
Sarhan and El-Shazly Journal of Inequalities and Applications  (2016) 2016:143 
DOI 10.1186/s13660-016-1083-3

R E S E A R C H Open Access

Investigation of the existence and
uniqueness of extremal and positive definite
solutions of nonlinear matrix equations
Abdel-Shakoor M Sarhan and Naglaa M El-Shazly*

*Correspondence:
Naglaamoh1@yahoo.com
Department of Mathematics,
Faculty of Science, Menoufia
University, Shebin El-Koom, Egypt

Abstract
We consider two nonlinear matrix equations Xr ± ∑m

i=1 A
∗
i X

δi Ai = I, where –1 < δi < 0,
and r,m are positive integers. For the first equation (plus case), we prove the existence
of positive definite solutions and extremal solutions. Two algorithms and proofs of
their convergence to the extremal positive definite solutions are constructed. For the
second equation (negative case), we prove the existence and the uniqueness of a
positive definite solution. Moreover, the algorithm given in (Duan et al. in Linear
Algebra Appl. 429:110-121, 2008) (actually, in (Shi et al. in Linear Multilinear Algebra
52:1-15, 2004)) for r = 1 is proved to be valid for any r. Numerical examples are given
to illustrate the performance and effectiveness of all the constructed algorithms. In
Appendix, we analyze the ordering on the positive cone P(n).
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1 Introduction
Consider the two nonlinear matrix equations

Xr +
m∑

i=

A∗
i Xδi Ai = I, – < δi < , (.)

and

Xr –
m∑

i=

A∗
i Xδi Ai = I, – < δi < , (.)

where Ai are n×n nonsingular matrices, I is the n×n identity matrix, and r, m are positive
integers, whereas X is an n × n unknown matrix to be determined (A∗

i stands for the con-
jugate transpose of the matrix Ai). The existence and uniqueness, the rate of convergence,
and necessary and sufficient conditions for the existence of positive definite solutions of
similar kinds of nonlinear matrix equations have been studied by several authors [–].
El-Sayed [] considered the matrix equation X + A∗F(X)A = Q with positive definite ma-
trix Q and has shown that under some conditions an iteration method converges to the
positive definite solution. Dehghan and Hajarian [] constructed an iterative algorithm
to solve the generalized coupled Sylvester matrix equations over reflexive matrices Y , Z.
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Also, they obtained an optimal approximation reflexive solution pair to a given matrix
pair [Y , Z] in the reflexive solution pair set of the generalized coupled Sylvester matrix
equations (AY – ZB, CY – ZD) = (E, F).

Dehghan and Hajarian [] constructed an iterative method to solve the general coupled
matrix equations

∑p
j= AijXjBij = Mi, i = , , . . . , p (including the generalized (coupled) Lya-

punov and Sylvester matrix equations as particular cases) over generalized bisymmetric
matrix group (X, X, . . . , Xp) by extending the idea of conjugate gradient (CG) method.
They determined the solvability of the general coupled matrix equations over generalized
bisymmetric matrix group in the absence of roundoff errors. In addition, they obtained the
optimal approximation generalized bisymmetric solution group to a given matrix group
(
�

X,
�

X, . . . ,
�

Xp) in Frobenius norm by finding the least Frobenius norm of the generalized
bisymmetric solution group of new general coupled matrix equations.

Hajarian [] derived a simple and efficient matrix algorithm to solve the general coupled
matrix equations

∑p
j= AijXjBij = Ci, i = , , . . . , p (including several linear matrix equations

as particular cases) based on the conjugate gradients squared (CGS) method.
Hajarian [] developed the conjugate gradient squared (CGS) and biconjugate gradient

stabilized (Bi-CGSTAB) methods for obtaining matrix iterative methods for solving the
Sylvester-transpose matrix equation

∑k
i=(AiXBi + CiXT Di) = E and the periodic Sylvester

matrix equation (
�

Aj
�

Xj
�

Bj +
�

Cj
�

Xj+
�

Dj) =
�

Ej for j = , , . . . ,λ.
Shi [] considered the matrix equation

X =
m∑

i=

A∗
i Xδi Ai, |δi| < , (.)

and Duan [] considered the matrix equation

X –
m∑

i=

A∗
i Xδi Ai = Q,  < |δi| < , with Q positive definite, (.)

and Duan [] considered the matrix equation

X –
m∑

i=

A∗
i XrAi = Q, r ∈ [–, ) ∪ (, ). (.)

The main results of [] are the following:
(a) The proof of the uniqueness of a positive definite solution of Equation (.).
(a) An algorithm for obtaining that solution with an original proof of convergence.

The main results of [] are the following:
(b) The uniqueness of a positive definite solution of Equation (.), depending on

Lemma ..
(b) The same algorithm given by [] is used with the same slightly changed proof.

In this paper, we show that the proof given in [] can be deduced directly from []. In
[], the authors proved that Equation (.) always has a unique Hermitian positive defi-
nite solution for every fixed r. We would like to assure that Equations (.) and (.) are
a nontrivial generalization of the corresponding problems with r = . In fact, Equations
(.) and (.) correspond to infinitely many (r = )-problems with nested intervals of δi
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as – 
r < δi < , as shown by the following - transformation: Putting Xr = Y , Equations

(.) and (.) become Y ± ∑m
i= A∗

i Y δi Ai = I with – 
r < δi <  for r = , , . . . . Our results

show that some properties are invariant for all the corresponding problems such as the
existence of the positive definite and extremal solutions of Equation (.) and the property
of uniqueness of a solution of Equation (.). Moreover, it is clear that the set of solutions
of Equation (.) differs with respect to the corresponding problems. Furthermore, in our
paper [], we obtained a sufficient condition for Equation (.) to have a unique solu-
tion. Since this condition depends on r, the uniqueness may hold for some corresponding
problems and fails for others.

This paper is organized as follows. First, in Section , we introduce some notation, defi-
nitions, lemmas, and theorems that will be needed for this work. In Section , the existence
of positive definite solutions of Equation (.) beside the extremal (maximal and minimal)
solutions, which is of a more general form than other existing ones, is proved. In Section ,
two algorithms for obtaining the extremal positive definite solutions of Equation (.) are
proposed. The merit of the proposed method is of iterative nature, which makes it more
efficient. In Section , some numerical examples are considered to illustrate the perfor-
mance and effectiveness of the algorithms. In Section , the existence and uniqueness of a
positive definite solution of Equation (.) is proved. Finally, the algorithm in [] is adapted
for solving this equation. At the end of this paper, in Appendix, we analyze the defined or-
dering on the positive cone P(n) showing that the ordering is total. This important result
shows that problem (.) has one maximal and one minimal solution. Also, we explain
the effect of the value of α on the number of iterations of the given algorithms, shown in
Tables  and .

2 Preliminaries
The following notation, definitions, lemmas, and theorems will be used herein:

. For A, B ∈ Cn×n, we write A >  (≥ ) if the matrix A is Hermitian positive definite
(HPD) (semidefinite). If A – B >  (A – B ≥ ), then we write A > B (A ≥ B).

. If a Hermitian positive definite matrix X satisfies A ≤ X ≤ B, then we write
X ∈ [A, B].

. By a solution we mean a Hermitian positive definite solution.
. If Equation (.) has the maximal solution XL (minimal solution XS), then for any

solution X , XS ≤ X ≤ XL.
. P(n) denotes the set of all n × n positive definite matrices.
. Let E be a real Banach space. A nonempty convex closed set P ⊂ E is called a cone

if:
(i) x ∈ P, λ ≥  implies λx ∈ P.

(ii) x ∈ P, –x ∈ P implies x = θ , where θ denotes the zero element.
We denote the set of interior points of P by Po. A cone is said to be solid if Po �= φ. Each
cone P in E defines a partial ordering in E given by x ≤ y if and only if y – x ∈ P.

In this paper, we consider P to be the cone of n × n positive semidefinite matrices, de-
noted P(n); its interior is the set of n × n positive definite matrices P(n).

Definition . ([]) A cone P ⊂ E is said to be normal if there exists a constant M >  such
that θ ≤ x ≤ y implies ‖x‖ ≤ M‖y‖.
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Definition . ([]) Let P be a solid cone of a real Banach space E, and � : Po → Po. Let
 ≤ a < . Then � is said to be a-concave if �(tx) ≥ ta�(x) ∀x ∈ Po,  < t < .

Similarly, � is said to be (–a)-convex if �(tx) ≤ t–a�(x) ∀x ∈ Po,  < t < .

Lemma . ([]) Let P be a normal cone in a real Banach space E, and let � : Po → Po

be a-concave and increasing (or (–a)-convex and decreasing) for an a ∈ [, ). Then � has
exactly one fixed point x in Po.

Lemma . ([]) If A ≥ B >  (or A > B > ), then Aγ ≥ Bγ >  (or Aγ > Bγ > ) for all
γ ∈ (, ], and Bγ ≥ Aγ >  (or Bγ > Aγ > ) for all γ ∈ [–, ).

Definition . ([]) A function f is said to be matrix monotone of order n if it is mono-
tone with respect to this order on n × n Hermitian matrices, that is, if A ≤ B implies
f (A) ≤ f (B). If f is matrix monotone of order n for all n, then we say that f is matrix mono-
tone or operator monotone.

Theorem . ([]) Every operator monotone function f on an interval I is continuously
differentiable.

Definition . ([]) Let D ⊂ E. An operator f : D → E is said to be an increasing opera-
tor if y ≥ y implies f (y) ≥ f (y), where y, y ∈ D. Similarly, f is said to be a decreasing
operator if y ≥ y implies f (y) ≤ f (y), where y, y ∈ D.

Theorem . (Brouwer’s Fixed Point, []) Every continuous map of a closed bounded
convex set in Rn into itself has a fixed point.

3 On the existence of positive definite solutions of Xr +
∑m

i=1 A∗
i Xδi Ai = I

The map F associated with Equation (.) is defined by

F(X) =

(

I –
m∑

i=

A∗
i Xδi Ai

) 
r

. (.)

Theorem . The mapping F defined by (.) is operator monotone.

Proof Suppose X ≥ X > . Then, F(X) = (I –
∑m

i= A∗
i Xδi

 Ai)

r and F(X) = (I –

∑m
i= A∗

i ×
Xδi

 Ai)

r .

Since X ≥ X, we have Xδi
 ≤ Xδi

 for all i = , , . . . , m.
Then A∗

i Xδi
 Ai ≤ A∗

i Xδi
 Ai and

∑m
i= A∗

i Xδi
 Ai ≤ ∑m

i= A∗
i Xδi

 Ai.
Therefore, I –

∑m
i= A∗

i Xδi
 Ai ≥ I –

∑m
i= A∗

i Xδi
 Ai, and since r is a positive integer,  < 

r ≤ .
Hence, (I –

∑m
i= A∗

i Xδi
 Ai)


r ≥ (I –

∑m
i= A∗

i Xδi
 Ai)


r , that is, F(X) ≥ F(X). Thus, F(X) is

operator monotone. �

The following theorem proves the existence of positive definite solutions for Equa-
tion (.), based on the Brouwer fixed point theorem.

Theorem . If a real number β <  satisfies ( – βr)I ≥ ∑m
i= βδi A∗

i Ai, then Equation (.)
has positive definite solutions.
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Proof It can easily be proved that the condition of the theorem leads to βI ≤ (I –
∑m

i= A∗
i Ai)


r . Let D = [βI, (I –

∑m
i= A∗

i Ai)

r ]. It is clear that D is closed, bounded, and con-

vex. To show F : D → D, let X ∈ D. Then βI ≤ X, and thus βδi I ≥ Xδi , – < δi < . There-
fore, (I –

∑m
i= βδi A∗

i Ai)

r ≤ (I –

∑m
i= A∗

i Xδi Ai)

r . By the definition of β , (I –

∑m
i= βδi A∗

i A) 
r ≥

βI , and thus βI ≤ (I –
∑m

i= A∗
i Xδi Ai)


r = F(X), that is,

βI ≤ F(X). (.)

It is clear that X ≤ I . Then Xδi ≥ I and (I –
∑m

i= A∗
i Xδi Ai)


r ≤ (I –

∑m
i= A∗

i Ai)

r , that is,

F(X) ≤
(

I –
m∑

i=

A∗
i Ai

) 
r

. (.)

From (.) and (.) we get that F(X) ∈ D; therefore, F : D → D. F is continuous since
it is operator monotone. Therefore, F has a fixed point in D, which is a solution of Equa-
tion (.).

The following remark, in addition to Examples . and . in Section , assures the va-
lidity of this theorem. �

Remark Let us consider the simple case r = m = n = , δ = – 
 . It is clear that β does not

exist for a > 
√


 (where a is A∗A in this simple case) and also that no solution exists. For

a ≤ 
√


 , there exist β and solutions (i.e., the theorem holds). For instance, for a = 

√


 ,
there exist β = 

 and the solution, namely x = 
 .

Theorem . The mapping F has the maximal and the minimal elements in D = [βI, (I –
∑m

i= A∗
i Ai)


r ], where β is given in Theorem ..

Proof By Theorems . and . the mapping F is continuous and bounded above since
F(X) < I . Let supX∈D F(X) = Y . So, there exists an X̂ in D satisfying Y –εI < F(X̂) ≤ Y . We
can choose a sequence {Xn} in D satisfying Y – ( 

n )I < F(Xn) ≤ Y . Since D is compact, the
sequence {Xn} has a subsequence {Xnk } convergent to X ∈ D. So, Y – ( 

n )I < F(Xnk ) ≤ Y .
Taking the limit as n → ∞, by the continuity of F we get limn→∞ F(Xnk ) = F(X) = Y =
max{F(X) : X ∈ D}. Hence, F has a maximal element X ∈ D.

Similarly, we can prove that F has a minimal element in D, noting that F is bounded
below by the zero matrix. �

4 Two algorithms for obtaining extremal positive definite solution of
Xr +

∑m
i=1 A∗

i Xδi Ai = I
In this section, we present two algorithms for obtaining the extremal positive definite solu-
tions of Equation (.). The main idea of the algorithms is to avoid computing the inverses
of matrices.
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Algorithm . (INVERSE-FREE Algorithm) Consider the iterative algorithm

Xk+ =

(

I –
m∑

i=

A∗
i Y

δi
δ

k Ai

) 
r

,

Yk+ = Yk
[
I – XkY – 

δ
k

]
, k = , , , . . . , i = , , . . . , m,

X = αI, Y = αδI, α > ,

(.)

where δ is a negative integer such that |δ|
r < .

Theorem . Suppose that Equation (.) has a positive definite solution. Then the it-
erative Algorithm . generates subsequences {Xk} and {Xk+} that are decreasing and
converge to the maximal solution XL.

Proof Suppose that Equation (.) has a solution. We first prove that the subsequences
{Xk} and {Xk+} are decreasing and the subsequences {Yk} and {Yk+} are increasing.
Consider the sequence of matrices generated by (.).

For k = , we have

X =

(

I –
m∑

i=

A∗
i Y

δi
δ

 Ai

) 
r

=

(

I –
m∑

i=

αδi A∗
i Ai

) 
r

.

Since (αr – )I +
∑m

i= αδi A∗
i Ai > , we have I –

∑m
i= αδi A∗

i Ai < αrI . Then

(

I –
m∑

i=

αδi A∗
i Ai

) 
r

< αI = X. (.)

So we get X < X. Also, Y = Y[I – XY – 
δ

 ] = αδ[I – αα–I] = αδI = Y.
For k = , we have

X =

(

I –
m∑

i=

A∗
i Y

δi
δ

 Ai

) 
r

=

(

I –
m∑

i=

αδi A∗
i Ai

) 
r

= X.

So we have X < X. Also,

Y = Y
[
I – XY – 

δ


]
= αδ

[

I –

(

I –
m∑

i=

αδi A∗
i Ai

) 
r

α–

]

= αδI – αδ–

(

I –
m∑

i=

αδi A∗
i Ai

) 
r

.

From (.) we get αδI – αδ–(I –
∑m

i= αδi A∗
i Ai)


r > αδI . Thus, Y > Y.

For k = , we have

X =

(

I –
m∑

i=

A∗
i Y

δi
δ

 Ai

) 
r

.
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Since Y > Y, we have Y
δi
δ

 > Y
δi
δ

 , so we get (I –
∑m

i= A∗
i Y

δi
δ

 Ai)

r < (I –

∑m
i= A∗

i Y
δi
δ

 Ai)

r .

Thus, X < X. Also, Y = Y[I – XY – 
δ

 ]. Since Y > Y and X < X, we have Y – 
δ

 >

Y – 
δ

 and –X > –X, so that –XY – 
δ

 > –XY – 
δ

 and I – XY – 
δ

 > I – XY – 
δ

 , and we get

Y[I – XY – 
δ

 ] > Y[I – XY – 
δ

 ]. Thus, Y > Y.
Similarly, we can prove:

X > X > X > · · · and X > X > X > · · · ,

Y < Y < Y < · · · and Y < Y < Y < · · · .

Hence, {Xk} and {Xk+}, k = , , , . . . , are decreasing, whereas {Yk} and {Yk+}, k =
, , , . . . , are increasing.

Now, we show that {Xk} and {Xk+} are bounded from below by XL (Xk > XL) and that
{Yk} and {Yk+} are bounded from above by Xδ

L.
By induction on k we get

X – XL = αI –

(

I –
m∑

i=

A∗
i Xδi

L Ai

) 
r

.

Since XL is a solution of (.), we have that (I –
∑m

i= A∗
i Xδi

L Ai)

r < I and αI – (I –

∑m
i= A∗

i Xδi
L Ai)


r > αI – I = (α – )I > , α > , that is, X > XL. Also, X – XL = (I –

∑m
i= A∗

i Xδi
 Ai)


r – (I –

∑m
i= A∗

i Xδi
L Ai)


r .

Since X > XL, we have Xδi
 < Xδi

L , and therefore (I –
∑m

i= A∗
i Xδi

 Ai)

r > (I –

∑m
i= A∗

i Xδi
L Ai)


r .

So we get X > XL. Also, Xδ
L – Y = (I –

∑m
i– A∗

i Xδi
L Ai)

δ
r – αδI .

Since X > XL, we have αI > XL and αδi I < Xδi
L ∀i = , , . . . , m, so we have

I –
m∑

i=

αδi A∗
i Ai > I –

m∑

i=

A∗
i Xδi

L Ai and

(

I –
m∑

i=

αδi A∗
i Ai

) δ
r

<

(

I –
m∑

i=

A∗
i Xδi

L Ai

) δ
r

.

(.)

From (.) we get

(

I –
m∑

i=

αδi A∗
i Ai

) δ
r

> αδI. (.)

From (.) and (.) we get (I –
∑m

i= A∗
i Xδi

L Ai)
δ
r > αδI , so we have Xδ

L > Y and Xδ
L > Y.

Assume that Xk > XL, Xk+ > XL at k = t that is, Xt > XL, Xt+ > XL. Also, Yt < Xδ
L and

Yt+ < Xδ
L.

Now, for k = t + ,

Xt+ – XL =

(

I –
m∑

i=

A∗
i Y

δi
δ

t+Ai

) 
r

–

(

I –
m∑

i=

A∗
i Xδi

L Ai

) 
r

.
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Since Yt+ < Xδ
L, we have Y

δi
δ

t+ < Xδi
L and thus

∑m
i= A∗

i Y
δi
δ

t+Ai <
∑m

i= A∗
i Xδi

L Ai. Therefore,

(I –
∑m

i= A∗
i Y

δi
δ

t+Ai)

r > (I –

∑m
i= A∗

i Xδi
L Ai)


r .

Hence, Xt+ – XL > , that is, Xt+ > XL. Also, Xδ
L – Yt+ = Xδ

L – Yt+[I – Xt+Y – 
δ

t+].

Since Yt+ < Xδ
L and Xt+ > XL, we have Y – 

δ
t+ < X–

L and –Xt+ < –XL,

–Xt+Y
– 

δi
t+ < –X–

L XL = –I, and I – Xt+Y
– 

δi
t+ < I – I = I.

Then Yt+[I – Xt+Y – 
δ

t+] < Xδ
L. Hence, Yt+ < Xδ

L, and thus

Xt+ – XL =

(

I –
m∑

i=

A∗
i Y

δi
δ

t+Ai

) 
r

–

(

I –
m∑

i=

A∗
i Xδi

L Ai

) 
r

.

Since, Yt+ < Xδ
L, we have Y

δi
δ

t+ < Xδi
L and

∑m
i= A∗

i Y
δi
δ

t+Ai <
∑m

i= A∗
i Xδi

L Ai. Therefore, (I –
∑m

i= A∗
i Y

δi
δ

t+Ai)

r > (I –

∑m
i= A∗

i Xδi
L Ai)


r .

Hence, Xt+ – XL > , that is, Xt+ > XL, and thus Xδ
L – Yt+ = Xδ

L – Yt+[I – Xt+Y – 
δ

t+].

Since Yt+ < Xδ
L and Xt+ > XL, we have Y – 

δ
t+ < X–

L and –Xt+ < –XL, and thus

–Xt+Y – 
δ

t+ < –X–
L XL = –I and I – Xt+Y – 

δ
t+ < I – I = I.

Then Yt+[I – Xt+Y – 
δ

t+] < Xδ
L. Hence, Yt+ < Xδ

L.
Since {Xk} and {Xk+} are decreasing and bounded from below by XL and {Yk} and

{Yk+} are increasing and bounded from above by Xδ
L, it follows that limk→∞ Xk = X and

limk→∞ Yk = Y exist.
Taking limits in (.) gives Y = Xδ and X = (I –

∑m
i= A∗

i Xδi Ai)

r , that is, X is a solution.

Hence, X = XL. �

Remark We have proved that the maximal solution is unique; see the Appendix.

Now, we consider the case  < α < .

Algorithm . (INVERSE-FREE Algorithm) Consider the iterative (simultaneous) algo-
rithm

Xk+ =

(

I –
m∑

i=

A∗
i Y

δi
δ

k Ai

) 
r

,

Yk+ = Yk
[
I – XkY – 

δ
k

]
, k = , , , . . . , i = , , . . . , m,

X = αI, Y = αδI,  < α < ,

(.)

where δ is a negative integer such that |δ|
r < .

Theorem . Suppose that Equation (.) has a positive definite solution such that
∑m

i= αδi A∗
i Ai < ( – αr)I . Then the iterative Algorithm . generates the subsequences {Xk}

and {Xk+} that are increasing and converge to the minimal solution XS .
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Proof Suppose that Equation (.) has a solution. We first prove that the subsequences
{Xk} and {Xk+} are increasing and the subsequences {Yk} and {Yk+} are decreasing.
Consider the sequence of matrices generated by (.).

For k = , we have

X =

(

I –
m∑

i=

A∗
i Y

δi
δ

 Ai

) 
r

=

(

I –
m∑

i=

αδi A∗
i Ai

) 
r

.

From the condition of the theorem we have

I –
m∑

i=

αδi A∗
i Ai > αrI. (.)

Then,

(

I –
m∑

i=

αδi A∗
i Ai

) 
r

> αI = X. (.)

So we get X > X. Also, Y = Y[I – XY – 
δ

 ] = αδ[I – αα–I] = αδI = Y.
For k = , we have

X =

(

I –
m∑

i=

A∗
i Y

δi
δ

 Ai

) 
r

=

(

I –
m∑

i=

αδi A∗
i Ai

) 
r

= X.

So we have X > X. Also,

Y = Y
[
I – XY – 

δ


]
= αδ

[

I –

(

I –
m∑

i=

αδi A∗
i Ai

) 
r

α–

]

= αδI – αδ–

(

I –
m∑

i=

αδi A∗
i Ai

) 
r

.

From (.) we get αδI – αδ–(I –
∑m

i= αδi A∗
i Ai)


r < αδI . Thus, Y < Y.

For k = , we have

X =

(

I –
m∑

i=

A∗
i Y

δi
δ

 Ai

) 
r

.

Since Y < Y, we have Y
δi
δ

 < Y
δi
δ

 , so we get (I –
∑m

i= A∗
i Y

δi
δ

 Ai)

r > (I –

∑m
i= A∗

i Y
δi
δ

 Ai)

r .

Thus, X > X. Also, Y = Y[I – XY – 
δ

 ].

Since Y < Y and X > X, we have Y – 
δ

 < Y – 
δ

 and –X < –X, so that –XY – 
δ

 < –XY – 
δ



and I – XY – 
δ

 < I – XY – 
δ

 , and we get Y[I – XY – 
δ

 ] < Y[I – XY – 
δ

 ]. Thus, Y < Y.
Similarly, we can prove that

X < X < X < · · · and X < X < X < · · · ,

Y > Y > Y > · · · and Y > Y > Y > · · · .
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Hence {Xk} and {Xk+}, k = , , , . . . , are increasing, whereas {Yk} and {Yk+}, k =
, , , . . . , are decreasing.

Now, we show that {Xk} and {Xk+} are bounded from above by XS (XS > Xk), and {Yk}
and {Yk+} are bounded from below by Xδ

S .
By induction on k we obtain

XS – X =

(

I –
m∑

i=

A∗
i Xδi

S Ai

) 
r

– αI > ,

that is, XS > X. Also,

XS – X =

(

I –
m∑

i=

A∗
i Xδi

S Ai

) 
r

–

(

I –
m∑

i=

A∗
i Xδi

 Ai

) 
r

.

Since XS > X, we have Xδi
S < Xδi

 , and therefore (I –
∑m

i= A∗
i Xδi

S Ai)

r > (I –

∑m
i= A∗

i Xδi
 Ai)


r .

So we get XS > X. Also, Y – Xδ
S = αδI – (I –

∑m
i– A∗

i Xδi
S Ai)

δ
r .

Since XS > X, we have XS > αI and Xδi
S < αδi I ∀i = , , . . . , m, and we get

I –
m∑

i=

αδi A∗
i Ai < I –

m∑

i=

A∗
i Xδi

S Ai and

(

I –
m∑

i=

αδi A∗
i Ai

) δ
r

>

(

I –
m∑

i=

A∗
i Xδi

S Ai

) δ
r

.

(.)

From (.) we get

(

I –
m∑

i=

αδi A∗
i Ai

) δ
r

< αδI. (.)

From (.) and (.) we get αδI > (I –
∑m

i= A∗
i Xδi

S Ai)
δ
r , and thus Y > Xδ

S and Y > Xδ
S .

Assume that Xk < XS and Xk+ < XS at k = t, that is, Xt < XS and Xt+ < XS . Also,
Yt > Xδ

S and Yt+ > Xδ
S .

Now, for k = t + , we have

XS – Xt+ =

(

I –
m∑

i=

A∗
i Xδi

S Ai

) 
r

–

(

I –
m∑

i=

A∗
i Y

δi
δ

t+Ai

) 
r

.

Since Yt+ > Xδ
S , we have Y

δi
δ

t+ > Xδi
S and

∑m
i= A∗

i Y
δi
δ

t+Ai >
∑m

i= A∗
i Xδi

S Ai. Therefore, (I –
∑m

i= A∗
i Y

δi
δ

t+Ai)

r < (I –

∑m
i= A∗

i Xδi
S Ai)


r .

Hence, XS – Xt+ > , that is, XS > Xt+. Also,

Yt+ – Xδ
S = Yt+

[
I – Xt+Y – 

δ
t+

]
– Xδ

S .

Since Yt+ > Xδ
S and Xt+ < XS , we have Y – 

δ
t+ > X–

S and –Xt+ > –XS , and then

–Xt+Y
– 

δi
t+ > –XSX–

S = –I and I – Xt+Y
– 

δi
t+ > I – I = I.
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Then Yt+[I – Xt+Y – 
δ

t+] > Xδ
S . Hence, Yt+ > Xδ

S . Consider

XS – Xt+ =

(

I –
m∑

i=

A∗
i Xδi

S Ai

) 
r

–

(

I –
m∑

i=

A∗
i Y

δi
δ

t+Ai

) 
r

.

Since Yt+ > Xδ
S , we have Y

δi
δ

t+ > Xδi
S and

∑m
i= A∗

i Y
δi
δ

t+Ai >
∑m

i= A∗
i Xδi

S Ai. Therefore, (I –
∑m

i= A∗
i Y

δi
δ

t+Ai)

r < (I –

∑m
i= A∗

i Xδi
S Ai)


r .

Hence, XS – Xt+ > , that is, XS > Xt+. Now consider

Yt+ – Xδ
S = Yt+

[
I – Xt+Y – 

δ
t+

]
– Xδ

S .

Since Yt+ > Xδ
S and Xt+ < XS , we have Y – 

δ
t+ > X–

S and –Xt+ > –XS , and thus

–Xt+Y – 
δ

t+ > –XSX–
S = –I and I – Xt+Y – 

δ
t+ > I – I = I.

Then Yt+[I – Xt+Y – 
δ

t+] > Xδ
S , and hence Yt+ > Xδ

S .
Since {Xk} and {Xk+} are increasing and bounded from above by XS and {Yk} and

{Yk+} are decreasing and bounded from below by Xδ
S , it follows that limk→∞ Xk = X and

limk→∞ Yk = Y exist. Taking the limits in (.) gives Y = Xδ and X = (I –
∑m

i= A∗
i Xδi Ai)


r ,

that is, X is a solution of Equation (.). Hence, X = XS . �

Remark We have proved that the minimal solution is unique; see the Appendix.

5 Numerical examples
In this section, we report a variety of numerical examples to illustrate the accuracy and
efficiency of the two proposed Algorithms . and . to obtain the extremal positive def-
inite solutions of Equation (.). The solutions are computed for different matrices Ai,
i = , , . . . , m, and different values of α, r, δ, and δi, i = , , . . . , m. All programs are written
in MATLAB version .. We denote ε(Xk) = ‖Xr

k +
∑m

i= A∗
i Xδi

k Ai – I‖∞ = ‖Xk+ – Xk‖∞ for
the stopping criterion, and we use ε(Xk) < tol for different chosen tolerances.

Example . Consider the matrix equation (.) with the following two matrices A and
A:

A = . ×

⎛

⎜
⎜
⎜
⎝

–. . –. –.
. –. . .

–.  . .
 .  .

⎞

⎟
⎟
⎟
⎠

,

A =

⎛

⎜
⎜
⎜
⎝

. . . .
. . . .

 . . .
. . . .

⎞

⎟
⎟
⎟
⎠

,

where r = , δ = – 
 , δ = – 

 , δ = –.
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Table 1 INVERSE-FREE iterative Algorithm 4.1

α k

tol = 10–4 tol = 10–6 tol = 10–8

1.2 7 14 21
1.4 8 15 22
1.6 9 16 23
1.8 10 17 24
2 10 17 24

k: The number of iterations.

We applied Algorithm . for different values of the parameter α > . The number of
iterations needed to satisfy the stopping condition (required accuracy) in order the se-
quence of positive definite matrices to converge to the maximal solution of Equation (.)
are listed in Table .

XL ∼=

⎛

⎜
⎜
⎜
⎝

. . –. –.
. . –. .

–. –. . –.
–. . –. .

⎞

⎟
⎟
⎟
⎠

.

The eigenvalues of XL are (., ., ., .).
Note: Theorem . holds for β = 

 , 
 , . . . , etc.

Example . Consider the matrix equation (.) with the following two matrices A and
A:

A =

⎛

⎜
⎜
⎜
⎝

. –. –. .
–. . . –.
–. . . .
. –. . .

⎞

⎟
⎟
⎟
⎠

,

A =

⎛

⎜
⎜
⎜
⎝

. –. –. .
. . –. .
. . . .

–. . . .

⎞

⎟
⎟
⎟
⎠

,

which satisfy the conditions of Theorem ., where r = , δ = – 
 , δ = – 

 , δ = –. We
applied Algorithm . for different values of the parameter α ( < α < ). The obtained
results are summarized in Table , where k is the number of iterations needed to satisfy the
stopping condition (required accuracy) in order the sequence of positive definite matrices
converge to the minimal solution of Equation (.).

XS ∼=

⎛

⎜
⎜
⎜
⎝

. –. –. –.
–. . –. –.
–. –. . –.
–. –. –. .

⎞

⎟
⎟
⎟
⎠

.

The eigenvalues of XS are (., ., ., .).
Also, Theorem . holds for β = 

 , 
 , . . . , etc.
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Table 2 INVERSE-FREE iterative Algorithm 4.3

α k

tol = 10–4 tol = 10–6 tol = 10–8

0.5 12 19 26
0.7 6 13 20
0.9 3 10 17

k: The number of iterations.

Table 3 INVERSE-FREE iterative Algorithm 4.1

α k

tol = 10–6 tol = 10–8 tol = 10–10

1.2 8 20 31
1.4 10 22 33
1.6 11 23 34
1.8 12 24 35
2 13 25 36

k: The number of iterations.

Remark From Table  we see that the number of iterations k increases as the value of α

(α > ) increases, and from Table  we see that the number of iterations k decreases as the
value of α ( < α < ) increases. For details, see the Appendix in the end of this paper.

Example . Consider the matrix equation (.) with the following two matrices A and
A:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–. . –. –. . –.
. –. . –. . –.

–. . . –. . .
–. . –. . . .
–. . . . . –.
. . –. . . –.

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–. . . . . .
. . . –. –. –.
. . . . . .
. . . . . .

–. –. . . . .
. –. . . . –.

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where r = , δ = – 
 , δ = – 

 , δ = –. We applied Algorithm . for different values of the
parameter α (α > ). The number of iterations needed to satisfy the stopping condition
(required accuracy) in order the sequence of positive definite matrices to converge to the
maximal solution of Equation (.) are listed in Table .

XL ∼=

⎛

⎜
⎜
⎜
⎜
⎝

. .e– –.e– –.e– –.e– .e–
.e– . .e– –.e– –.e– .e–

–.e– .e– . .e– .e– –.e–
–.e– –.e– .e– . –.e– .
–.e– –.e– .e– –.e– . –.e–
.e– .e– –.e– . –.e– .

⎞

⎟
⎟
⎟
⎟
⎠
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Table 4 INVERSE-FREE iterative Algorithm 4.3

α k

tol = 10–4 tol = 10–6 tol = 10–8 tol = 10–10

0.5 13 20 27 33
0.7 3 10 17 23
0.9 3 9 16 23

k: The number of iterations.

The eigenvalues of XL are: (., ., ., ., ., .).

Example . Consider the matrix equation (.) with the two matrices A and A as fol-
lows:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–. . –. . . –.
. –. –. . –. –.
. –. –. –. . –.
. . –. –. . –.

–. . . –. –. –.
–. –. . –. . –.

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. –. . –. –. .
. . –. –. –. .
. –. . –. . –.

–. . . . . –.
–. . . –. . .
. –. . . –. .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

which satisfy the conditions of Theorem ., where r = , δ = – 
 , δ = – 

 , δ = –. Ap-
plying Algorithm ., for different values of the parameter α ( < α < ). The obtained
results are summarized in Table , where k is the number of iterations needed to satisfy
the stopping condition (required accuracy) in order the sequence of positive definite ma-
trices converge to the minimal solution of Equation (.).

XS ∼=

⎛

⎜
⎜
⎜
⎜
⎝

. . . . . .e–
. . . . –. –.

. . . . . .
. . . . . .e–
. –. . . . .

.e– –. . .e– . .

⎞

⎟
⎟
⎟
⎟
⎠

.

The eigenvalues of XS are (., ., ., ., ., .).

Remarks
. The obtained results for Examples . and . shown in Tables  and , respectively,

indicate that increasing the dimension of the problem does not affect the efficiency
of the proposed algorithms.

. From Tables , , , and , it is clear that we obtained a high accuracy for different
values of α after a few numbers of steps; see the number of iterations, which
indicate that our algorithms have high efficiency.
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6 On the existence and the uniqueness of a positive definite solution of
Xr –

∑m
i=1 A∗

i Xδi Ai = I
In this section, we prove that Equation (.) has a unique positive definite solution and
construct an interval that includes that solution. Associated with Equation (.) is the op-
erator G defined by

G(X) =

(

I +
m∑

i=

A∗
i Xδi Ai

) 
r

. (.)

Theorem . If Equation (.) has a positive definite solution X, then X ∈ [G(I), G(I)].

Proof Let X be the positive definite solution of Equation (.). Then X = (I +
∑m

i= A∗
i Xδi ×

Ai)

r , and we have

X ≥ I, (.)

which implies that Xδi ≤ I , – < δi < , ∀i = , , . . . , m.
Then

X =

(

I +
m∑

i=

A∗
i Xδi Ai

) 
r

≤
(

I +
m∑

i=

A∗
i Ai

) 
r

= G(I). (.)

Hence, from (.) and (.) we get

I ≤ X ≤ G(I). (.)

Then (I +
∑m

i= A∗
i Ai)

δi
r ≤ Xδi ≤ I , and thus

∑m
i= A∗

i (I +
∑m

i= A∗
i Ai)

δi
r Ai ≤ ∑m

i= A∗
i Xδi Ai ≤

∑m
i= A∗

i Ai.
We have

∑m
i= A∗

i Xδi Ai = Xr – I . Then
∑m

i= A∗
i (I +

∑m
i= A∗

i Ai)
δi
r Ai ≤ Xr – I ≤ ∑m

i= A∗
i Ai.

Therefore, (I +
∑m

i= A∗
i (I +

∑m
i= A∗

i Ai)
δi
r Ai)


r ≤ X ≤ (I +

∑m
i= A∗

i Ai)

r , that is, G(I) ≤ X ≤

G(I). Hence, X ∈ [G(I), G(I)].
We use the Brouwer fixed point theorem to prove the existence of positive definite

solutions of Equation (.). Since P(n) is not complete, we consider the subset D =
[G(I), G(I)] ⊂ P(n), which is compact. �

Theorem . Equation (.) has a Hermitian positive definite solution.

Proof It is obvious that D is closed, bounded, and convex. To show that G : D → D,
let X ∈ D. Then G(I) ≤ X ≤ G(I), that is, X ≤ (I +

∑m
i= A∗

i Ai)

r , and thus Xδi ≥ (I +

∑m
i= A∗

i Ai)
δi
r , – < δi < . Therefore, (I +

∑m
i= A∗

i Xδi Ai)

r ≥ (I +

∑m
i= A∗

i (I +
∑m

i= A∗
i Ai)

δi
r ×

Ai)

r .

Hence,

G(X) ≥ G(I). (.)



Sarhan and El-Shazly Journal of Inequalities and Applications  (2016) 2016:143 Page 16 of 21

Similarly, since X ≥ I , we have Xδi ≤ I and (I +
∑m

i= A∗
i Xδi Ai)


r ≤ (I +

∑m
i= A∗

i Ai)

r , that

is,

G(X) ≤ G(I). (.)

From (.) and (.) we get G(X) ∈ D, that is, G : D → D.
According to Lemma .. in [],

∑m
i= A∗

i Xδi Ai is continuous on D. Hence, G(X) is
continuous on D. By Brouwer’s fixed point theorem, G has a fixed point in D, which is a
solution of Equation (.). �

Remark Applying Lemma ., in [], it is proved that Equation (.) has a unique positive
definite solution for r = . The following theorem shows that the uniqueness holds for any
r, that is, for Equation (.).

Theorem . Equation (.) has a unique positive definite solution.

Proof We show that G has a unique fixed point. For all X, Y ∈ P(n) such that X ≥ Y , by
Definition . we have G : P(n) → P(n) and

G(X) =

(

I +
m∑

i=

A∗
i Xδi Ai

) 
r

≤
(

I +
m∑

i=

A∗
i Y δi Ai

) 
r

= G(Y ),

that is, the operator G is decreasing. We define θ = max{|δi|, i = , , . . . , m}. Then  < θ < .
For all t ∈ (, ), we have

G(tX) =

(

I +
m∑

i=

A∗
i (tX)δi Ai

) 
r

=

(

I +
m∑

i=

tδi A∗
i Xδi Ai

) 
r

≤
(

t–θ I + t–θ

m∑

i=

tδi A∗
i Xδi Ai

) 
r

= t– θ
r

(

I +
m∑

i=

tδi A∗
i Xδi Ai

) 
r

,

where  < θ
r < . Let γ = θ

r . Then G(tX) ≤ t–γ G(X), which means that the operator G is
(–γ )-convex. We obtain that G has a unique fixed point X in P(n), which is the unique
positive definite solution of Equation (.). �

Remarks
. In [], the authors considered the nonlinear matrix equation

X =
m∑

i=

AT
i Xδi Ai, |δi| < , i = , , . . . , m. (.)
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They proved that the recursively defined matrix sequence

Xn+m+ =
m∑

i=

AT
i Xδi

n+iAi, n ≥ , (.)

where X, X, . . . , Xm are arbitrary initial positive definite matrices, converge to the
unique positive definite solution of (.).

In [], the authors considered the nonlinear matrix equation

X = Q +
m∑

i=

A∗
i Xδi Ai,  < |δi| < , i = , , . . . , m, (.)

where Q is a known positive definite matrix. They considered the same formula
(.) as

Xn+m+ = Q +
m∑

i=

A∗
i Xδi

n+iAi, n ≥ . (.)

They used the algorithm given in [] and used the main steps for the proof of
convergence with slight changes to suit their problem (.).

. Since Q has no effect on the convergence of the algorithm and since in [] it is
proved that both Xn+m+ and Xn+i converge to the unique solution X , we see that the
proof given in [] is redundant.

For our Equation (.), we use the recursive formula

Xn+m+ =

(

I +
m∑

i=

A∗
i Xδi

n+iAi

) 
r

(.)

according to the following proposition.

Proposition . The matrix sequence defined by (.) converges to the unique positive
definite matrix solution X of Equation (.) for arbitrary initial positive definite matrices
X, X, . . . , Xm, provided that it is valid for r = .

Proof We have that
∑m

i= A∗
i Xδi

n+iAi is continuous and thus Gn(X) = I +
∑m

i= A∗
i Xδi

n+iAi is
continuous. Define F(Gn(X)) = (Gn(X)) 

r , where r is a positive integer. Then F is also con-
tinuous. So, limn→∞ F(Gn(X)) = F limn→∞ Gn(X). Taking the limit of (.) as n → ∞ and
using (.) and (.) with Q = I , we obtain X = (I +

∑m
i= A∗

i Xδi Ai)

r . �

7 Numerical examples
Example . Consider the matrix equation (.), with the following two matrices A and
A:

A =

(
. .
. .

)

, A =

(
. .
. .

)

,
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where r = , δ = – 
 , δ = – 

 . Let the initial positive definite matrices be

X =

(
. .
. .

)

, X =

(
. .
. .

)

.

Applying the recursive formula (.), after nine iterations of (.), we get the unique
positive definite solution of (.)

X = X =

(
. .
. .

)

.

We see that X ∈ [G(I), G(I)], where G is defined by (.).

Example . Consider the matrix equation (.) with three matrices

A =

(
. .
. .

)

, A =

(
. .
. .

)

, and

A =

(
. .
. .

)

,

where r = , δ = – 
 , δ = – 

 , δ = – 
 . Let the initial positive definite matrices be

X =

(
. .
. .

)

, X =

(
. .
. .

)

, and

X =

(
. .
. .

)

.

Applying the recursive formula (.), after  iterations of (.), we get the unique
positive definite solution of (.)

X = X =

(
. .
. .

)

.

We see that X ∈ [G(I), G(I)], where G is defined by (.).

Remarks
. If we use X and X from Example ., then we get the same solution X = X, which

proves the uniqueness of the solution of Equation (.).
. If we put

X =

(
. .
. .

)

, X =

(
. .
. .

)

, and

X =

(
. .
. .

)
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in Example ., then we get the same solution

X = X =

(
. .
. .

)

,

which proves the uniqueness of the solution of Equation (.).

The above examples show that the recursive formula defined by (.) is feasible and
effective to compute the unique positive definite solution of Equation (.).

8 Conclusion
In this paper we considered two nonlinear matrix equations Xr ±∑m

i= A∗
i Xδi Ai = I . For the

first equation (plus case), the proofs of the existence of positive definite solutions beside
the extremal solutions are given. Also two algorithms are suggested for computing the
extremal solutions. For the second equation (negative case), the existence and uniqueness
of a positive definite solution are proved. The algorithm in [] is adapted for solving this
equation. Numerical examples are introduced to illustrate the obtained theoretical results.

Appendix
The paper is concerned with the positive definite solutions of our two problems (.) and
(.), that is, the solutions that lie in the set P(n) of positive definite matrices, which is the
interior of the cone P(n) of positive (semidefinite) matrices.

Definition A. (Positive operator) A bounded self-adjoint linear operator T from the
Hilbert space H into it self, T : H → H , is said to be positive, written T ≥ , if

〈Tx, x〉 ≥  ∀x ∈ H . (A.)

• If T is self-adjoint, then 〈Tx, x〉 is real.
• The matrices are linear bounded operators defined on the Hilbert space Rn.
• One of our goals is to prove the existence of the extremal (maximal-minimal) positive

definite solutions of the matrix equation (.). So we need the definition of an ordered
Hilbert space: If T and T are linear bounded self-adjoint operators, then

 ≤ T ≤ T if T – T ∈ P(n), (A.)

where P(n) is the cone of positive semidefinite matrices.
The classical definition an ordered Hilbert space in functional analysis:  ≤ T ≤ T if

〈Tx, x〉 ≥ 〈Tx, x〉 ≥  ∀x ∈ H , which leads to

〈
(T – T)x, x

〉 ≥  ⇒ T – T ≥ , (A.)

that is, (A.) is equivalent to (A.).
Definition (A.) gives us an important result: The ordering of linear bounded self-

adjoint operators on P(n) is - corresponding to the order of the positive quadratic
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Figure 1 The effect of increasing α on the number of iterations of Algorithm 4.1.

forms (which is the order of positive real numbers), which is total (since all its ele-
ments are comparable). So the elements of the cone of positive matrices P(n) have at
most one maximal and one minimal element. In Theorem ., we determined the in-
terval D = [βI, (I –

∑m
i= A∗

i Ai)

r ] that contains all positive definite solutions of Equa-

tion (.). In Theorem ., we proved the existence of maximal and minimal solutions
in D = [βI, (I –

∑m
i= A∗

i Ai)

r ].

To compute the maximal solution, we constructed the decreasing sequence of positive
definite matrices (which are not solutions of Equation (.)) and proved that it converges
to the positive definite limit matrix, which is the maximal solution XL.

So, as α >  increases, the algorithm needs more iterations, as is explained in Table .
For example, since I > I , the algorithm needs more iterations at α =  than at α = .
Similarly, the same analysis holds for the minimal solution XS . See Figure .
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