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Abstract
In this paper, the authors investigate the internal estimator of nonparametric
regression with dependent data such as α-mixing. Under suitable conditions such as
the arithmetically α-mixing and E|Y1|s <∞ (s > 2), the convergence rate
|m̂n(x) –m(x)| = OP(an) + O(h2) and uniform convergence rate

supx∈S′f |m̂n(x) –m(x)| = Op(an) + O(h2) are presented, if an =
√

lnn
nhd

→ 0. We generalize
some results in Shen and Xie (Stat. Probab. Lett. 83:1915-1925, 2013).
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1 Introduction
Kernel-type estimators of the regression function are widely various situations because of
their flexibility and efficiency, in the dependent cases as well as in the independent data
case. This paper is concerned with the nonparametric regression model

Yi = m(Xi) + Ui,  ≤ i ≤ n, n ≥ , (.)

where (Xi, Yi) ∈ Rd × R,  ≤ i ≤ n, Ui is random variable such that E(Ui|Xi) = ,  ≤ i ≤ n.
Then one has

E(Yi|Xi = x) = m(x),  ≤ i ≤ n, n ≥ .

The most popular nonparametric estimators of the unknown function m(x) is the
Nadaraya-Watson estimator m̂NW (x) given below and the local polynomials fitting. Let
K(x) be a kernel function. Define Kh(x) = h–dK(x/h), where h = hn is a sequence of positive
bandwidths tending to zero as n → ∞. Kernel-type estimators of the regression function
are widely various situations because of their flexibility and efficiency, in the dependent
data case as well as the independent data case. For the independent data, Nadaraya []
and Watson [] gave the most popular nonparametric estimators of the unknown func-
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tion m(x), named the Nadaraya-Watson estimator m̂NW (x), i.e.

m̂NW (x) =
∑n

i= YiKh(x – Xi)
∑n

i= Kh(x – Xi)
. (.)

Jones et al. [] considered various versions of kernel-type regression estimators such as
the Nadaraya-Watson estimator (.) and the local linear estimator. They also investigated
the following internal estimator:

m̂n(x) =

n

n
∑

i=

YiKh(x – Xi)
f (Xi)

(.)

for known density f (·). The term ‘internal’ stands for the fact that the factor 
f (Xi)

is in-
ternal to the summation, while the estimator m̂NW (x) has the factor 

̂f (x) = 
n– ∑n

i= Kh(x–Xi)
externally to the summation.

The internal estimator was first proposed by Mack and Müller []. Jones et al. [] stud-
ied various kernel-type regression estimators, including introduced the internal estimator
(.). Linton and Nielsen [] introduced ‘integration method’, based on direct integration
of initial pilot estimator (.). Linton and Jacho-Chávez [] studied the two internal non-
parametric estimators with the estimator similar to estimator (.) but in place of an un-
known density f (·), a classical kernel estimator ̂f (x) = n– ∑n

i= Kh(x – Xi) is used. Much
work has been done for the kernel density estimation. For example, Masry [] gave the
recursive probability density estimation for a mixing dependent sample, Roussas et al. []
and Tran et al. [] investigated the fixed design regression for dependent data, Liebscher
[] studied the strong convergence of sums of α-mixing random variables and gave its
application to density estimation, Hansen [] obtained the uniform convergence rates
for kernel estimation with dependent data, and so on. For more work as regards kernel
estimation, we can also refer to [–] and the references therein.

Let (�,F , P) be a fixed probability space. Denote N = {, , . . . , n, . . .}. Let Fn
m = σ (Xi, m ≤

i ≤ n, i ∈ N) be the σ -field generated by random variables Xm, Xm+, . . . , Xn,  ≤ m ≤ n. For
n ≥ , we define

α(n) = sup
m∈N

sup
A∈Fm

 ,B∈F∞
m+n

∣

∣P(AB) – P(A)P(B)
∣

∣.

Definition . If α(n) ↓  as n → ∞, then {Xn, n ≥ } is called a strong mixing or α-mixing
sequence.

Recently, Shen and Xie [] obtained the strong consistency of the internal estimator (.)
under α-mixing data. In their paper, the process is assumed to be geometrically α-mixing
sequence, i.e. the mixing coefficients α(n) satisfy α(n) ≤ βe–βn, where β >  and β > .
They also supposed that the sequence {Yn, n ≥ } is bounded, as well as the density f (x)
of X. Inspired by Hansen [], Shen and Xie [] and other papers above, we also investi-
gate the convergence of the internal estimator (.) under α-mixing data. The process is
supposed to be an arithmetically α-mixing sequence, i.e. the mixing coefficients α(n) sat-
isfy α(n) ≤ Cn–β , C > , and β > . Without the bounded conditions of {Yn, n ≥ } and the
density f (x) of X, we establish the convergence rate and uniform convergence rate for the
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internal estimator (.). For the details, please see our results in Section . The conclusion
and the lemmas and proofs of the main results are presented in Section  and Section ,
respectively.

Regarding notation, for x = (x, . . . , xd) ∈ Rd , set ‖x‖ = max(|x|, . . . , |xd|). Throughout the
paper, C, C, C, C, . . . , denote some positive constants not depending on n, which may be
different in various places. 
x� denotes the largest integer not exceeding x. → means to
take the limit as n → ∞, P−→ means to convergence in probability. X d= Y means that the
random variables X and Y have the same distribution. A sequence {Xn, n ≥ } is said to be
of second-order stationarity if (X, X+k) d= (Xi, Xi+k), i ≥ , k ≥ .

2 Results and discussion
2.1 Some assumptions
Assumption . We assume the data observed {(Xn, Yn), n ≥ } valued in Rd × R comes
from a second-order stationary stochastic sequence. The sequence {(Xn, Yn), n ≥ } is also
assumed to be arithmetically α-mixing with mixing coefficients α(n) such that

α(n) ≤ An–β , (.)

where A < ∞ and for some s > 

E|Y|s < ∞ (.)

and

β ≥ s – 
s – 

. (.)

The known density f (·) of X is upon its compact support Sf and it is also assumed that
infx∈Sf f (x) > . Let B be a positive constant such as

sup
x∈Sf

E
(|Y|s|X = x

)

f (x) ≤ B. (.)

Also, there is a j∗ < ∞ such that for all j ≥ j∗

sup
x∈Sf ,xj+∈Sf

E
(|YYj+||X = x, Xj+ = xj+

)

fj(x, xj+) ≤ B, (.)

where B is a positive constant and fj(x, xj+) denotes the joint density of (X, Xj+).

Assumption . There exist two positive constants K̄ >  and μ >  such that

sup
u∈Rd

∣

∣K(u)
∣

∣ ≤ K̄ and
∫

Rd

∣

∣K(u)
∣

∣du = μ. (.)

Assumption . Denote by S
f the interior of Sf . For x ∈ S

f , the function m(x) is twice
differentiable and there exists a positive constant b such that

∣

∣

∣

∣

∂m(x)
∂xi ∂xj

∣

∣

∣

∣

≤ b, ∀i, j = , , . . . , d.
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The kernel density function K(·) is symmetrical and satisfies
∫

Rd
|vi||vj|K(v) dv < ∞, ∀i, j = , , . . . , d.

Assumption . The kernel function satisfies the Lipschitz condition, i.e.

∃L > ,
∣

∣K(u) – K
(

u′)∣
∣ ≤ L

∥

∥u – u′∥
∥, u, u′ ∈ Rd.

Remark . Similar to Assumption  of Hansen [], Assumption . specifies that the
serial dependence in the data is of strong mixing type, and equations (.)-(.) specify
a required decay rate. Condition (.) controls the tail behavior of the conditional ex-
pectation E(|Y|s|X = x), condition (.) places a similar bound on the joint density and
conditional expectation. Assumptions .-. are the conditions of kernel function K(u),
i.e., Assumption . is a general condition, Assumption . is used to estimate the con-
vergence rate of |Em̂n(x) – m(x)|, and Assumption . is used to investigate the uniform
convergence rate of the internal estimator m̂n(x).

2.2 Main results
First, we investigate the variance bound of estimator m̂n(x). For  ≤ r ≤ s and s > , denote
μ̄(r, s) := (B)r/sK̄ r–μ

(infx∈Sf f (x))r–+r/s , where B, infx∈Sf f (x), K̄ , and μ are defined in Assumptions .

and ..

Theorem . Let Assumption . and Assumption . be fulfilled. Then there exists a
� < ∞ such that for n sufficiently large and x ∈ Sf

Var
(

m̂n(x)
) ≤ �

nhd , (.)

where � := μ̄(, s) + j∗μ̄(, s) + (μ̄(, s) + Bμ

(infx∈Sf f ) ) + A–/sμ̄

s (s,s)

(s–)/s .

As an application to Theorem ., we obtain the weak consistency of estimator m̂n(x).

Corollary . Let Assumption . and Assumption . be fulfilled and K(·) be a density
function. For x ∈ Sf , m(x) is supposed to be continuous at x. If nhd → ∞ as n → ∞, then

m̂n(x) P−→ m(x). (.)

Next, the convergence rate of estimator m̂n(x) is presented.

Theorem . For  < θ <  and s > , let Assumptions .-. hold, where the mixing ex-
ponent β satisfies

β > max

{

 – θ + θs
( – θ )(s – )

,
s – 
s – 

}

. (.)

Denote an =
√

ln n
nhd and take h = n–θ/d . Then for x ∈ S

f , one has

∣

∣m̂n(x) – m(x)
∣

∣ = OP(an) + O
(

h). (.)
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Third, we now investigate the uniform convergence rate of estimator m̂n(x) and its con-
vergence over a compact set. Let S′

f be any compact set contained in S
f .

Theorem . For  < θ <  and s > , let Assumptions .-. be fulfilled, where the mixing
exponent β satisfies

β > max

{

sθd + θs + sd + s – θd – θ

( – θ )(s – )
,

s – 
s – 

}

. (.)

Suppose that Assumption . is also fulfilled. Denote an =
√

ln n
nhd and take h = n–θ/d . Then

sup
x∈S′

f

∣

∣m̂n(x) – m(x)
∣

∣ = Op(an) + O
(

h). (.)

2.3 Discussion
The parametric θ in Theorem . and Theorem . plays the role of a bridge between
the process (i.e. mixing exponent) and choice of positive bandwidth h. For example, if
d = , θ = 

 , and β > max{ s+
s– , s–

s– }, then we take h = n–/ in Theorem . and obtain
the convergence rate |m̂n(x) – m(x)| = OP((ln n)/n–/). Similarly, if d = , θ = 

 , and β >
s–
s– , then we choose h = n–/ in Theorem . and establish the uniform convergence rate

supx∈S′
f
|m̂n(x) – m(x)| = Op((ln n)/n–/).

3 Conclusion
On the one hand, similar to Theorem ., Hansen [] investigated the kernel average
estimator

̂	(x) =

n

n
∑

i=

YiKh(x – Xi),

and obtained the variance bound Var(̂	(x)) ≤ �

nhd , where � is a positive constant. For the
details, see Theorem  of Hansen []. Under some other conditions, Hansen [] also
gave the uniform convergence rates such as sup‖x‖≤cn |̂	(x) – Ê	(x)| = OP(an), where an =
√

ln n
nhd →  and {cn} is a sequence of positive constant (see Theorems - of Hansen []).

On the other hand, under the conditions such as the geometrically α-mixing and {Yn,
n ≥ } is bounded as well as the density function f (x) of X, Shen and Xie [] obtained the
complete convergence such as |m̂n(x) – m(x)| a.c.−→ , if ln n

nhd →  (see Theorem . of Shen
and Xie []), the uniform complete convergence such as supx∈S′

f
|m̂n(x) – m(x)| a.c.−→ , if

ln n
nhd →  (see Theorem . of Shen and Xie []). In this paper, we do not need the bounded

conditions of {Yn, n ≥ } and f (x) of X, and we also investigate the convergence of the
internal estimator m̂n(x). Under some weak conditions such as the arithmetically α-mixing
and E|Y|s < ∞, s > , we establish the convergence rate in Theorem . such as |m̂n(x) –
m(x)| = OP(an) + O(h) if an =

√

ln n
nhd → , and uniform convergence rate in Theorem .

such as supx∈S′
f
|m̂n(x) – m(x)| = Op(an) + O(h) if an =

√

ln n
nhd → . In Theorem . and

Theorem ., we have |m̂n(x) – Em̂n(x)| = OP(an) and supx∈S′
f
|m̂n(x) – Em̂n(x)| = OP(an),

where the convergence rates are the same as that obtained by Hansen []. So, we relatively
generalize the results in Shen and Xie [].
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4 Some lemmas and the proofs of the main results
Lemma . (Hall and Heyde, [], Corollary A., i.e. Davydov’s lemma) Suppose that X
and Y are random variables which are G -measurable and H -measurable, respectively,
and E|X|p < ∞, E|Y |q < ∞, where p, q > , p– + q– < . Then

∣

∣E(XY ) – EXEY
∣

∣ ≤ 
(

E|X|p)/p(E|Y |q)/q[
α(G ,H )

]–p––q–
.

Lemma . (Liebscher [], Proposition .) Let {Xn, n ≥ } be a stationary α-mixing
sequence with mixing coefficient α(k). Assume that EXi =  and |Xi| ≤ S < ∞, a.s., i =
, , . . . , n. Then, for n, m ∈ N ,  < m ≤ n/, and all ε > ,

P

(∣

∣

∣

∣

∣

n
∑

i=

Xi

∣

∣

∣

∣

∣

> ε

)

≤  exp

{

–
ε

( n
m Dm + 

εSm)

}

+ 
S
ε

nα(m),

where Dm = max≤j≤m Var(
∑j

i= Xi).

Lemma . (Shen and Xie [], Lemma .) Under Assumption ., for x ∈ S
f , one has

∣

∣Em̂n(x) – m(x)
∣

∣ = O
(

h).

Proof of Theorem . For x ∈ Sf , let Zi := YiKh(x–Xi)
f (Xi)

,  ≤ i ≤ n. Consider now

m̂n(x) =

n

n
∑

i=

YiKh(x – Xi)
f (Xi)

=

n

n
∑

i=

Zi, n ≥ .

For any  ≤ r ≤ s and s > , it follows from (.) and (.) that

hd(r–)E|Z|r = hd(r–)E
∣

∣

∣

∣

Kh(x – X)Y

f (X)

∣

∣

∣

∣

r

= hd(r–)E
( |Kh(x – X)|r

f r(X)
E
(|Y|r|X

)

)

=
∫

Sf

∣

∣

∣

∣

K
(

x – u
h

)∣

∣

∣

∣

r

E
(|Y|r|X = u

) 
hd

f (u)
f r(u)

du

≤
∫

Sf

∣

∣

∣

∣

K
(

x – u
h

)∣

∣

∣

∣

r
(

E
(|Y|s|X = u

)

f (u)
)r/s 

hd


f r–+r/s(u)
du

≤ (B)r/sK̄ r–μ

(infx∈Sf f )r–+r/s := μ̄(r, s) < ∞. (.)

For j ≥ j∗, by (.), one has

E|ZZj+| = E
∣

∣

∣

∣

Kh(x – X)Kh(x – Xj+)YYj+

f (X)f (Xj+)

∣

∣

∣

∣

= E
( |Kh(x – X)Kh(x – Xj+)|

f (X)f (Xj+)
E
(|YYj+||X, Xj+

)

)

=
∫

Sf

∫

Sf

∣

∣

∣

∣

K
(

x – u

h

)

K
(

x – uj+

h

)∣

∣

∣

∣

E
(|YYj+||X = u, Xj = uj+

)
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× 
hd


f (u)f (uj+)

fj(u, uj+) du duj+

≤ B

(infx∈Sf f )

∫

Rd

∫

Rd

∣

∣K(u)K(uj+)
∣

∣du duj+ ≤ Bμ


(infx∈Sf f ) < ∞. (.)

Define the covariances γj = Cov(Z, Zj+), j > . Assume that n is sufficiently large so that
h–d ≥ j∗. We now bound the γj separately for j ≤ j∗, j∗ < j ≤ h–d , and h–d < j < ∞. First, for
 ≤ j ≤ j∗, by the Cauchy-Schwarz inequality and (.) with r = ,

|γj| ≤
√

Var(Z) · Var(Zj+) = Var(Z) ≤ EZ
 ≤ μ̄(, s)h–d. (.)

Second, for j∗ < j ≤ h–d , in view of (.) (r = ) and (.), we establish that

|γj| ≤ E|ZZj+| +
(

E|Z|
) ≤ Bμ



(infx∈Sf f ) + μ̄(, s). (.)

Third, for j > h–d , we apply Lemma ., (.) and (.) with r = s (s > ) and we thus obtain

|γj| ≤ 
(

α(j)
)–/s(E|Z|s

)/s ≤ A––/sj–β(–/s)(μ̄(s, s)h–d(s–))/s

≤ A––/sμ̄

s (s, s)j–(–/s)h–d(s–)/s. (.)

Consequently, in view of the property of second-order stationarity and (.)-(.), for n
sufficiently large, we establish

Var
(

m̂n(x)
)

=


n Var

( n
∑

i=

Zi

)

=


n

(

nγ + n
n–
∑

j=

(

 –
j
n

)

γj

)

≤ 
n

(

nh–dμ̄(, s) + n
∑

≤j≤j∗
|γj| + n

∑

j∗<j≤h–d

|γj| + n
∑

h–d<j

|γj|
)

≤ 
n

μ̄(, s)h–d +

n

j∗μ̄(, s)h–d +

n

(

h–d – j∗
)

(

μ̄(, s) +
Bμ



(infx∈Sf f )

)

+

n

∑

h–d<j<∞
A–/sμ̄


s (s, s)j–(–/s)h–d(s–)/s

≤
(

μ̄(, s) + j∗μ̄(, s) + 
(

μ̄(, s) +
Bμ



(infx∈Sf f )

)

+
A–/sμ̄


s (s, s)

(s – )/s

)


nhd

:=
�

nhd , (.)

where the final inequality uses the fact that
∑∞

j=k+ j–δ ≤ ∫ ∞
k x–δ dx = k–δ

δ– for δ >  and
k ≥ .

Thus, (.) is completely proved. �
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Proof of Corollary . It is easy to see that

∣

∣m̂n(x) – m(x)
∣

∣ ≤ ∣

∣m̂n(x) – Em̂(x)
∣

∣ +
∣

∣Em̂n(x) – m(x)
∣

∣,

which can be treated as ‘variance’ part and ‘bias’ part, respectively.
On the one hand, by the proof of Theorem . of Shen and Xie [], one has |Em̂n(x) –

m(x)| → . On the other hand, we apply Theorem . and obtain that |m̂n(x) – Em̂n(x)| P−→
. So, (.) is proved finally. �

Proof of Theorem . Let τn = a–/(s–)
n and define

Rn = m̂n(x) –

n

n
∑

i=

YiKh(x – Xi)
f (Xi)

I
(|Yi| ≤ τn

)

=

n

n
∑

i=

YiKh(x – Xi)
f (Xi)

I
(|Yi| > τn

)

.

Obviously, we have

E|Rn| ≤ E
( |Kh(x – X)|

f (X)
E
(|Y|I

(|Y| > τn
)|X

)

)

≤ 
(infSf f )

∫

Sf

∣

∣

∣

∣

K
(

x – u
h

)∣

∣

∣

∣

E
(|Y|I

(|Y| > τn
)|X = u

) f (u)
hd du

=


(infSf f )

∫

Sf

∣

∣K(u)
∣

∣E
(|Y|I

(|Y| > τn
)|X = x – hu

)

f (x – hu) du

≤ 
(infSf f )


τ s–

n

∫

Sf

∣

∣K(u)
∣

∣E
(|Y|s|X = x – hu

)

f (x – hu) du

≤ 
(infSf f )

μB

τ s–
n

. (.)

Combining Markov’s inequality with (.), one has

|Rn – ERn| = OP
(

τ–(s–)
n

)

= OP(an). (.)

Denote

m̃n(x) =

n

n
∑

i=

YiKh(x – Xi)
f (Xi)

I
(|Yi| ≤ τn

)

:=

n

n
∑

i=

Z̃n, n ≥ . (.)

It can be seen that

∣

∣m̂n(x) – m(x)
∣

∣ ≤ ∣

∣m̂n(x) – Em̂n(x)
∣

∣ +
∣

∣Em̂n(x) – m(x)
∣

∣

≤ ∣

∣m̃n(x) – Em̃n(x)
∣

∣ + |Rn – ERn| +
∣

∣Em̂n(x) – m(x)
∣

∣. (.)

Similar to the proof of (.), it can be argued that

Var

( j
∑

i=

Z̃i

)

≤ Cjh–d,
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which implies

Dm = max
≤j≤m

Var

( j
∑

i=

Z̃i

)

≤ Cmh–d.

Meanwhile, one has |Z̃i – EZ̃i| ≤ Cτn
hd ,  ≤ i ≤ n. Setting m = a–

n τ–
n and using (.), h =

n–θ/d , and Lemma . with ε = ann, we obtain for n sufficiently large

P
(∣

∣m̃n(x) – Em̃n(x)
∣

∣ > an
)

= P

(∣

∣

∣

∣

∣

n
∑

i=

(Z̃i – EZ̃i)

∣

∣

∣

∣

∣

> nan

)

≤  exp

{

–
na

n

(Ch–d + 
 Ch–d)

}

+ 
Cτn

annhd nA(anτn)β

≤  exp

{

–
ln n

(C + 
 C)

}

+ Ch–da
β(s–)–s

s–
n

≤ o() + Cnθ n(θ–) β(s–)–s
(s–) (ln n)

β(s–)–s
(s–)

= o() + Cn
β(θ–)(s–)+θs+s–θ

(s–) (ln n)
β(s–)–s

(s–) = o(), (.)

in view of s > ,  < θ < , β > max{ θs+s–θ
(–θ )(s–) , s–

s– }, and β(θ–)(s–)+θs+s–θ

(s–) < .
Consequently, by (.), (.), (.), and Lemma ., we establish the result of (.).

�

Proof of Theorem . We use some similar notation in the proof of Theorem .. Obvi-
ously, one has

sup
x∈S′

f

∣

∣m̂n(x) – m(x)
∣

∣ ≤ sup
x∈S′

f

∣

∣m̂n(x) – Em̂n(x)
∣

∣ + sup
x∈S′

f

∣

∣Em̂n(x) – m(x)
∣

∣. (.)

By the proof of (.) of Shen and Xie [], we establish that

∣

∣Em̂n(x) – m(x)
∣

∣ ≤ h b


∑

≤i,j≤d

∫

Rd
K(v)|vivj|dv ≤ Ch,

which implies

sup
x∈S′

f

∣

∣Em̂n(x) – m(x)
∣

∣ = O
(

h). (.)

Since m̂n(x) = Rn(x) + m̃n(x),

sup
x∈S′

f

∣

∣m̂n(x) – Em̂n(x)
∣

∣ ≤ sup
x∈S′

f

∣

∣m̃n(x) – Em̃n(x)
∣

∣ + sup
x∈S′

f

|Rn – ERn|. (.)

It follows from the proof of (.) that

sup
x∈S′

f

|Rn – ERn| = Op(an). (.)
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Since S′
f is a compact set, there exists a ξ >  such that S′

f ⊂ B := {x : ‖x‖ ≤ ξ}. Let vn be

a positive integer. Take an open covering
⋃vd

n
j= Bjn of B, where Bjn ⊂ {x : ‖x – xjn‖ ≤ ξ

vn
},

j = , , . . . , vd
n , and their interiors are disjoint. So it follows that

sup
x∈S′

f

∣

∣m̃n(x) – Em̃n(x)
∣

∣

≤ max
≤j≤vd

n

sup
x∈Bjn∩S′

f

∣

∣m̃n(x) – Em̃n(x)
∣

∣

≤ max
≤j≤vd

n

sup
x∈Bjn∩S′

f

∣

∣m̃n(x) – m̃n(xjn)
∣

∣ + max
≤j≤vd

n

∣

∣m̃n(xjn) – Em̃n(xjn)
∣

∣

+ max
≤j≤vd

n

sup
x∈Bjn∩S′

f

∣

∣Em̃n(xjn) – Em̃n(x)
∣

∣

:= I + I + I. (.)

By the definition of m̃n(x) in (.) and the Lipschitz condition of K ,

∣

∣m̃n(x) – m̃n(xjn)
∣

∣ ≤
(

inf
S′

f

f
)– τn

nhd

n
∑

i=

∣

∣

∣

∣

K
(

x – Xi

h

)

– K
(

xjn – Xi

h

)∣

∣

∣

∣

≤ Lτn

hd+ infS′
f

f
‖x – xjn‖, x ∈ S′

f .

Taking vn = 
 τn
hd+an

� + , we obtain

sup
x∈Bjn∩S′

f

∣

∣m̃n(x) – m̃n(xjn)
∣

∣ ≤ Lξ

infS′
f

f
an,  ≤ j ≤ vd

n, (.)

and

I = max
≤j≤vd

n

sup
x∈Bjn∩S′

f

∣

∣m̃n(x) – m̃n(xjn)
∣

∣ = O(an). (.)

In view of |Em̃n(xjn) – Em̃n(x)| ≤ E|m̃n(xjn) – m̃n(x)|, we have by (.)

I = max
≤j≤vd

n

sup
x∈Bjn∩S′

f

∣

∣Em̃n(xjn) – Em̃n(x)
∣

∣ ≤ Lξ

infS′
f

f
an = O(an). (.)

For  ≤ i ≤ n and  ≤ j ≤ vd
n , denote Z̃i(j) = YiKh(xjn–Xi)

f (Xi)
I(|Yi| ≤ τn). Then similar to the

proof of (.), we obtain by Lemma . with m = a–
n τ–

n and ε = Mnan for n sufficiently
large

P
(|I| > Man

)

= P
(

max
≤j≤vd

n

∣

∣m̃n(xjn) – Em̃n(xjn)
∣

∣ > Man

)

≤
vd

n
∑

j=

P

(∣

∣

∣

∣

∣

n
∑

i=

(

Z̃i(j) – EZ̃i(j)
)

∣

∣

∣

∣

∣

> Mnan

)
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≤ vd
n exp

{

–
Mna

n

(Ch–d + 
 CMh–d)

}

+ vd
n

Cτn

Manhd A(anτn)β

= I + I, (.)

where the value of M will be given in (.).

In view of  < θ < , s > , h = n–θ/d , and an = ( ln n
nhd )/, one has h–d(d+) = nθ (d+) and a– sd

s–
n =

(ln n)– sd
(s–) n

sd(–θ )
(s–) . Therefore, by vn = 
 τn

hd+an
�+  and τn = a– 

s–
n , we obtain for n sufficiently

large

I = vd
n exp

{

–
Mna

n

(Ch–d + 
 MCh–d)

}

≤ Ch–d(d+)a– sd
s–

n exp

{

–
M ln n

(C + 
 MC)

}

≤ C(ln n)– sd
(s–) n

θ (d+)+ sd(–θ )
(s–) – M

(C+ 
 MC) = o(), (.)

where M is sufficiently large such that

M

(C + 
 MC)

≥ θ (d + ) +
sd( – θ )
(s – )

. (.)

Meanwhile, by (.) and h = n–θ/d , one has for n sufficiently large

I = vd
n

Cτn

Manhd A(anτn)β ≤ C

M

(

τn

hd+an

)d

a
β(s–)–s

s–
n h–d =

C

M
a

β(s–)–s(d+)
s–

n h–d(d+)

=
C

M
(ln n)

β(s–)–s(d+)
(s–) n

β(θ–)(s–)+sθd+θs+sd+s–θd–θ
(s–) = o(), (.)

in which is used the fact that s > ,  < θ < ,

β > max

{

sθd + θs + sd + s – θd – θ

( – θ )(s – )
,

s – 
s – 

}

,

and

β(θ – )(s – ) + sθd + θs + sd + s – θd – θ

(s – )
< .

Thus, by (.)-(.), we establish that

|I| = Op(an). (.)

Finally, the result of (.) follows from (.)-(.), (.), (.), and (.) immedi-
ately. �
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