently. This paper proposes a
generalized PRSM for structured variational inequalities with positive orthants. In fact,
we apply the well-developed LQP regularization to regularize the subproblems of the
recently proposed strictly contractive PRSM, thus the resulting subproblems reduce
to two nonlinear equation systems, which are much easier to solve than the
subproblems of PRSM. Furthermore, these two nonlinear equations are allowed to be
solved inexactly. For the new method, we prove its global convergence and establish
its worst-case convergence rate in the ergodic sense. Numerical experiments show
that the proposed method is quite efficient for the traffic equilibrium problems with
link capacity bound.
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1 Introduction
In this paper, we focus on the variational inequalities with separable structures and posi-
tive orthants. That is, find u∗ ∈ � such that

(
u – u∗)�T

(
u∗)≥ , u ∈ �, ()

with

u =

(
x
y

)

, T(u) =

(
f (x)
g(y)

)

, � =
{

(x, y)|Ax + By = b, x ∈Rm
+ , y ∈Rn

+
}

,

where f : X → Rm and g : Y → Rn are continuous and monotone operators; A ∈ Rl×m

and B ∈Rl×n are given matrices; b ∈Rl is a given vector. Problem () is a standard math-
ematical model arising from several scientific fields and admits a large number of applica-
tions in network economics, traffic assignment, game theoretic problems, etc.; see [–]
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and the references therein. Throughout, we assume that the solution of Problem () (de-
noted by �∗) is nonempty.

By attaching a Lagrange multiplier vector λ ∈ Rl to the linear constraints Ax + By = b,
Problem () can be equivalently transformed into the following compact form, denoted by
VI(W , Q): Find w∗ ∈W , such that

(
w – w∗)�Q

(
w∗)≥ , ∀w ∈W , ()

where

w =

⎛

⎜
⎝

x
y
λ

⎞

⎟
⎠ , Q(w) =

⎛

⎜
⎝

f (x) – A�λ

g(y) – B�λ

Ax + By – b

⎞

⎟
⎠ , W = Rm

+ ×Rn
+ ×Rl.

We denote by W∗ the solution of VI(W , Q). Obviously, W∗ is nonempty under the as-
sumption that �∗ is nonempty. In addition, due to the monotonicity of f (·) and g(·), the
mapping Q(·) of VI(W , Q) is also monotone.

A simple but powerful operator splitting algorithm in the literature is the alternating
direction method of multipliers (ADMM) proposed in [–]. For the developments of
ADMM on structured variational inequalities (), we refer to [–]. Similar to ADMM,
the Peaceman-Rachford splitting method (PRSM) is also a simple algorithm for Problem
(); see [–]. For solving (), the iterative scheme of PRSM is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

 ≤ xk+ ⊥ {f (xk+) – A�[λk – β(Axk+ + Byk – b)]} ≥ ,
λk+ 

 = λk – β(Axk+ + Byk – b),
 ≤ yk+ ⊥ {g(yk+) – B�[λk+ 

 – β(Axk+ + Byk+ – b)]} ≥ ,
λk+ = λk+ 

 – β(Axk+ + Byk+ – b),

()

where β >  is a penalty parameter. Different from the ADMM, the PRSM updates the
Lagrange multiplier twice at each iteration. However, the global convergence of PRSM
cannot be guaranteed without any further assumptions on the model (). To solve this
issue, He et al. [] developed the following strictly contractive PRSM (SC-PRSM):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

 ≤ xk+ ⊥ {f (xk+) – A�[λk – β(Axk+ + Byk – b)]} ≥ ,
λk+ 

 = λk – rβ(Axk+ + Byk – b),
 ≤ yk+ ⊥ {g(yk+) – B�[λk+ 

 – β(Axk+ + Byk+ – b)]} ≥ ,
λk+ = λk+ 

 – rβ(Axk+ + Byk+ – b),

()

where r ∈ (, ) is an underdetermined relaxation factor. The global convergence of SC-
PRSM is proved via the analytic framework of contractive type methods in [].

Note that the computational load of SC-PRSM () relies on the resulting two comple-
mentarity problems, which are computationally expensive, especially for large-scale prob-
lems. Therefore, how to alleviate the difficulty of these subproblems deserves intensive re-
search. In this paper, motivated by well-developed logarithmic-quadratic proximal (LQP)
regularization proposed in [], we regularize the two complementarity problems in ()
by LQP, which forces the solutions of the two complementarity problems to be interior
points of Rm

+ and Rn
+, respectively, thus the two complementarity problems reduce to two
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easier nonlinear equation systems. On the other hand, it is well known that the generalized
ADMM [, ] includes the classical ADMM as a special case, and it can numerically ac-
celerate the original ADMM with some values of the relaxation factor. Therefore, inspired
by the above analysis, we get the following iterative scheme:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

 ≤ xk+ ⊥ {f (xk+) – A�[λk – β(Axk+ + Byk – b)]
+ R[(xk+ – xk) + μ(xk – P

k (xk+)–)]} ≥ ,
λk+ 

 = λk – rβ(Axk+ + Byk – b),
 ≤ yk+ ⊥ {g(yk+) – B�[λk+ 

 – β(αAxk+ – ( – α)(Byk+ – b) + Byk+ – b)]
+ S[(yk+ – yk) + μ(yk – Q

k(yk+)–)]} ≥ ,
λk+ = λk+ 

 – β[αAxk+ – ( – α)(Byk+ – b) + Byk+ – b],

()

where α ∈ (, ), r ∈ (,  – α), and μ ∈ (, ) are three constants, and R = diag(r, r, . . . ,
rm) ∈ Rm×m and S = diag(s, s, . . . , sn) ∈ Rn×n are symmetric positive definite matrices,
Pk = diag(/xk

 , /xk
, . . . , /xk

m), Qk = diag(/yk
 , /yk

, . . . , /yk
n), and (xk+)– (or (yk+)–) is a

vector whose jth element is /xk+
j (or /yk+

j ). By Lemma . (see Section ), the new it-
erate (xk+, yk+) generated by () lies in the interior of Rm+n, provided that the previous
iterate (xk , yk) does. Therefore, the two complementarity problems in () can reduce to the
nonlinear equation systems, and we get the following iterative scheme:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f (xk+) – A�[λk – β(Axk+ + Byk – b)] + R[(xk+ – xk) + μ(xk – P
k (xk+)–)] = ,

λk+ 
 = λk – rβ(Axk+ + Byk – b),

g(yk+) – B�[λk+ 
 – β(αAxk+ – ( – α)(Byk+ – b) + Byk+ – b)]

+ S[(yk+ – yk) + μ(yk – Q
k(yk+)–)] = ,

λk+ = λk+ 
 – β[αAxk+ – ( – α)(Byk+ – b) + Byk+ – b].

Obviously, the above iterative scheme includes two nonlinear equations, which are not
easy to solve exactly in many applications. This motivates us to propose the following
inexact version:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find xk+ ∈ Rm
++, such that ‖xk+ – xk+∗ ‖ ≤ vk ,

λk+ 
 = λk – rβ(Axk+ + Byk – b),

Find yk+ ∈ Rn
++, such that ‖yk+ – yk+∗ ‖ ≤ vk ,

λk+ = λk+ 
 – β[αAxk+ – ( – α)(Byk+ – b) + Byk+ – b],

()

where {vk} is a nonnegative sequence satisfying
∑∞

k= vk < +∞, and xk+∗ , yk+∗ satisfy

f
(
xk+

∗
)

– A�[λk – β
(
Axk+

∗ + Byk – b
)]

+ R
[(

xk+
∗ – xk) + μ

(
xk – P

k
(
xk+

∗
)–)] = ,

g
(
yk+
∗
)

– B�[λk+ 
∗ – β

(
αAxk+

∗ – ( – α)
(
Byk+

∗ – b
)

+ Byk+
∗ – b

)]

+ S
[(

yk+
∗ – yk) + μ

(
yk – Q

k
(
yk+
∗
)–)] = .

Here λ
k+ 

∗ = λk – rβ(Axk+∗ + Byk – b).
The rest of this paper is organized as follows. In Section , we summarize preliminaries

which are useful for further discussion, and we present the new method. In Section , the
global convergence and the worst-case convergence rate in the ergodic sense of the new
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method are proved. In Section , we apply the proposed method to solve the traffic equi-
librium problems with link capacity bound. Finally, some concluding remarks are made in
Section .

2 Preliminaries
In this section, we first of all summarize some notations and lemmas which are used fre-
quently in the sequent analysis, and then present our proposed method in detail.

First, we define four matrices as follows:

M =

⎛

⎜
⎝

Im  
 In 
 –βB (r + α)Il

⎞

⎟
⎠ ,

P =

⎛

⎜
⎝

( + μ)R  
 ( + μ)S + βB�B ( – r – α)B�

 –B 
β

Il

⎞

⎟
⎠ ,

()

and

N =

⎛

⎜
⎝

μR  
 μS 
  

⎞

⎟
⎠ ,

H =

⎛

⎜
⎝

( + μ)R  
 ( + μ)S + β

r+α
B�B –r–α

r+α
B�

 –r–α
r+α

B 
β(r+α) Il

⎞

⎟
⎠ .

()

The four matrices M, P, N , H just defined satisfy the following assertions.

Lemma . If μ ∈ (, ), α ∈ (, ), r ∈ (,  – α), and R, S are symmetric positive definite,
then we have:

() The matrices M, P, H defined, respectively, in (), () have the following relationship:

HM = P. ()

() The two matrices H and H̃ := P� + P – M�HM – N are symmetric positive definite.

Proof Item () holds evidently. As for item (), it is obvious that H and H̃ are symmetric.
Now, we prove that they are positive definite. Note that μ ∈ (, ), α ∈ (, ), and r ∈ (,  –
α). Then for any w = (x, y,λ) �= , we get

w�Hw = ( + μ)‖x‖
R + ( + μ)‖y‖

S +


r + α

(
β‖By‖ + ( – r – α)λ�By +


β

‖λ‖
)

≥ ( + μ)‖x‖
R + ( + μ)‖y‖

S +


r + α
min{ – r – α, r + α}‖By‖ · ‖λ‖

≥ ( + μ)‖x‖
R + ( + μ)‖y‖

S, ()

where the inequality follows from the Cauchy-Schwartz inequality. If x �=  or y = , then
from (), we have w�Hw > . Otherwise x = , y = , and λ �= , then we have w�Hw =
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‖λ‖

β(r+α) > . Thus, H is positive definite. As for H̃ , using (), we have

H̃ = P� + P – M�HM – N

= P� + P – M�P – N

=

⎛

⎜
⎝

( – μ)R  
 ( – μ)S 
  –(r+α)

β
Il

⎞

⎟
⎠ .

Therefore H̃ is positive definite. The proof is complete. �

The following lemma lists a fundamental assertion with respect to the LQP regulariza-
tion, which was proved in [].

Lemma . Let P̄ = diag(p, p, . . . , pt) ∈Rt×t be a positive definite diagonal matrix, q(u) ∈
Rt be a monotone mapping of u with respect to Rt

++, and μ ∈ (, ). For a given ū ∈ Rt
++,

we define Ū := diag(ū, ū, . . . , ūt). Then the equation

q(u) + P̄
[
(u – ū) + μ

(
ū – Ūu–)] = 

has the unique positive solution u. In addition, for this positive solution u ∈ Rt
++ and any

v ∈Rt
+, we have

(v – u)�q(u) ≥  + μ


(‖u – v‖

P̄ – ‖ū – v‖
P̄

)
+

 – μ


‖ū – u‖

P̄ . ()

Now we present the generalized PRSM with LQP regularization for solving the Prob-
lem ().

Remark . Note that Algorithm  includes many LQP-type methods as special cases,
such as:

• If r =  and vk =  (∀k), we obtain the generalized alternating direction method with
LQP regularization proposed in [].

• If α = , we obtain a method similar to the method proposed in [], and their
difference only lies in the latter is designed for the separable convex programming.

Algorithm  A generalized PRSM with LQP regularization for VI(W , Q)
Input μ ∈ (, ), α ∈ (, ), β > , r ∈ (,  – α), R = diag(r, r, . . . , rm), and S =
diag(s, s, . . . , sn) are positive definite matrices. Let {vk} be a nonnegative sequence sat-
isfying

∑∞
k= vk < +∞. Initialize (x, y,λ) = (x, y,λ) with x > , y > . Set k = .

while ‘not converged’, do
() Compute wk+ = (xk+, yk+,λk+) according to ().
() k = k + .

end while
Output xk+, yk+.
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Remark . Obviously, by the relationship of the PRSM and the generalized ADMM pre-
sented in [], the iterative scheme () is equivalent to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find xk+ ∈ Rm
++, such that ‖xk+ – xk+∗ ‖ ≤ vk ,

λ̃k+ 
 = λk – μβ(Axk+ + Byk – b),

Find yk+ ∈ Rn
++, such that ‖yk+ – yk+∗∗ ‖ ≤ vk ,

λk+ = λ̃k+ 
 – β(Axk+ + Byk+ – b),

where μ = α –  + r and yk+∗∗ satisfy

g
(
yk+
∗∗
)

– B�[λk+ 
∗ – β

(
Axk+

∗ + Byk+
∗∗ – b

)]

+ S
[(

yk+
∗∗ – yk) + μ

(
yk – Q

k
(
yk+
∗∗
)–)] = .

Obviously, when α = , r = , that is, λ̃k+ 
 = λ

k+ 
∗ = λk , the above iterative scheme reduces

to the first inexact ADMM with LQP in [].

3 Global convergence and convergence rate
In this section, we aim to prove the global convergence of Algorithm , and establish its
worst-case convergence rate in a nonergodic sense.

To prove the global convergence, we need to define some auxiliary sequences as follows:

λk+
∗ = λ

k+ 
∗ – β

(
Axk+

∗ + Byk+
∗ – b

)
,

and

wk+
∗ =

⎛

⎜
⎝

xk+∗
yk+∗
λk+∗

⎞

⎟
⎠ and ŵk =

⎛

⎜
⎝

x̂k

ŷk

λ̂k

⎞

⎟
⎠ =

⎛

⎜
⎝

xk+∗
yk+∗

λk – β(Axk+∗ + Byk – b)

⎞

⎟
⎠ . ()

Thus, based on () and (), we immediately have

xk+
∗ = x̂k , yk+

∗ = ŷk , λ
k+ 

∗ = λk – r
(
λk – λ̂k),

λk+
∗ = λk –

[
(r + α)

(
λk – λ̂k) – βB

(
yk – ŷk)].

This and (), () show that

wk+
∗ = wk – M

(
wk – ŵk). ()

Lemma . The sequence {wk∗} defined by () and the sequence {wk} generated by Algo-
rithm  satisfy the following inequality:

∥∥wk+
∗ – wk+∥∥

H ≤ ρvk , ∀k ≥ , ()

where ρ >  and H is defined by ().
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Proof By the definitions of λk+ and λk+∗ , we have

λk+
∗ – λk+ = ( + r)βA

(
xk+ – xk+

∗
)

+ βB
(
yk+ – yk+

∗
)
.

This and (), () imply () immediately. The lemma is proved. �

Lemma . If wk = wk+, then wk+ = (xk+, yk+,λk+) produced by Algorithm  is a solution
of VI(W , Q).

Proof For any x ∈ Rm
+ , applying Lemma . to the x-subproblem of () by setting ū = xk ,

u = x̂k , v = x, and

q(u) = f
(
x̂k) – A�[λk – β

(
Ax̂k + Byk – b

)]

in (), we have

(
x – x̂k)�{f

(
x̂k) – A�[λk – β

(
Ax̂k + Byk – b

)]}

≥  + μ


(∥∥x̂k – x

∥
∥

R –
∥
∥xk – x

∥
∥

R

)
+

 – μ


∥
∥xk – x̂k∥∥

R

=
 + μ


(∥∥x̂k – x

∥∥
R –
∥∥xk – x̂k + x̂k – x

∥∥
R

)
+

 – μ


∥∥xk – x̂k∥∥

R

= ( + μ)
[(

x̂k – x
)�R
(
x̂k – xk) –



∥
∥xk – x̂k∥∥

R

]
+

 – μ


∥
∥xk – x̂k∥∥

R

= ( + μ)
(
x̂k – x

)�R
(
x̂k – xk) – μ

∥∥xk – x̂k∥∥
R,

from which we get

(
x – x̂k)�[( + μ)R

(
xk – x̂k) – f

(
x̂k) + A�λ̂k]≤ μ

∥
∥xk – x̂k∥∥

R. ()

For any y ∈ Rn
+, applying Lemma . to the y-subproblem of () by setting ū = yk , u = ŷk ,

v = y, and

q(u) = g
(
ŷk) – B�[λk+ 

∗ – β
(
αAx̂k – ( – α)

(
Bŷk – b

)
+ Bŷk – b

)]

in (), we have

(
y – ŷk)�{g

(
ŷk) – B�[λk+ 

∗ – β
(
αAx̂k – ( – α)

(
Bŷk – b

)
+ Bŷk – b

)]}

≥  + μ


(∥∥ŷk – y

∥
∥

S –
∥
∥yk – y

∥
∥

S

)
+

 – μ


∥
∥yk – ŷk∥∥

S

= ( + μ)
(
ŷk – y

)�S
(
ŷk – yk) – μ

∥∥yk – ŷk∥∥
S,

from the above inequality and λ
k+ 

∗ – β(αAx̂k – ( – α)(Bŷk – b) + Bŷk – b) = λ̂k + ( – r –
α)(λk – λ̂k) – βB(ŷk – yk), we get

(
y – ŷk)�{[( + μ)S + βB�B

](
yk – ŷk) – g

(
ŷk) + B�λ̂k – ( – r – α)B�(λ̂k – λk)}

≤ μ
∥∥yk – ŷk∥∥

S. ()
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In addition, from () again, we have

(
Ax̂k + Bŷk – b

)
– B
(
ŷk – yk) +


β

(
λ̂k – λk) = . ()

Then, combining (), (), (), for any w = (x, y,λ) ∈W , we have

(
ŵk – w

)�

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

f (x̂k) – A�λ̂k

g(ŷk) – B�λ̂k

Ax̂k
 + Ax̂k

 – b

⎞

⎟
⎠

+

⎛

⎜
⎝

( + μ)R(x̂k
 – xk

 )
( – r – α)B�(λ̂k – λk) + [( + μ)S + βB�B](ŷk – yk)

–B(ŷk – yk) + (λ̂k – λk)/β

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

≤ μ
∥∥xk – x̂k∥∥

R + μ
∥∥yk – ŷk∥∥

S.

Then, recalling the definitions of P in () and N in (), the above inequality can be written
as

(
ŵk – w

)�Q
(
ŵk)≤ ∥∥wk – ŵk∥∥

N –
(
w – ŵk)�P

(
wk – ŵk), ∀w ∈W . ()

In addition, if wk = wk+, then we have wk = ŵk , which together with () indicates that

(
w – ŵk)�Q

(
ŵk)≥ , ∀w ∈W .

This implies that ŵk = (x̂k
 , x̂k

, λ̂k) is a solution of VI(W , Q). Since ŵk = wk+, therefore wk+

is also a solution of VI(W , Q). This completes the proof. �

The next lemma further refines the right term of () and express it in terms of some
quadratic terms, and its proof is motivated by Lemma . in [].

Lemma . Let the sequence {wk} be generated by Algorithm . Then, for any w ∈ W , we
have

∥∥wk – ŵk∥∥
N –
(
w – ŵk)�P

(
wk – ŵk)

=


(∥∥w – wk∥∥

H –
∥∥w – wk+

∗
∥∥

H

)
–



∥∥wk – ŵk∥∥

H̃ . ()

Proof Taking a = w, b = ŵk , c = wk , d = wk+∗ in the identity

(a – b)�H(c – d) =


(‖a – d‖

H – ‖a – c‖
H
)

+


(‖c – b‖

H – ‖d – b‖
H
)
,

we get

(
w – ŵk)�H

(
wk – wk+

∗
)

=


(∥∥w – wk+

∗
∥∥

H –
∥∥w – wk∥∥

H

)
+



(∥∥wk – ŵk∥∥

H –
∥∥wk+

∗ – ŵk∥∥
H

)
,
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which combined with () and () yields

(
w – ŵk)�P

(
wk – ŵk)

=


(∥∥w – wk+

∗
∥
∥

H –
∥
∥w – wk∥∥

H

)
+



(∥∥wk – ŵk∥∥

H –
∥
∥wk+

∗ – ŵk∥∥
H

)
. ()

For the last term of (), we have

∥
∥wk – ŵk∥∥

H –
∥
∥wk+

∗ – ŵk∥∥
H

=
∥
∥wk – ŵk∥∥

H –
∥
∥(wk – ŵk) –

(
wk – wk+

∗
)∥∥

H

=
∥
∥wk – ŵk∥∥

H –
∥
∥(wk – ŵk) – M

(
wk – ŵk)∥∥

H

= 
(
wk – ŵk)�HM

(
wk – ŵk) –

(
wk – ŵk)�M�HM

(
wk – ŵk)

=
(
wk – ŵk)(P� + P – M�HM

)(
wk – ŵk).

Substituting it in (), we obtain (). The proof is complete. �

The following theorem indicates the sequence generated by Algorithm  is Fejèr mono-
tone with respect to W∗.

Theorem . Let {wk} be the sequence generated by Algorithm . Then, for any w∗ ∈ W∗,
we have

∥
∥wk+

∗ – w∗∥∥
H ≤ ∥∥wk – w∗∥∥

H –
∥
∥wk – ŵk∥∥

H̃ . ()

Proof From (), (), and the monotonicity of Q, we obtain

(
ŵk – w

)�Q(w)

≤ (ŵk – w
)�Q
(
ŵk)

≤ ∥∥wk – ŵk∥∥
N –
(
w – ŵk)�P

(
wk – ŵk)

=


(∥∥w – wk∥∥

H –
∥∥w – wk+

∗
∥∥

H

)
–



∥∥wk – ŵk∥∥

H̃ . ()

The assertion () follows immediately by setting w = w∗ ∈ W∗ in (). The theorem is
proved. �

Now, we are ready to prove the global convergence of Algorithm .

Theorem . The sequence {wk} generated by Algorithm  converges to some w∞, which
belongs to W∗.

Proof First, by (), for any given w∗ ∈W∗, we have

∥∥wk+
∗ – w∗∥∥

H ≤ ∥∥wk – w∗∥∥
H ,
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which together with () implies that

∥
∥wk+ – w∗∥∥

H ≤ ∥∥wk+ – wk+
∗
∥
∥

H +
∥
∥wk+

∗ – w∗∥∥
H ≤ ρvk +

∥
∥wk – w∗∥∥

H .

Therefore, for any l ≤ k, we have

∥∥wk+ – w∗∥∥
H ≤ ∥∥wl – w∗∥∥

H + ρ

k∑

i=l

vi.

Since
∑∞

k= vk < +∞, there is a constant Cw∗ > , such that

∥
∥wk+ – w∗∥∥

H ≤ Cw∗ < +∞, ∀k ≥ . ()

Therefore the sequence {wk} generated by Algorithm  is bounded. Furthermore, it follows
from (), (), () that

∥∥wk+ – w∗∥∥
H

=
∥∥(wk+ – wk+

∗
)

+
(
wk+

∗ – w∗)∥∥
H

≤ ∥∥wk+ – wk+
∗
∥∥

H + 
∥∥wk+ – wk+

∗
∥∥

H × ∥∥wk+
∗ – w∗∥∥

H +
∥∥wk+

∗ – w∗∥∥
H

≤ ∥∥wk – w∗∥∥
H –
∥∥wk – ŵk∥∥

H̃ + ρvk
∥∥wk – w∗∥∥

H + ρv
k

≤ ∥∥wk – w∗∥∥
H –
∥
∥wk – ŵk∥∥

H̃ + ρvkCw∗ + ρv
k . ()

Then, summing the inequality () over k = , , . . . and by
∑∞

k= vk < +∞, we have

∞∑

k=

∥
∥wk – ŵk∥∥

H̃ ≤ ∥∥w – w∗∥∥
H +

∞∑

k=

(
ρvkCw∗ + ρv

k
)

< +∞,

which implies that

lim
k→∞
∥
∥wk – ŵk∥∥

H̃ = . ()

Thus the sequence {ŵk} is also bounded, and thus it has at least one cluster point. Let w∞

be a cluster point of {ŵk} and let the subsequence {ŵkj} converge to w∞. Then, by () and
(), we can get

lim
k→∞
(
w – ŵk)�Q

(
ŵk)≥ , ∀w ∈W . ()

That is,

(
w – w∞)�Q

(
w∞)≥ , ∀w ∈W ,

which implies that w∞ ∈W∗. By (), we have

∥
∥wk+ – w∞∥∥

H ≤ ∥∥wl – w∞∥∥
H +

∞∑

i=l

(
ρviCw∗ + ρv

i
)
, ∀k ≥ ,∀l ≤ k. ()



Sun and Liu Journal of Inequalities and Applications  (2016) 2016:150 Page 11 of 17

From limk→∞ ‖wk – ŵk‖H̃ =  and {ŵkj} → w∞, for any given ε > , there exists an integer
j, such that

∥
∥wkj – w∞∥∥

H̃ <
ε√


and
∞∑

i=kj

(
ρviCw∗ + ρv

i
)

<
ε


.

Therefore, for any k ≥ kj , it follows from the above two equalities and () that

∥∥wk+ – w∞∥∥
H̃ ≤
√√
√√
∥∥wkj – w∞∥∥

H̃ +
∞∑

i=kj

(
ρviCw∗ + ρv

i
)

< ε,

which combining with the positive definite of H̃ indicates that the sequence {wk} converges
to w∞ ∈W∗. This completes the proof. �

Now, we are going to establish the convergence rate of Algorithm  in a nonergodic
sense.

Theorem . Let {wk} be the sequence generated by Algorithm . Then, for any w ∈W , we
have

(w̃t – w)�Q(w) ≤ 
t + 

(


∥∥w – w

∥∥
H + ρ

t∑

k=

vk
∥∥w – wk+∥∥

H

)

, ()

where w̃t = (
∑t

k= ŵk)/(t + ).

Proof From (), we have

(
w – ŵk)�Q(w) +



∥∥w – wk∥∥

H ≥ 

∥∥w – wk+

∗
∥∥

H , ∀w ∈W .

It follows from () that

∥∥w – wk+
∗
∥∥

H

≥ (∥∥w – wk+∥∥
H –
∥∥wk+

∗ – wk+∥∥
H

)

=
∥∥w – wk+∥∥

H – 
∥∥w – wk+∥∥

H × ∥∥wk+
∗ – wk+∥∥

H +
∥∥wk+

∗ – wk+∥∥
H

≥ ∥∥w – wk+∥∥
H – ρvk

∥∥w – wk+∥∥
H , ∀w ∈W .

From the above two inequalities, we get

(
w – ŵk)�Q(w) +



∥∥w – wk∥∥

H

≥ 

∥∥w – wk+∥∥

H – ρvk
∥∥w – wk+∥∥

H , ∀w ∈W .
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Summing the above inequality over k = , , . . . , t, we obtain

[

(t + )w –

( t∑

k=

ŵk

)]�
Q(w) +



∥
∥w – w

∥
∥

H

≥ 

∥∥w – wt+∥∥

H – ρ

t∑

k=

vk
∥∥w – wk+∥∥

H

≥ –ρ

t∑

k=

vk
∥
∥w – wk+∥∥

H , ∀w ∈W .

Using the notation of w̃t , we have

(w – w̃t)�Q(w) +


(t + )
∥
∥w – w

∥
∥

H ≥ –
ρ

t + 

t∑

k=

vk
∥
∥w – wk+∥∥

H , ∀w ∈W .

The assertion () follows from the above inequality immediately. The proof is com-
pleted. �

Remark . From the proof of Theorem ., there is a constant D > , such that

∥∥wk∥∥
H ≤ D and

∥∥ŵk∥∥
H ≤ D, ∀k ≥ .

Since w̃t = (
∑t

k= ŵk)/(t + ), thus, we also have ‖w̃t‖ ≤ D. Denote E =
∑∞

k= vk < +∞. For
any w ∈ BW (w̃t) = {w ∈W |‖w – w̃t‖H ≤ }, by (), we get

(w̃t – w)�Q(w)

≤ 
t + 

(


(∥∥w – w̃t

∥
∥

H + ‖w̃t – w‖H
) + ρ

t∑

k=

vk
(∥∥w̃t – wk+∥∥

H + ‖w̃t – w‖H
)
)

≤ 
t + 

(



(D + ) + ρE(D + )
)

.

Then, for any given ε > , the above inequality shows that after at most �(D + )(D +  +
ρE)/(ε) – � iterations, we can get

(w̃t – w)�Q(w) ≤ ε, ∀w ∈ BW (w̃t).

This indicates that w̃t is an approximate solution of VI(W , Q) with an accuracy of O(/t).
Thus a worst-case O(/t) convergence rate of Algorithm  in the ergodic sense is estab-
lished.

4 Numerical experiments
In this section, we apply Algorithm  to the traffic equilibrium problem with link capacity
bound [], which has been well studied in the literature of transportation. All codes were
written by Matlab Ra and conducted on a ThinkPad notebook with a Pentium (R)
Dual-Core CPU T@. GHz, GB of memory.
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Figure 1 A directed network with 20 nodes and 28 links.

Table 1 The link traversing cost functions ta(f̂ )

t1(f̂ ) = 5 · 10–5 f̂ 41 + 5f̂1 + 2f̂2 + 500 t15(f̂ ) = 3 · 10–5 f̂ 415 + 9f̂15 + 2f̂14 + 200

t2(f̂ ) = 3 · 10–5 f̂ 42 + 4f̂2 + 4f̂1 + 200 t16(f̂ ) = 8f̂ 416 + 5f̂12 + 300

t3(f̂ ) = 5 · 10–5 f̂ 43 + 3f̂3 + f̂4 + 350 t17(f̂ ) = 3 · 10–5 f̂ 417 + 7f̂17 + 2f̂15 + 450

t4(f̂ ) = 3 · 10–5 f̂ 44 + 6f̂4 + 3f̂5 + 400 t18(f̂ ) = 5f̂18 + f̂16 + 300

t5(f̂ ) = 6 · 10–5 f̂ 45 + 6f̂5 + 4f̂6 + 600 t19(f̂ ) = 8f̂19 + 3f̂17 + 600

t6(f̂ ) = 7f̂6 + 3f̂7 + 500 t20(f̂ ) = 3 · 10–5 f̂ 420 + 6f̂20 + f̂21 + 300

t7(f̂ ) = 8 · 10–5 f̂ 47 + 8f̂7 + 2f̂8 + 400 t21(f̂ ) = 4 · 10–5 f̂ 421 + 4f̂21 + f̂22 + 400

t8(f̂ ) = 4 · 10–5 f̂ 48 + 5f̂8 + 2f̂9 + 650 t22(f̂ ) = 2 · 10–5 f̂ 422 + 6f̂22 + f̂23 + 500

t9(f̂ ) = 10–5 f̂ 49 + 6f̂9 + 2f̂10 + 700 t23(f̂ ) = 3 · 10–5 f̂ 423 + 9f̂23 + 2f̂24 + 350

t10(f̂ ) = 4f̂10 + f̂12 + 800 t24(f̂ ) = 2 · 10–5 f̂ 424 + 8f̂24 + f̂25 + 400

t11(f̂ ) = 7 · 10–5 f̂ 411 + 7f̂11 + 4f̂12 + 650 t25(f̂ ) = 3 · 10–5 f̂ 425 + 9f̂25 + 3f̂26 + 450

t12(f̂ ) = 8f̂12 + 2f̂13 + 700 t26(f̂ ) = 6 · 10–5 f̂ 426 + 7f̂26 + 8f̂27 + 300

t13(f̂ ) = 10–5 f̂ 413 + 7f̂13 + 3f̂18 + 600 t27(f̂ ) = 3 · 10–5 f̂ 427 + 8f̂27 + 3f̂28 + 500
t14(f̂ ) = 8f̂14 + 3f̂15 + 500 t28(f̂ ) = 3 · 10–5 f̂ 428 + 7f̂28 + 650

Consider a network [N ,L] of nodes N and directed links L, which is depicted in Fig-
ure , and consists of  nodes,  links and  O/D pairs.

We use the following symbols. a: a link; p: a path; ω: an origin/destination (O/D) pair of
nodes; Pω : the set of all paths connecting the O/D pair ω; Â: the path-arc incidence matrix;
E: the path-O/D pair incident matrix; xp: the traffic flow on the path p; f̂a: the link load on
the link a; dω : the traffic amount between the O/D pair ω. Thus, the link-flow vector f̂ is
given by

f̂ = Â�x

and the O/D pair-traffic amount vector d is given by

d = E�x.

Let t(f̂ ) = {ta, a ∈L} be the vector of link travel costs, which is given in Table . For a given
link travel cost vector t, the path travel cost vector θ is given by

θ = Āt(f̂ ) and θ (x) = Ât
(
Â�x
)
.

Associated with every O/D pair ω, there is a travel disutility ηω(d), which is defined by

ηω(d) = –mωdω + qω, ∀ω, ()

and the parameters mω , qω are given in Table . Now, the traffic network equilibrium prob-
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Table 2 The O/D pairs and the parameters in (25)

No. of pairs 1 2 3 4 5 6 7 8

(O,D) (1, 20) (1, 19) (2, 17) (4, 20) (6, 19) (2, 20) (2, 13) (3, 14)
mω 5 6 1 6 10 10 5 4
qω 1,000 2,000 5,000 1,000 5,000 2,000 1,000 2,000
No. of paths 10 9 6 7 4 9 2 2

lem is to seek the path-flow pattern x∗ []:

x∗ ≥ ,
(
x – x∗)�F̂

(
x∗)≥ , ∀x ∈ S :=

{
x ∈Rn|Â�x ≤ b, x ≥ 

}
,

where

F̂p(x) = θp(x) – ηω

(
d(x)
)
, ∀ω, p ∈Pω,

and b is the given link capacity vector. Using matrices Â and E, a compact form of mapping
is F̂(x) = Ât(Â�x) – Eη(E�x). Introducing a slack variable y ≥  and setting g(y) = , B = I ,
the above problem can be converted into Problem (). That is,

(
u – u∗)�T

(
u∗)≥ , u ∈ �, ()

with

u =

(
x
y

)

, T(u) =

(
F̂(x)



)

, � =
{

(x, y)|Â�x + y = b, x ≥ , y ≥ 
}

.

When vk =  (∀k ≥ ), the implementation details of the two nonlinear equations of Al-
gorithm  at each iteration are

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–[λk – β(yk+ + Â�xk – b)] + S[(yk+ – yk) + μ(yk – Q
k(yk+)–)] = ,

λk+ 
 = λk – rβ(yk+ + Â�xk – b),

F̂(xk+) – Â[λk+ 
 – β[αyk+ – ( – α)(Â�xk+ – b) + Â�xk+ – b]

+ R[(xk+ – xk) + μ(xk – P
k (xk+)–)]] = ,

λk+ = λk+ 
 – β[αyk+ – ( – α)(Â�xk+ – b) + Â�xk+ – b].

For the y-subproblem, it is easy to get its solution explicitly []:

yk+
j =

–ssk
j +
√

(ssk
j ) + μsj(β + sj)(yk

j )

(β + sj)
,

where

ssk = –λk + β
(
Â�xk – b

)
– ( – μ)Syk .

For the x-subproblem, we use the LQP-type method developed in [] to solve it. In the
test, we take x = (, , . . . , )�, y = (, , . . . , )�, and λ = (, , . . . , )� as the starting point.
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Table 3 Numerical results for different ε , α, and link capacity b

Link-flow capacity ε Algorithm 1 IADMM

α: 0.3 0.6 0.9 1.2

b = 30 10–4 121/0.1065 103/0.0974 97/0.0886 90/0.0884 115/0.0955
10–5 142/0.1200 127/0.1094 121/0.1091 114/0.1028 146/0.1325
10–6 163/0.1388 151/0.1284 146/0.1250 135/0.1157 169/0.1357

b = 40 10–4 133/0.1115 121/0.1003 120/0.1026 115/0.0960 131/0.1148
10–5 152/0.1277 149/0.1290 143/0.1215 138/0.1136 156/0.1310
10–6 179/0.1373 169/0.1259 167/0.1324 165/0.1300 180/0.1760

Table 4 The optimal link flow and the toll charge on the link with b = 40

Link Flow Charge

1 0 0
2 12.94 0
3 40.00 251.5
4 12.94 0
5 0 0
6 40.00 1,254.1
7 34.73 0
8 32.90 0
9 0 0
10 0 0
11 0 0
12 33.95 0
13 27.06 0
14 12.94 0

Link Flow Charge

15 27.06 0
16 5.27 0
17 1.83 0
18 32.90 0
19 5.27 0
20 5.27 0
21 5.27 0
22 33.95 0
23 0 0
24 12.94 0
25 40.00 1,180.9
26 32.32 0
27 34.16 0
28 0 0

For the test problem, the stopping criterion is

max

{‖ex(wk)‖∞
‖ex(w)‖∞

,
∥
∥ey
(
wk)∥∥∞,

∥
∥eλ

(
wk)∥∥∞

}
≤ ε,

where

e
(
wk) :=

⎛

⎜
⎝

ex(wk)
ey(wk)
eλ(wk)

⎞

⎟
⎠ =

⎛

⎜
⎝

xk – PRn
+{xk – [F̂(xk) – Âλk]}

yk – PRn
+ [yk + λk]

Â�xk + yk – b

⎞

⎟
⎠ .

In the test, we take μ = ., β = ., r = ., R = I , S = .I . To illustrate the superiority
of Algorithm , we also implement the inexact ADMM (denoted by IADMM) presented
in [] to solve this example under the same computational environment. The numerical
results for different capacities (b =  and b = ) and different ε and α are listed in Table ,
where the numbers in the tuplet ‘·/·’ represents, respectively, the numbers of iterations
(Iter.) and the CPU time in seconds. Numerical results in Table  indicate that Algorithm 
is an efficient method for the traffic equilibrium problem with link capacity bound, and it
is superior to the IADMM in terms of number of iteration and CPU time. Furthermore,
the two criteria of Algorithm  decrease with respect to α, as one has pointed in [].

In addition, for the test problem with b = , the optimal link-flow (Flow) vector Âx∗

and the toll charge (Charge) on the congested link –λ∗ are listed in Table .
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5 Conclusions
In this paper, we have proposed an inexact generalized PRSM with LQP regularization
for the structured variational inequalities, for which one only needs to solve two nonlin-
ear equations approximately at each iteration. Under mild conditions, we have proved the
global convergence of the new method and establish its convergence rate. Numerical re-
sults about the traffic equilibrium problem with link capacity bound indicate that the new
method is quite efficient.
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