
Han and Shao Journal of Inequalities and Applications  (2016) 2016:144 
DOI 10.1186/s13660-016-1085-1

R E S E A R C H Open Access

More results on generalized singular
number inequalities of τ -measurable
operators
Yazhou Han* and Jingjing Shao

*Correspondence:
hyz0080@aliyun.com
College of Mathematics and
Systems Science, Xinjiang
University, Urumqi, 830046, China

Abstract
In this article we give some generalized singular number inequalities for products and
sums of τ -measurable operators. Some related arithmetic-geometric mean and Heinz
mean inequalities for a generalized singular number of τ -measurable operators are
proved.

MSC: 47A63; 46L52

Keywords: generalized singular number; von Neumann algebra; τ -measurable
operator

1 Introduction
Let Mn be the space of n × n complex matrices. Given A ∈ Mn, we define |A| = (A∗A) 

 .
The singular values of A, i.e., the eigenvalues of the operator |A|, enumerated in decreasing
order, will be denoted by Sj(A), j = , , . . . , n. The arithmetic-geometric mean inequality
for singular values due to Bhatia and Kittaneh [] says that

Sj
(
AB∗) ≤ Sj

(
A∗A + B∗B

)
, j = , , . . . , n, (.)

holds for any A, B ∈Mn. In , Zhan [] proved that

Sj(A – B) ≤ Sj(A ⊕ B), j = , , . . . , n, (.)

for positive semidefinite matrices A, B ∈ Mn. On the other hand, Tao [] observed that if
A, B, K ∈ Mn with

( A K
K∗ B

) ≥ , then

Sj(K) ≤ Sj

((
A K

K∗ B

))

, j = , , . . . , n. (.)

It was pointed out in [] that inequalities (.), (.), and (.) are equivalent. According
to inequality (.), Audenaert [] (see also []) gave a Heinz mean inequality for singular
values, that is, if A, B ∈ Mn are positive semidefinite matrices and  ≤ r ≤ , then

Sj
(
ArB–r + A–rBr) ≤ Sj(A + B), j = , , . . . , n. (.)
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Among other things, in , Albadawi [] showed that if Ai, Bi, Xi ∈ B(H) (i = , , . . . , n)
with Xi ≥ , then

Sj

( n∑

i=

AiXiB∗
i

)

≤
(

max
i=,,...,n

‖Xi‖
)

S
j

⎛

⎜⎜⎜
⎜⎜
⎜
⎝

⎛

⎜⎜⎜
⎜⎜
⎜
⎝

A A · · · An

B B · · · Bn

  · · · 
. . . . . . . . . . . . . . . . . . .
  · · · 

⎞

⎟⎟⎟
⎟⎟
⎟
⎠

⎞

⎟⎟⎟
⎟⎟
⎟
⎠

(.)

holds for j = , , . . . . Inequality (.) yields the well-known arithmetic-geometric mean
inequality for singular values as special cases.

Using the notion of the generalized singular number studied by Fack and Kosaki [], we
generalize inequalities (.)-(.) for τ -measurable operators associated with a semifinite
von Neumann algebra M.

2 Preliminaries
Unless stated otherwise, M will always denote a semifinite von Neumann algebra acting
on a Hilbert space H, with a normal faithful semifinite trace τ . We refer to [, ] for non-
commutative integration. We denote the identity of M by  and let P denote the projec-
tion lattice of M. A closed densely defined linear operator x in H with domain D(x) ⊆H
is said to be affiliated with M if u∗xu = x for all unitary operators u which belong to the
commutant M′ of M. If x is affiliated with M, we define its distribution function by
λs(x) = τ (e⊥

s (|x|)) and x will be called τ -measurable if and only if λs(x) < ∞ for some s > ,
where e⊥

s (|x|) = e(s,∞)(|x|) is the spectral projection of |x| associated with the interval (s,∞).
The set of all τ -measurable operators will be denoted by M. The set M is a ∗-algebra with
sum and product being the respective closures of the algebraic sum and product.

Definition . Let x ∈ M and t > . The ‘tth singular number (or generalized singular
number) of x’ μt(x) is defined by

μt(x) = inf
{‖xe‖ : e is a projection in M with τ

(
e⊥) ≤ t

}
.

From Lemma . in [] we see that the generalized singular number function t → μt(x)
is decreasing right-continuous and

μt(uxv) ≤ ‖v‖‖u‖μt(x), t > , (.)

for all u, v ∈M and x ∈M. Moreover,

μt
(
f (x)

)
= f

(
μt(x)

)
, t > , (.)

whenever  ≤ x ∈ M and f is an increasing continuous function on [,∞) satisfying
f () = . Proposition . in [] implies that

μt(x) = inf
{

s ≥ ;λs(x) ≤ t
}

= inf
{

s ≥ ; τ
(
e(s,∞)

(|x|)) ≤ t
}

, t > , (.)
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and

λμt (x)(x) ≤ t, t > . (.)

The space M is a partially ordered vector space under the ordering x ≥  defined by
(xξ , ξ ) ≥ , ξ ∈ D(x). The trace τ on M+ (the positive part of M) extends uniquely to
an additive, positively homogeneous, unitarily invariant, and normal functional τ̃ : M→
[,∞], which is given by τ̃ (x) =

∫ ∞
 μt(x) dt, x ∈M+. This extension is also denoted by τ .

Further,

τ
(
f (x)

)
=

∫ ∞


f
(
μt(x)

)
dt

whenever  ≤ x ∈ M and f is non-negative Borel function which is bounded on a neigh-
borhood of  and satisfies f () = . See [, ] for basic properties and detailed informa-
tion on the generalized singular number. For  < p < ∞, Lp(M) is defined as the set of all
densely defined closed operators x affiliated with M such that

‖x‖p = τ
(|x|p) 

p =
(∫ ∞


μt(x)p dt

) 
p

< ∞.

As usual, we put L∞(M; τ ) = M and denote by ‖ · ‖∞ (= ‖ · ‖) the usual operator norm. It
is well known that Lp(M) is a Banach space under ‖ · ‖p ( ≤ p ≤ ∞) (cf. []).

Let Mn(M) denote the linear space of n × n matrices

x =

⎛

⎜⎜
⎜
⎝

x x · · · xn

x x · · · xn

. . . . . . . . . . . . . . . . . . . .
xn xn · · · xnn

⎞

⎟⎟
⎟
⎠

with entries xij ∈ M, i, j = , , . . . , n. Let Hn =
⊕n

i= H. Then Mn(M) is a von Neumann
algebra in the Hilbert space Hn. For x ∈ Mn(M), define τn(x) =

∑n
i= τ (xii), then τn is a

normal faithful semifinite trace on Mn(M). The direct sum of operators x, x, . . . , xn ∈M,
denoted by

⊕n
i= xi, is the block-diagonal operator matrix defined on Hn by

n⊕

i=

xi =

⎛

⎜
⎜⎜
⎝

x  · · · 
 x · · · 

. . . . . . . . . . . . . . . . . . . .
  · · · xnn

⎞

⎟
⎟⎟
⎠

.

3 Arithmetic-geometric mean and Heinz mean inequalities for generalized
singular number of τ -measurable operators

Let x ∈ M and dμ(x)(t) be the classical distribution function of s → μs(x). By Proposi-
tion . of [], we deduce

λt(x) = dμ(x)(t) = m
({

s ∈ (,∞) : μs(x) > t
})

, t > ,
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where m is the Lebesgue measure on (,∞). Since s → μs(x) is non-increasing and con-
tinuous from the right (see, Lemma . of []), we have

λt(x) = inf
{

s >  : μs(x) ≤ t
}

, t > .

Moreover,

μλs(x)(x) ≤ s, s > . (.)

The following lemma, which includes a basic property of generalized singular number,
plays a central role in our investigation.

Lemma . Let xi ∈M, i = , , . . . , n. Then

μt

( n⊕

i=

xi

)

= inf

{

max
{
μs (x),μs (x), . . . ,μsn (xn)

}
: si ≥ ,

n∑

i=

si ≤ t

}

.

Moreover,

μt

( n⊕

i=

xi

)

= inf

{

max
{
μs (x),μs (x), . . . ,μsn (xn)

}
: si ≥ ,

n∑

i=

si = t

}

.

Proof Let si ≥  with
∑n

i= si ≤ t. By (.), we get

τ

( n⊕

i=

e(μsi (xi),∞)
(|xi|

)
)

≤
n∑

i=

si ≤ t.

Therefore, according to the definition of generalized singular number, we obtain

μt

( n⊕

i=

xi

)

≤
∥∥
∥∥
∥

n⊕

i=

xie[,μsi (xi)]
(|xi|

)
∥∥
∥∥
∥

≤ max
i=,,...,n

{
μsi (xi)

}
.

For the reverse inclusion, from (.), we get

μt

( n⊕

i=

xi

)

= inf

{

s ≥  : τ

(

e(s,∞)

(∣∣
∣∣
∣

n⊕

i=

xi

∣∣
∣∣
∣

))

≤ t

}

.

Since

e(s,∞)

(∣∣
∣∣
∣

n⊕

i=

xi

∣∣
∣∣
∣

)

= e(s,∞)

( n⊕

i=

|xi|
)

=
n⊕

i=

e(s,∞)
(|xi|

)
,

we have

μt

( n⊕

i=

xi

)

= inf

{

s ≥  :
n∑

i=

τ
(
e(s,∞)

(|xi|
)) ≤ t

}

.
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Let si = τ (e(s,∞)(|xi|)). It follows from inequality (.) that μsi (xi) ≤ s. Hence

max
i=,,...,n

{
μsi (xi)

} ≤ μt

( n⊕

i=

xi

)

. �

Remark .
() Let x ∈M. If xi = x, i = , , . . . , n, it follows from Lemma . that

μt(
⊕n

i= xi) = μ t
n

(x), t > .
() Let x ∈M. If x = x and xi = , i = , , . . . , n, it follows from Lemma . that

μt(
⊕n

i= xi) = μt(x), t > .
() Let x, x, y, y ∈M such that μt(xi) ≤ μt(yi), t > , i = , . From Lemma ., we

deduce μt(x ⊕ x) ≤ μt(y ⊕ y), t > .

As an application of Lemma . we now obtain the desired generalized singular number
inequality (.) for τ -measurable operators.

Lemma . Let x, y, z ∈M. If
( x z

z∗ y
) ≥ , then

μt(z) ≤ μt

((
x z
z∗ y

))

, t > .

Proof Let N =
(  z

z∗ 

)
, M =

( x z
z∗ y

)
, and U =

(  
 –

)
. Then

(
 
 –

)(
x z
z∗ y

)(
 
 –

)

=

(
x –z

–z∗ y

)

=

(
x z
z∗ y

)

– N .

Hence N = 
 (M – UMU∗). Let N = N+ – N– be the Jordan decomposition of N . It follows

from Lemma  of [] that μt(N+) ≤ μt( 
 M), t > , and

μt
(
N–) ≤ μt

(



UMU∗
)

≤ ‖U‖∥∥U∗∥∥μt

(



M
)

≤ μt

(



M
)

, t > .

By Theorem  of [], we have

μt(N) = μt
(
N+ – N–) ≤ μt

(
N+ ⊕ N–)

, t > .

Therefore, from Lemma . we obtain

μt(N) ≤ μt
(
N+ ⊕ N–) ≤ μt

(



M ⊕ 


M
)

= μt

(



M
)

, t > ,

i.e.,

μt

((
 z
z∗ 

))

= μt(N) ≤ μt

((
x z
z∗ y

))

, t > .
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It is clear that
(  

 

)(  z
z∗ 

)
=

( z 
 z∗

)∗ and ‖(  
 

)‖ = . Then Lemma . of [] and Lemma .
imply that

μt(z) = μt

((
z 
 z∗

))

≤ μt(N) ≤ μt

((
x z
z∗ y

))

, t > . �

Combing Lemma . with the following theorem we see that inequalities (.), (.), and
(.) hold for τ -measurable operators.

Theorem . The following statements are equivalent:
() Let  ≤ x, y ∈M. Then μt(x – y) ≤ μt(x ⊕ y), t > .
() For any x, y ∈M, μt(xy∗) ≤ μt(x∗x + y∗y), t > .
() Let x, y, z ∈M. If

( x z
z∗ y

) ≥ , then

μt(z) ≤ μt

((
x z
z∗ y

))

, t > .

Proof () ⇒ (): For any x, y ∈ M, we write X =
( x 

y 
)
, Y =

( x 
–y 

)
. Then X∗X =

( x∗x+y∗y 
 

)

and Y ∗Y =
( x∗x+y∗y 

 

)
. It follows from Lemma . and () that

μt

((
yx∗ 
 xy∗

))

= μt

((
 xy∗

yx∗ 

))

= μt
(
XX∗ – YY ∗)

≤ μt
(
XX∗ ⊕ YY ∗)

= inf
{
max

(
μa

(
XX∗),μb

(
YY ∗)) : a, b ≥ , a + b = t

}

= inf
{
max

(
μa

(
X∗X

)
,μb

(
Y ∗Y

))
: a, b ≥ , a + b = t

}

= inf
a,b≥,a+b=t

{
max

(
μa

(
x∗x + y∗y

)
,μb

(
x∗x + y∗y

))}

= μt

((
x∗x + y∗y 

 x∗x + y∗y

))

, t > .

Lemma . ensures that μt(xy∗) ≤ μt(x∗x + y∗y), t > .
() ⇒ (): Let  ≤ x, y ∈M and let

S =

(
x 

 –y 


 

)

, T =

(
x 

 y 


 

)

.

From () we have μt(ST∗) ≤ μt(S∗S + T∗T), t > . Then the result follows from
Lemma ..

From Lemma . we have () ⇒ ().
() ⇒ (): For any  ≤ x, y ∈M, we have the following unitary similarity transform:

√


(
 

– 

)(
x+y


x–y


x–y


x+y



)
√


(
 –
 

)

=

(
x 
 y

)

≥ .
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According to (), we obtain

μt(x – y) ≤ μt

((
x+y


x–y


x–y


x+y



))

≤ μt

(
x 
 y

)

, t > . �

Lemma . Let  ≤ x, y ∈M and  ≤ r ≤ . Then

μt
(
x+r + y+r) ≥ μt

(
(x + y)



(
xr + yr)(x + y)



)
, t > .

Proof Let  ≤ x, y ∈M and  ≤ r ≤ . Since  ≤  + r ≤ , the function t → t+r is operator
convex. Hence

x+r + y+r


≥

(
x + y



)+r

=



(x + y)



(
x + y



)r

(x + y)

 .

Note that t → tr ( ≤ r ≤ ) is operator concave, we obtain xr+yr

 ≤ ( x+y
 )r . Therefore,

x+r + y+r ≥ 


(x + y)


(
xr + yr)(x + y)


 .

This completes the proof. �

Based on Lemma . we now obtain the desired generalized singular number inequality
(.) for τ -measurable operators.

Theorem . Let  ≤ r ≤  and  ≤ x, y ∈ L(M). Then

μt
(
xry–r + x–ryr) ≤ μt(x + y), t > . (.)

Proof Let  ≤ v ≤ . If we replace x, y by x 
+v , y 

+v , respectively, in Lemma ., we deduce

μt(x + y) ≥ μt
((

x


+v + y


+v
) 


(
x

v
+v + y

v
+v

)(
x


+v + y


+v

) 

)
.

It follows from Lemma  of [] and the fact x, y ∈ L(M) that

μt(x + y) ≥ μt
((

x


+v + y


+v
)(

x
v

+v + y
v

+v
))

. (.)

Note that

μt

((
(x 

+v + y 
+v )(x v

+v + y v
+v ) 

 

))

= μt

((
x 

+v y 
+v

 

)(
x


+v 

y 
+v 

)(
x

v
+v + y

v
+v 

 

))

= μt

((
x 

+v 
y 

+v 

)(
x v

+v + y v
+v 

 

)(
x


+v y


+v

 

))

= μt

((
x 

+v (x v
+v + y v

+v )x 
+v x 

+v (x v
+v + y v

+v )y 
+v

y


+v (x v
+v + y

v
+v )x 

+v y


+v (x v
+v + y

v
+v )y 

+v

))

.
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Combining Lemma ., Lemma ., and inequality (.) we deduce

μt(x + y) ≥ μt
(
x


+v

(
x

v
+v + y

v
+v

)
y


+v

)

= μt
(
x

v+
+v y


+v + x


+v y

v+
+v

)
,  ≤ v ≤ .

Therefore,

μt
(
xry–r + x–ryr) ≤ μt(x + y),




≤ r ≤ 


.

On the one hand, we have

μt

((
(x 

+v + y 
+v )(x v

+v + y v
+v ) 

 

))

= μt

((
x v

+v 
y v

+v 

)(
x


+v + y


+v 

 

)(
x v

+v y v
+v

 

))

.

Repeating the arguments above we get

μt
(
xry–r + x–ryr) ≤ μt(x + y),




≤ r ≤ .

By the symmetry property of inequality (.) with respect to r = 
 , we see that inequality

(.) holds for all  ≤ r ≤ . �

Let  ≤ x, y ∈M. Then Lemma . and Theorem . imply that

μt
(
(x – y) ⊕ 

) ≤ μt(x ⊕ y), t > .

If x, y ∈M with μt(x) ≤ μt(y), t > , Lemma . gives us that

μt(x) = μt(x ⊕ ) ≤ μt(y ⊕ y), t > .

Some examples of such inequalities related to ones discussed above are presented below.

Lemma . Let x, y ∈Msa := {z ∈M; z = z∗} such that ±y ≤ x. If x ≥ , then

μt(y) ≤ μt(x ⊕ x)

and

∫ t


μt(y) ds ≤

∫ t


μs(x) ds, t > .

Proof Since ±y ≤ x, we have –x ≤ y ≤ x. Then Theorem  of [] indicates that |y| ≤
x + uxu∗ for some unitary u ∈Msa. From Theorem . and Lemma . of [], we deduce
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μt(y) ≤ μt
(
x + uxu∗) ≤ μ t



(
uxu∗) + μ t


(x) ≤ μ t


(x) = μt(x ⊕ x), t > ,

and


∫ t


μs(y) ds ≤

∫ t


μs

(
x + uxu∗)ds ≤ 

∫ t


μs(x) ds, t > . �

We conclude this section with a series of inequalities which are related to the Heinz
mean inequality for a generalized singular number of τ -measurable operators.

Proposition . Let x, y ∈M. Then

μt
(
x∗y + y∗x

) ≤ μt
((

x∗x + y∗y
) ⊕ (

x∗x + y∗y
))

, t > , (.)

and

μt
(
yx∗ + xy∗) ≤ μt

((
x∗x + y∗y

) ⊕ (
x∗x + y∗y

))
, t > . (.)

Proof Since (x ± y)∗(x ± y) ≥ , we have ±(x∗y + y∗x) ≤ x∗x + y∗y. Thus inequality (.)
follows from Lemma .. Inequality (.) follows from Theorem  of [] and Theo-
rem .(). �

Corollary . Let x, y ∈M and  < r ≤ ∞. Then

∫ t


μs

(
x∗y + y∗x

)
ds ≤

∫ t


μs

(
x∗x + y∗y

)
ds, t > , (.)

and

∫ t


μs

(
yx∗ + xy∗)ds ≤

∫ t


μs

(
x∗x + y∗y

)
ds, t > . (.)

Proof It follows from Lemma . and the proof of Proposition .. �

Proposition . Let x, y ∈M. Then

μt(x + y) ≤ μt
((|x| + |y|) ⊕ (∣∣x∗∣∣ +

∣∣y∗∣∣)), t > . (.)

Proof Let x ∈M. Note that
( |x| ±x∗

±x |x∗|
) ≥ . Then

(
|x| + |y| ±(x + y)∗

±(x + y) |x∗| + |y∗|

)

≥ .

Thus

±
(

 (x + y)∗

x + y 

)

≤
(

|x| + |y| 
 |x∗| + |y∗|

)

.
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By Lemma ., we obtain

μt
(
(x + y) ⊕ (x + y)∗

)
= μt

((
 (x + y)∗

x + y 

))

≤ μt

((
|x| + |y| 

 |x∗| + |y∗|

)

⊕
(

|x| + |y| 
 |x∗| + |y∗|

))

= μ t


((
|x| + |y| 

 |x∗| + |y∗|

))

, t > .

According to Lemma . of [] and Lemma ., we get

μt
(
(x + y) ⊕ (x + y)∗

)
= μ t


(x + y), t > .

This implies that

μt(x + y) ≤ μt

((
|x| + |y| 

 |x∗| + |y∗|

))

, t > . �

4 Generalized singular number inequalities for products and sums of
τ -measurable operators

In this section, we establish a generalized singular number inequality for τ -measurable
operators which yields the well-known arithmetic-geometric mean inequalities as special
cases.

The following proposition is a refinement of the inequality in Theorem .().

Proposition . Let x, y ∈M and  ≤ z ∈M. Then

μt
(
xzy∗) ≤ 


‖z‖μt

(
x∗x + y∗y

)
, t > .

Proof According to Proposition .(vi) of [] and Theorem .(), we have

μt
(
xzy∗) = μt

(
xz


 z


 y∗) ≤ μt

(∣∣xz


∣
∣ +

∣
∣yz



∣
∣)

= μt
(
z



(
x∗x + y∗y

)
z



) ≤ ‖z‖μt

(
x∗x + y∗y

)
. �

From Proposition . we now obtain the promised generalized singular number inequal-
ity (.) for τ -measurable operators.

Proposition . Let xi, yi ∈M and  ≤ zi ∈M (i = , , . . . , n). Then

μt

( n∑

i=

xiziy∗
i

)

≤
(

max
i=,,...,n

‖zi‖
)
μt

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

x x · · · xn

y y · · · yn

  · · · 
. . . . . . . . . . . . . . . . . .
  · · · 

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠



, t > .
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Proof Let

A =

⎛

⎜⎜
⎜
⎝

x x · · · xn

  · · · 
. . . . . . . . . . . . . . . . . .
  · · · 

⎞

⎟⎟
⎟
⎠

, B =

⎛

⎜⎜
⎜
⎝

y y · · · yn

  · · · 
. . . . . . . . . . . . . . . . .
  · · · 

⎞

⎟⎟
⎟
⎠

,

K =

⎛

⎜
⎜⎜
⎝

z  · · · 
 z · · · 
. . . . . . . . . . . . . . . . .
  · · · zn

⎞

⎟
⎟⎟
⎠

, T =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

x x · · · xn

y y · · · yn

  · · · 
. . . . . . . . . . . . . . . . . .
  · · · 

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

.

Then

AKB∗ =

⎛

⎜⎜
⎜
⎝

∑n
k= xiziy∗

i  · · · 
  · · · 

. . . . . . . . . . . . . . . . . . . . . . . . .
  · · · 

⎞

⎟⎟
⎟
⎠

, A∗A + B∗B = T∗T = |T |.

From Proposition ., we have

μt
(
AKB∗) ≤ ‖K‖μt

(
A∗A + B∗B

)
= ‖K‖μt

(|T |) = ‖K‖μt(T), t > .

Then the result follows from Lemma .. �

Proposition . includes several generalized singular number inequalities as special
cases.

Corollary . Let xi, yi ∈M and  ≤ zi ∈M (i = , ). Then

μt
(
xzy∗

 + xzy∗

) ≤

(
max
i=,

‖zi‖
)
μt

((
x x

y y

))

, t > .

In particular,

μt
(
xzy∗ + yzx∗) ≤ ‖z‖μt

((
x y
y x

))

, t > .

Proof The result follows from Proposition .. �

The following inequality is an application of Corollary ..

Corollary . Let  ≤ x, y ∈M and  ≤ z ∈M. Then, for t > ,

μt
(
x


 zx


 + y


 zy



) ≤ ‖z‖μt

((
x +

∣
∣y


 x



∣
∣) ⊕ (

y +
∣
∣x


 y



∣
∣)).
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In particular,

μt(x + y) ≤ μt
((

x +
∣
∣y


 x



∣
∣) ⊕ (

y +
∣
∣x


 y



∣
∣)) for all t > .

Proof Let x = y = x 
 , x = y = y 

 , and z = z = z in Corollary .. Then for all t > 

μt
(
x


 zx


 + y


 zy



) ≤ ‖z‖μt

((
x 

 y 


x 
 y 



))

= ‖z‖μt

((
x x 

 y 


y 
 x 

 y

))

= ‖z‖μt(T + T),

where T =
( x 

 y
)

and T =
(  x


 y




y

 x


 

)
. It follows from the facts that T ≤ |T| =

( |y 
 x


 | 

 |x 
 y


 |

)
and T + |T| ≥  that

μt
(
x


 zx


 + y


 zy



) ≤ ‖z‖μt

(
T + |T|

)
, t > .

This gives the desired inequality. �

The following inequality contains a generalization of the inequality in Theorem .().

Corollary . Let x, y ∈M and  ≤ z ∈M. Then

μt
(
xzx∗ – yzy∗) ≤ ‖z‖μt

(
x∗x ⊕ y∗y

)
for all t > .

Proof If we replace x, x, y, y by x, y, x, –y, respectively, in Corollary ., we deduce

μt
(
xzx∗ – yzy∗) ≤ ‖z‖μt

((
x∗x 

 y∗y

))

for all t > . �
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