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Abstract

Acceptable random variables introduced by Giuliano Antonini et al. (J. Math. Anal.
Appl. 338:1188-1203, 2008) form a class of dependent random variables that contains
negatively dependent random variables as a particular case. The concept of
acceptability has been studied by authors under various versions of the definition,
such as extended acceptability or wide acceptability. In this paper, we combine the
concept of acceptability with the concept of conditioning, which has been the
subject of current research activity. For conditionally acceptable random variables, we
provide a number of probability inequalities that can be used to obtain asymptotic
results.
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1 Introduction
Let {X,,, n € N} be a sequence of random variables defined on a probability space (2, A, P).
Giuliano Antonini et al. [1] introduced the concept of acceptable random variables as fol-

lows.

Definition 1 A finite collection of random variables X3, X5, ..., X, is said to be acceptable
if for any real A,

Eexp (A in') < ﬁEexp(AX,»).

i=1 i=1

An infinite sequence of random variables {X,,,n € N} is acceptable if every finite subcol-
lection is acceptable.

The class of acceptable random variables includes in a trivial way collections of inde-
pendent random variables. But in most cases, acceptable random variables exhibit a form
of negative dependence. In fact, as Giuliano Antonini et al. [1] point out, negatively asso-
ciated random variables with a finite Laplace transform satisfy the notion of acceptability.
However, acceptable random variables do not have to be negatively dependent. A clas-
sical example of acceptable random variables that are not negatively dependent can be
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constructed based on problem IIL.1 listed in the classical book of Feller [2]. Details can be
found in Giuliano Antonini et al. [1], Shen et al. [3], or Sung et al. [4].

The idea of acceptability has been modified or generalized in certain directions. For ex-
ample, Giuliano Antonini et al. [1] introduced the concept of m-acceptable random vari-
ables, whereas other authors provided weaker versions such as the notions of extended
acceptability or wide acceptability. The following definition given by Sung et al. [4] pro-
vides a weaker version of acceptability by imposing a condition on A.

Definition 2 A finite collection of random variables X3, X5, ..., X, is said to be acceptable
if there exists § > 0 such that, for any real |A| < §,

Eexp (A XH:X,-) < ﬁ Eexp(AX;).

i=1 i=1

An infinite sequence of random variables {X,,n € N} is acceptable if every finite sub-
collection is acceptable.

The concept of acceptable random variables has been studied extensively by a few au-
thors, and a number of results are available in the literature such as exponential inequali-
ties and complete convergence results. For the interested reader, we suggest the papers of
Giuliano Antonini et al. [1], Sung et al. [4], Wang et al. [5], Shen et al. [3], among others.

Further, in addition to the definition of acceptability, Choi and Baek [6] introduced the
concept of extended acceptability as follows.

Definition 3 A finite collection of random variables X7, X5, ..., X, is said to be extended
acceptable if there exists a constant M > 0 such that, for any real A,

Eexp (A Zn:Xi) <M ll[Eexp(AXi).

i=1 i=1
An infinite sequence of random variables {X,,, n € N} is extended acceptable if every finite

subcollection is extended acceptable.

It is clear that acceptable random variables are extended acceptable. The following ex-
ample provides a sequence of random variables that satisfies the notion of extended ac-
ceptability.

Example 4 Let {X,, n € N} be absolutely continuous random variables with the same dis-
tributions F(x) and densities f(x) such that the finite-dimensional distributions are given
by the copula

k k
Cluy... ux) = (1_[ u,») exp(ﬁ 1_[(1 — u,')), k>2.
i=1

i=1

This copula can be equivalently represented as

k 00 k
B [ ooy w1 = uy)"
C(ul,...,uk)znui+z Hllnl .
i=1 n=1 :
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The density of C can be obtained by the formula

okC

C(Ml,...,Ck) = m,

and it can be proven that, for |8] <log2,

0<2-exp(IBl)=1-) li', < c(u, ..., ) <exp(IBl).
n=1 :

Furthermore, fol e fol c(u1,...,ux)duy - - - duy = 1, which shows that c(uy, ..., u) is a den-
sity function. It is known that

fX(xlr coe ;xn) = C(F(xl): (XX rF(xn))f(xl) o 'f(xn)’

which leads to

fX(xlr v ;xn) =< exp (|ﬁ|)f(xl) o f(xn)

Hence,

E|:exp ()\ Xn:Xi):| = / .. ./exp (A ixi)fx(xl,,,,,xn) dxy - - dx,
i=1 i=1
i=1
= exp (161) [] [ exp Gudf e
i=1

= exp (181) [ [ E[exp 3],

i=1

proving that the random variables satisfy the definition of extended acceptability for M =
exp(|8]) > 0.

Observe that {X,,n € N} is a strictly stationary sequence that is negatively dependent
for B < 0 and positively dependent for 8 > 0.

For the class of extended acceptable random variables, Choi and Baek [6] provide an
exponential inequality that enables the derivation of asymptotic results based on complete
convergence.

A different version of acceptability, the notion of wide acceptability, is provided by Wang
etal. [5].

Definition 5 Random variables {X,,, n € N} are widely acceptable for &, > 0 if for any real
0 < X < 8o, there exist positive numbers g(#), n > 1, such that

Eexp ()» ZX,') <g(n) nEexp(AXi) foralln>1.

i=1 i=1
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The following example gives random variables that satisfy the definition of wide accept-

ability.

Example 6 Consider a sequence {X,,, # € N} of random variables with the same absolutely
continuous distribution function F(x). Assume that the joint distribution of (X;,...,X;,)

is given by

Fiy,iy (X1, %0) = HF(xk)<1 + Z ;i (1- F(x)) (1 —F(xk))>,

k=1 1<j<k<n

provided that |}, _;_;_, ;| < 1. Then it can be proven that

Sxwn,x0,..,%,) < (1 +

E a ij

1<i<j<n

)/)q (1) - 'an (%),
which leads to

(s <o

proving that {X,,,n € N} is a sequence of widely extended random variables with g(n) =

1+] Zlgkjsn ajjl.

E a ij

1<i<j<nm

) fl[E[e*Xf],

The concept of widely acceptable random variables follows naturally from the concept
of wide dependence of random variables introduced by Wang et al. [7]. Wang et al. [8]
and Wang et al. [7] stated (without proof) that, for widely orthant dependent random
variables, the inequality in Definition 5 is true for any A. For widely acceptable random
variables, Wang et al. [5] pointed out, although did not provide the details, that one can
get exponential inequalities similar to those obtained for acceptable random variables.

In this paper, we combine the concept of conditioning on a o -algebra with the concept
of acceptability (in fact, wide acceptability) and define conditionally acceptable random
variables. In Section 2.1, we give the basic definitions and examples and prove some clas-
sical exponential inequalities. In Section 2.2, we provide asymptotic results by utilizing

the tools of Section 2.1. Finally, in Section 3, we give some concluding remarks.

2 Results and discussion
Recently, various researchers have studied extensively the concepts of conditional inde-
pendence and conditional association (see, e.g.,, Chow and Teicher [9], Majerak et al.
[10], Roussas [11], and Prakasa Rao [12]) providing conditional versions of known results
such as the generalized Borel-Cantelli lemma, the generalized Kolmogorov inequality, and
the generalized Héjek-Rényi inequalities. Counterexamples are available in the literature,
proving that the conditional independence and conditional association are not equivalent
to the corresponding unconditional concepts.

Following the notation introduced by Prakasa Rao [12], let E7 (X) = E(X|.F) and P* (A) =
P(A|F) denote the conditional expectation and the conditional probability, respectively,
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where F is a sub-o-algebra of A. Furthermore, Cov” (X, Y) denotes the conditional co-
variance of X and Y given F, where

Cov” (X,Y) = EF (XY) - EZ (X)EZ (Y),

whereas the conditional variance is defined as Var” (X) = Cov” (X, X).
The concept of conditional negative association was introduced by Roussas [11]. Let us
recall its definition since it is related to the results presented further.

Definition 7 A finite collection of random variables Xj, ..., X, is said to be conditionally
negatively associated given F (F-NA) if

Cov” (f(X,ic A),g(X;,j€B)) <0 as.

for any disjoint subsets A and B of 1,2,...,# and for any real-valued componentwise non-
decreasing functions f, g on R! and R®!, respectively, where |A| = card(A), provided that
the covariance is defined. An infinite collection is conditionally negatively associated given
F if every finite subcollection is F-NA.

As mentioned earlier, it can be shown that the concepts of negative association and con-
ditional negative association are not equivalent. See, for example, Yuan et al. [13], where

various of counterexamples are given.

2.1 Conditional acceptability

In this paper, we define the concept of conditional acceptability by combining the concept
of conditioning on a o -algebra and the concept of acceptability. In particular, condition-
ing is combined with the concept of wide acceptability. We therefore give the following
definition.

Definition 8 A finite family of random variables X3, X5, ..., X, is said to be F-acceptable
for § > 0 if E(exp(8]X;|)) < oo for all i and, for any |A| < §, there exist positive numbers g(n),
n > 1, such that

Ef<exp<k ZX,)) Sg(n)l_[Ef(exp(AX,-)) a.s.
i=1 i=1

A sequence of random variables {X,,,n € N} is F-acceptable for § > 0 if every finite sub-
family is F-acceptable for § > 0.

Remark 9 The definition of F-acceptability allows for the quantity A to be a random
object. Thus, as a result, if the random variables X3, X5, ..., X}, are F-acceptable for § > 0,
then

E” <CXP (}\ ZXz)) <g(n) nEf(exp(kXi)) a.s.

i=1 i=1

for an F-measurable random variable A such that [A| < § a.s.
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Remark 10 It can be easily verified that if random variables Xj, ..., X, are F-acceptable,
then the random variables X, —E* (X;), X, —E7 (X), ..., X, —E” (X,,) are also F-acceptable,
and —X3,-X>,...,—X,, are also F-acceptable.

The random variables given in the following example satisfy the definition of F-accept-
ability.

Example 11 Let Q = {1, 2, 3,4} with P({i}) = i. Define the events
A1={1,2} and A,={2,3}

and the random variables
Xi=I1y, and X, =1Iy,.

Let B={1} and F = {2, B, B°,#}. Then

b
Ef[ekxl] _ e, w € B,
e +2, wekB,
E]:[e)»)ﬁ] - 1’ w GB’
1,2
3 + gek, w € Bc,
and
e, w € B,

E]:[e)»(X1+X2)]
L2 ,
s +et+1), webB".

For the random variables to satisfy the definition of F-acceptability, the following inequal-
ity needs to be valid:

E.F[ek(X1+X2)] < g(2)E]:[e)»X1]E]:[e)LX2]

for all 1 € (-4,8) and g(2) > 0. For the case where w € B, this inequality is satisfied for all
A € Rif g(2) is chosen to be any number such that g(2) > 1. For the case where w € B¢, the
inequality is equivalent to

(3 -2g(2))e* + (3 - 5g(2))e* + (3 -2¢(2)) <.

Observe that the last inequality is satisfied for all A € R if g(2) > % Thus, the random
variables are F-acceptable for any real A € (-§,8) where § > 0 and g(2) > % Furthermore,

it is worth mentioning that the random variables {X3, X,} are not F-NA.

In the case where F is chosen to be the trivial o -algebra, that is, F = {#, 2}, the def-
inition of F-acceptability reduces to the definition of unconditional wide acceptability.
The converse statement cannot always be true, and this can be proven via the following
counterexample, showing that the concepts of F-acceptability and acceptability are not
equivalent.
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Example 12 Let Q ={1,2,3,4,5,6}, and let P({i}) = %. Define the events A; and A, by
A1={1,2,3,4} and A,;={2,3,4,5}

and the random variables X; and X, by
Xi =1y and Xp=1I4,.

Let B = {6}, and let F = {2, B, B¢, #} be the sub-o -algebra generated by B. Yuan et al. [13]
proved that {Xj, X,} are 7-NA. By proposition P1 of the same paper it follows that, for all
L eR, {eM1,e*2} are F-NA, and therefore {X, X,} are F-acceptable for g(2) = 1.

Note that

1 2 3 1
E[expA(X; +X;)] = € (E) + eu(g) + e2’\<g> = g(l +2¢" +3e*),

E[¢™]E[¢™] - (eOA@) . eu(%))z - S(v2e),

and

E[expA(X; +X,)] - E[¢]E[e2] = %(1 +2¢" +3e*) - é(l + 26)\)2

For A =1log2, this difference is positive, proving that {Xj, X,} do not satisfy the definition
of acceptability.

Let X be a random variable, X > 0 a.s., and let € be an F-measurable random variable
such that € > 0 a.s. It is known that

E7(X)
€

Pr(X>e) <

)

This inequality is a conditional version of Markov’s inequality and is an tool for obtaining
the results of this paper.

It is well known that exponential inequalities played an important role in obtaining
asymptotic results for sums of independent random variables. Classical exponential in-
equalities were obtained, for example, by Bernstein, Hoeffding, Kolmogorov, Fuk, and
Nagaev (see the monograph of Petrov [14]). A crucial step in proving an exponential in-
equality is the use of an inequality like that in Definition 2. Next, we provide several expo-
nential inequalities for F-acceptable random variables.

The following Hoeffding-type inequality is obtained by Yuan and Xie [16].

Lemma 13 Assume that P(a < X < b) =1, where a and b are F -measurable random vari-
ables such that a < b a.s. Then

E}-[exp(k(X—Ef(X)))] < exp(ékz(b - a)2> a.s.

for any F-measurable random variable ).
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The result that follows is a conditional version of the well-known Hoeftfding inequality
(Hoeffding [15], Theorem 2). Similar results were proven by Shen et al. [3], Theorem 2.3,
for acceptable random variables and by Yuan and Xie [16], Theorem 1, for conditionally
linearly negatively quadrant dependent random variables. Our result improves Theorem 1
of Yuan and Xie [16].

Theorem 14 Let X1,Xy,...,X, be F-acceptable random variables for § > 0 such that
Pla; <X;<b)=1,i=1,2,...,n, where a; and b; are F -measurable random variables such
that a; < b; a.s. for all i. Then for an F-measurable € with 0 < € < % Zle(bi —a;))? as., we

have

2 2
PJ’(’S,, —E}'(S,,)’ > e) <2g(n) exp[—m} a.s.,

where S, =Y 1, X;.

Proof Let A be an F-measurable random variable such that 0 < A < § a.s. Then by the

conditional version of Markov’s inequality

A=PF(S,—E"(S)) =€)
= P7 (exp(r(S, — E7(Sn))) = €)

- E7 [exp(M(S, — EF(S,)))]
- eks

_ ETlexp(h Y1 (X — ET (X))

eke

< Q) ﬁEf[exp()»(Xi —E}—(Xi)))]

—  phe
e
i=1

< ge(;:) l_[ exp[%)\z(bi - ﬂi)2:|

i=1
. )
= —_— i —a;) — A .S.,
g(n)exp 3 l; (b; —a;) € a.s

where the first inequality follows by applying (1), and the second because of the F-accept-
ability property for A € (0, 8). Since the minimum of the function f(x) = ax? + bx is attained

atx = —%, the minimum of the above expression is attained at A = ﬁ. Then
i=1\0i—a;
16¢” (b — a;)? 4e?
ASg(rl)eXP[ — 222’:1( ek 2}
(Q_ii(bi—a;)?) 8 Yo (bi—ay)

=g(n)ex [—2762]
SR T -

Given that —Xj,...,—X,, are also F-acceptable, we also have that
PF[—(SW ~E7(Sy) > €] <g(mexp —2762 a.s.
o Yori(bi—a;)?

The desired result follows by combining the last two expressions. O
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The result that follows is the conditional version of Theorem 2.1 of Shen et al. [3].
Theorem 15 Let X,...,X,, be F-acceptable random variables for § > 0. Assume that

E7(X;) = 0 and that E” (X?) is finite forany i. Let B2 = Y | 7 (X?). Assume that | X;| < cB,
a.s., where c is a positive F-measurable random variable. Then

PF[S, > eB,] < g(n) exp[—%(l -5)] as. forec<lande<3B,
gm)expl-g] as. forec>1and ﬁ <8

for any positive F-measurable random variable €.

Proof Let t be a positive F-measurable random variable such that tcB,, < 1. Note that, for
k>2,

ET(XF) = 71X X7

< (cB,,)k’zE}—(Xiz) a.s.
Then

ik
EF (™) = 1+ E7 (X)) + Z—Ef(xk)

E’T X2 |:1+—CB + — (cB 2+ :|

E}—X2 1+—CB + +
3-4 3-4.5

tcB,
Ef (x2) (1+ ‘ )
t tcB
< exp[EE}—(Xiz) <1+ %)} as.,

where the second inequality follows because tcB,, < 1a.s., and the third because of the fact

1 1
that 4+345+~~~§5.Hence,f0r|t|<8,

B, tcB, ]
—+...

£ (e Ef(l—[etx>
<s [[£7()
conffe (-2
n)exp[ ngxz( 1B, )]

(n)exp[ Bz< tcf")] a.s.,
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where the first inequality follows by the F-acceptability property. Note that since €, B,
and c are positive F-measurable random variables, the conditional Markov inequality can
be applied, and by using the above calculations we have that, for 0 < £ < §,

PT(S, > €B,) = P¥ (5 > ePr)

E]-' [etS,,]
<
etEByI
2 B
exp[5B;(1+ 5)]
S g(Vl) ? etéBn :
2 tcB,

= g(n)exp [—teBn + 33'27 <1 + 62 )} as. (2)

Ifec <1la.s., thenputt= B‘—n a.s. Therefore, 0 < £ < § is equivalent to € < §B,, a.s. Then we
obtain from (2) that

€C

P7 (S, > €B,) <g(n) exp[—% (1 - 7>:| a.s.

Ifec>1a.s., thenputt= é a.s. Then we need é < § a.s. In this case, from (2) we obtain

€

3 €
f —_—— — ——
P7 (S, >¢€B,) <g(n) exp[ c + 402] <g(n) exp[ 4c:| a.s. 0

Theorem 16 Let Xi,...,X, be F-acceptable random variables for § > 0. Assume that
E7(X;) = 0 a.s. and that there is an F -measurable random variable b such that |X;| < b a.s.
foralli. Define B =Y. E”(X?). Then, for any positive F-measurable random variable €

with =5~ <8, we have
Bjitze

&2
PF(S,>¢) < _— .S,
( _e)_g(n)exp[ 233+§b6] a.s

and

2
Pr Syl =€) <2g(n)exp| —————| a.s.
(1Su] = €) < 2¢g(n) p[ 23%%[%]

Proof For ¢t > 0, by using Taylor’s expansion we have that

[e¢]

iyl
E7[exp(tX))] = EX [Z ﬂl}

1
0 T

X
— L ifol?= E]:[Xf] is nonzero
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—1+ ; E(t)

20?2
< exp[T’Fi(t)] a.s.,

where
o0
2 EF X
Fi(t) = Z 1[ i a.s.
j=2 J! 20

Page 11 of 18

Note that on the set where EZ[X?] = 0 as., we have the obvious upper bound

E}-[exp(tX)] <1a.s. since |E}-[Xj]| <EF X2V as.

Definec= 2 and M, =1+ 32 =1+ c— a.s. By choosing ¢ > 0 such that ¢ < = we have that

Mn—l_ ce

tc < = 5
M, ce + B2

a.s.

Observe that, for j > 2,
E7[IXi¥] < E7 [ X072
= g2
62(3¢)

IA

IA
|
Q
TN
o
=
Qo
wn

Therefore,

e T

Fi(t) < Z —

j=2

1l
gk
B
‘<“

S

1-tc
<M, as.

By applying the conditional Markov inequality and the JF-acceptability of the sequence

{X,,n e N} for 0 <t <8 a.s. we have

P]:(Sn ZG) — P]:(etsn Zeté)
E]-'[etsn]

ete

1 n
< g [ [E7[e]
i=1

2p2

t°B;,
<g(n)exp[—te+ 5 M,{| a.s.

3)
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The minimum is obtained at £ = o M a.s. It can be verified that ¢ = 532 , and therefore
n ce  _ My-1

e+B: ~ My
show that the choice of £ = oty M a.s. is valid. Furthermore, we have assumed that0 <t < §
a.s., and for the particular choice of to this restriction leads to —*— 7 M < 8, which is equivalent

n

-1 3o the above calculations

the condition tc <1 a.s. is satlsﬁed Moreover, tyc =

to

€ €
Bﬁ+c€ BZ+ 3€

<8 as.,

which is satisfied because of the assumption of the theorem. By substituting ¢y = €/B2M,,
into (3) we obtain

T2 = BIM,
P7 (S, =€) < g(n)exp s e 5 ]
[ 1 €2
= g(n)exp —5%]
~ )
= g(n)exp _—W] a.s.

Since {—X,,, n € N} is again a sequence of F-acceptable random variables, we obtain

&2
P7(S, < —€)=P7 (=S, >¢) <gn)exp| -————— | as.
(Sn=—€)=P" (=S, =€) <g(n) p[ ZB%%I%] 0
The probability inequalities presented above were proven under the assumption of
bounded random variables. The result that follows provides a probability inequality under

a moment condition.

Theorem 17 Let {X,, n € N} be a sequence of F -acceptable random variables for § > 0, and
let {c,, n € N} be a sequence of positive F-measurable random variables with C, = Zi.“:l Ci
foralln=1,2,.... Assume that there is a positive F-measurable random variable T with
T <6 a.s. such that, for |t| < T and fixed n > 1,

1
EF ek <39 g5 k=1,2,...,n. (4)
Then, for any positive F-measurable random variable €,

52
2g(n)e 2t a.s., 0<e<C,T,

PP (Sl =€) < .
2¢(n)e 2z  as, €=>C,T.

Proof The proof follows similar arguments as those presented in Petrov [14]. Let 0 <t < T
a.s. Then by applying the conditional Markov inequality and the property of F-accept-
ability we have that

P]:(S,, > 6) < e—teE}'[etSn]

Sg(n)e—te l_IE]:[eth]

i=1

2
t6+ 2

<g(n)e” a.s.
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The aim is to minimize the above bound. Observe that, for 0 < € < C, T a.s., the above
bound is minimized for ¢ = Cin, which satisfies the condition 0 < ¢ < T a.s. Therefore, by
letting ¢ = £ we have that

€2
PP (S, =€) <g(n)e 20 as. (5)

Now, suppose that € > C, T. Then the minimum is obtained for ¢ = T, and the above bound
becomes of the form

P7(S, =€) Sg(n)e_% a.s. (6)

We see that X, X5, ..., X, satisfy condition (4) for -7 <t < 0 for some positive F-mea-
surable random variables T and {c,, n € N}. So - X3, -Xj, ..., X, are F-acceptable random
variables that satisfy condition (4) for 0 < ¢ < T, and therefore by applying inequalities (5)
and (6) for —S, we have that

2

P7 (S, < —e) §g(n)e_2%n as. if0<eC,T 7)
and

PF(Sy<—€)<gme ™ as.ife > C,T. ®)
The desired result follows by combining (5) with (7) and (6) with (8). O

Remark 18 Since {X,,, n € N} is a sequence of F-acceptable random variables with g(n) =
1, where F is the trivial o -algebra, the above result is reduced to the result of Corollary 2.1
of Shen and Wu [17].

2.2 Conditional complete convergence

Complete convergence results are well known for independent random variables (see, e.g.,
Gut [18]). The classical results of Hsu, Robbins, Erd8s, Baum, and Katz were extended
to certain dependent sequences. Using the results of Section 2.1, we can show the com-
plete convergence for the partial sum of F-acceptable random variables under various
assumptions. We will need the following definition of conditional complete convergence
(see Christofides and Hadjikyriakou [19] for details).

Definition 19 A sequence of random variables {X,,, # € N} is said to converge completely
given F to a random variable X if

oo
Y PF(IXi-X|>€) <00 as.
i=1

for any F-measurable random variable € such that € > 0 a.s.

The following set of sequences, which serves purposes of brevity, was first defined by
Shen et al. [3]:

oo
H= bn:Zhb”<oof0revery0<h<1 .

n=1
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The theorem that follows is a complete convergence theorem for ‘self-normalized’

sums.

Theorem 20 Let X1, Xs,... be a sequence of F-acceptable random variables for § > 0. As-
sume that ET (X;) =0 a.s. and |X;| < b a.s. for all i, where b is an F-measurable random
variable. Assume that g(n) < K a.s., where K is an a.s. finite F-measurable random vari-
able. Let B2 =Y "I E7 (X?) and assume that {B2,n € N} € H a.s. Then

Sn
B

converges completely to 0 given F.

Proof By applying the result of Theorem 16 for —5- < § a.s. we have that
3

1+
oo o0
|l ) < Be? )
P]: —>c | <2 nexp| - —2
21: <B% -/ ;g() P\ 282+ ZbB2c

o0 2 B}
= Z;g(n)(exp<—72 " %eb))

<00 a.s.

because g(n) < K a.s.and {B2,n € N} € H as. a

Remark 21 In Theorem 20, the condition {B2,n € N} € H can be substituted by B? =
O(b,,), where b, € H a.s. Then it can be proven that

S
b—" converges completely to 0 given F.
n

Here b, can be a sequence of F-measurable random variables. In such case, the result is

a conditional version of Theorem 3.1 of Shen et al. [3].
Next, we provide a result, which is a conditional version of Theorem 3.2 of Shen et al. [3].

Theorem 22 Let X3, X»,... be a sequence of F-acceptable random variables for § > 0. As-
sume that |X;| < ¢ a.s., where c is an F-measurable random variable such that ¢ > 0 a.s.
Assume that g(n) < K a.s., where K is an a.s. finite F -measurable random variable. More-

over, let b, € H a.s., where b,, are F-measurable. Then

Sn - E}—(Sn)

7 converges completely to 0 given F.
noy

Proof By applying Theorem 14 for 0 < € < 2§/ ﬁ a.s. we have that

> PT([S, ~ ET(S0)| = (nby)2e)

n=1

> 2nb,€?
<2 g(n)CXP(— - )
nX:I: n(2c)?
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o 62 by
Sl )

n=1

<00 a.s.

because g(n) < K a.s.and b, € H a.s. O

Theorem 23 Let X1, X, ... be a sequence of F-acceptable random variables for § > 0 such
that all the assumptions of Theorem 17 are satisfied. If, for any € > 0 a.s.,

oo 22 oo

_bie” _ Thye
E gn)e 2 <oo a.s. and E gne 2 <oo a.s,
n=1 n=1

where {b,, n € N} is a sequence of positive F -measurable random variables, then

b—" converges completely to 0 given F.

Proof By applying Theorem 17 we have

ad 1 ad bye? s Thye
ZPf(b—nlS,A > e) < 2Zg(n)efz_f‘7 + ZZg(n)e’T
n=1 n=1 n=1
<00 a.s. O

The theorem that follows gives a conditional exponential inequality for the partial sum of
F-acceptable random variables, under a moment condition, which, in the unconditional
case is a condition appearing very frequently in large deviation results (see, e.g., Nagaev
[20] and Teicher [21]). It also appears as condition (3.3) of Theorem 3.3 of Shen et al. [3].
However, the bound provided here allows us to prove the complete convergence, and in
the unconditional case, under assumptions different from those of Theorem 3.3 of Shen
et al. [3].

Theorem 24 Let X1, Xs,... be a sequence of F-acceptable random variables for § > 0. As-
sume that E7 (X;) = 0 and let o} = E7(X?) be a.s. finite. Let B2 = " | 6% Assume that
there exists an a.s. positive and a.s. finite F -measurable random variable H such that

|EF (x| < m?!a,?H’”*z, Viand m>2 a.s.

. 11 _ B L 3 ,
@ If z01 2HMB%] < 6, then for an a.s. positive F-measurable random variable x, we

pf< )

n
2_Xi
i=1

have

> x) <2g(n) exp[—ﬁ (, /2Hx + B2 — \/B>%>2] a.s.

(i) Ifg(n) <K as. for all n, where K is a.s. finite and {B2} € H a.s., then

Sn
B;

converges completely to 0 given F.
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Proof

22X Bx3
Ef[exp(tXi)] = Ef|: Ly —L ]

+ “ e
6
£ £
+ EE}-(X?) + gEf(Xis) +

£
<1+ —oi2(1+H|t|+H2t2+---),
2

where the second equahty follows by the fact that E7(X;) = 0 and ¢ is an F-measurable
random variable. If |£| < 7, then

t2o?

ErlexpeX)] <1+ o

- t2 i2
X Sy EEEE— a.s.
=“Plaa-Hp)

For F-measurablex >0and 0 <t < %, we have that

n
Pf (in = ") = PP (2N = o)
i=1

E]: [et Z;"Zl Xl']

etx

n)e—tx l_[ E]: [etXi]
i=1

‘ t2o?
s [ow(775)
i=1

*B?
= g(l’l) exp <—tx + m) a.s. (9)
Let
2 pR2
h(t) =—tx+ m

Then k() is minimized at

1 B2
t=—|1- [—2 |,
H 2Hx + B2

and substituting this value into the RHS of (9), after some algebraic manipulations, we
obtain that

(30 2a) <t (e - )| ns

i=1
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Since —X3, —X>,...,—X,, is also a sequence of F-acceptable random variables, we obtain

n
1 2
pr ZX,» >x | < 2g(n)exp|:—ﬁ<,/2Hx +B2 - ,/B%,) } a.s.
i=1
Using this inequality, we can prove that
S 7 ( 15 S 1 2 2 2 2
ZP B X 522g(71)exp —ﬁ(,/2Han+Bn—,/Bn>
n=1 n n=1

=2 gn) exp{Bﬁ [—ﬁ V2Hx +1- 1)2“

n=1

<00 as. (10)
O

Remark 25 In the previous theorem, it is assumed that g(n) < K a.s. for every n, where
K is finite a.s. However, we may have the complete convergence without this assumption.
For example, the RHS of (10) may be finite even when g is not bounded. Similar statements
can be made for Theorems 20 and 22.

3 Conclusions

In this paper, we define the class of conditionally acceptable random variables as a general-
ization of the class of acceptable random variables studied previously by Giuliano Antonini
et al. [1], Shen et al. [3] and Sung et al. [4], among others. The idea of conditioning on a
o -algebra is gaining increasing popularity with potential applications in fields such as risk
theory and actuarial science. For the class of conditionally acceptable random variables,
we provide useful probability inequalities, mainly of the exponential type, which can be
used to establish asymptotic results and, in particular, complete convergence results. We
anticipate that the results presented in this paper will serve as a basis for research activity,
which will yield further theoretical results and applications.
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