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Abstract
In this paper, we prove that, under some mild conditions, a time-normalized point
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1 Introduction
Let {Xi, i ≥ } be a standardized normal sequence with correlation coefficient rij =
Cov(Xi, Xj) satisfying the conventional assumption that rij →  and rij log(|i – j|) → γ

as j – i → +∞. Normal sequences are weakly dependent if γ = , strongly dependent if
 < γ < ∞ and stationary if rij are related to |i – j| only, and nonstationary otherwise. De-
note by M(k)

n the kth maximum of {Xi,  ≤ i ≤ n}, whose location is denoted L(k)
n and may

vary among {, . . . , n}. Leadbetter et al. [] considered a stationary weakly dependent nor-
mal sequence {Xi, i ≥ } and obtained the asymptotic joint probability distribution of M()

n

and M()
n and even that of M()

n and L()
n . Mittal and Ylvisaker [] proved that if {Xi, i ≥ } is

stationary and strongly dependent, then M()
n (also called the maximum of the sequence)

after normalization converges in distribution to the convolution of exp(–e–x) and a normal
distribution function. More recent results for maxima of stationary normal sequences can
be found in Ho and Hsing [], Tan and Peng [], and Hashorva et al. [], among others.
Meanwhile, some literature was devoted to study the maxima of nonstationary normal
sequences; see Horowitz [] and Leadbetter et al. [] for the weakly dependence case and
Zhang [], Lin et al. [], and Tan and Yang [] for the strongly dependence case.

In particular, Leadbetter et al. [] developed an important tool, the weak convergence
of exceedance point processes, which is crucial to study the joint asymptotic distributions
of some extremes of sequences. Due to its importance, many authors further studied the
asymptotic behavior of exceedance point processes under different conditions; see Piter-
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barg [], Hu et al. [], Falk et al. [], Peng et al. [], Hashorva et al. [] Wiśniewski
[], Lin et al. [], Lin et al. [], and the references therein.

In the paper, we consider {Xi = Yi + mi, i ≥ } where Yi is a standardized nonstationary
and strongly dependent normal sequence and mi is a trend or seasonal component. Define
ηn(t), t ∈ [, ], as a continuous stochastic function such that ηn(t) is linear on [(i–)/n, i/n],
i = , , . . . , n, and has the value Xi at the point i/n (ηn() = ). A similar definition can also
be found in Leadbetter et al. []. A vector point process Nn formed by exceedances of the
levels u()

n , u()
n , . . . , u(r)

n by the stochastic function is called the time-normalized one since
we use ‘j/n’ and set t ∈ [, ] in the definition of ηn(t). In the sequel, for convenience, the
expression ‘exceedances by {Xj, j ≥ }’ stands for ‘exceedances by η(t).’ We prove that the
time-normalized point process Nn converges in distribution to the in plane Cox process
defined in Lin et al. [] and extend the results in Lin et al. [] to the case of more general
normal sequences.

The remainder of the paper is structured as follows. In Section , we present the notation
and main results. Proofs of the main results are postponed to Section . Throughout the
paper, C stands for a constant that may vary from line to line, and ‘→’ stands for the
convergence in distribution as n → ∞.

2 Notation and main results
Let {Xi = Yi +mi, i ≥ } be a standardized normal sequence plus a seasonal component with
the correlation coefficient of {Yi, i ≥ } and seasonal component satisfying the following:

sup
{|rij|, i �= j

}
<  and rij log(j – i) → γ ∈ (,∞) as j – i → +∞, (.)

βn = max
≤i≤n

|mi| = o
(
(log n)/) as n → +∞, (.)


n

n∑

i=

exp

(
a∗

n
(
mi – m∗

n
)

–


(
mi – m∗

n
)

)
→  as n → ∞, (.)

where a∗
n = ( log n)/ – log log n/(( log n)/), and m∗

n is a sequence of constants such
that |m∗

n| ≤ βn. Condition (.) is the same as condition (..) in Leadbetter et al. [].
Throughout, the standardized constants an and bn are defined by

an = ( log n)/, bn = an – (an)–(log log n + log π ). (.)

Before presenting the main results, we first give the definition of the in plane Cox pro-
cess.

Definition . Let {σj, j = , , . . .} be the points of a Cox process N (r) on Lr with (stochas-
tic) intensity exp(–xr – γ +

√
γ ζ ), where ζ is a standard normal random variable, xr is a

constant corresponding to the N (r), and Lr is the in plane fixed horizontal line on which
exceedances are represented as points. N (r) has the distribution characterized as follows:

P

( I⋂

i=

{
N (r)(Bi) = ki

}
)

=
∫ ∞

–∞

I∏

i=

(
(m(Bi) exp(–xr – γ +

√
γ z))ki

ki!

· exp
(
–m(Bi)e–xr–γ +

√
γ z)

)
φ(z) dz, (.)
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where Bi are Borel sets, and m(·) is the Lebesgue measure. Let βj, j = , , . . . , be inde-
pendent and identically distributed (i.i.d.) random variables, independent also of the Cox
process on Lr , taking the values , , . . . , r with conditional probabilities

P(βj = s|ζ = z) =

⎧
⎨

⎩
(τr–s+ – τr–s)/τr for s = , , . . . , r – ,

τ/τr for s = r,

that is, P(βj ≥ s|ζ = z) = τr–s+/τr for s = , , . . . , r, where τi = e–xi–γ +
√

γ z , i = , , . . . , r. For
each j, placing points σj,σj, . . . ,σβj j on βj –  lines Lr–, Lr–, . . . , Lr–βj+, vertically above
σj, we can obtain an in plane Cox process N . Specifically, the conditional probability that
a point appears on Lr– above σj is P(βj ≥ |ζ = z) = τr–/τr , and the deletions are condi-
tionally independent, so that N (r–) is obtained as a conditionally independent thinning of
the Cox process N (r). Similarly, the other N (k),  ≤ k ≤ r – , can be constructed.

In Theorem ., we study a vector point process Nn = (N ()
n , N ()

n , . . . , N (r)
n ) that arises

when {Xi,  ≤ i ≤ n} exceeds the levels u()
n , u()

n , . . . , u(r)
n , the structure of which is the same

as that of the exceedance process on pp.- in Leadbetter et al. []. We record the
exceedance points corresponding to the levels u()

n , u()
n , . . . , u(r)

n on fixed horizontal lines
L, L, . . . , Lr in the plane.

Theorem . Suppose that {Xi = Yi + mi, i ≥ } satisfies conditions (.)-(.), and let
u(k)

n = xk/an + bn + m∗
n ( ≤ k ≤ r) satisfy u()

n ≥ u()
n ≥ · · · ≥ u(r)

n . Then the time-normalized
exceedance point process Nn of levels u()

n , u()
n , . . . , u(r)

n by {Xi,  ≤ i ≤ n} converges in distri-
bution to the before-mentioned in plane Cox process.

Corollary . Let {Xi, i ≥ } satisfy the conditions of Theorem .. Let B, B, . . . , Bs be Borel
subsets of the unit interval whose boundaries have zero Lebesgue measures. Then, for inte-
gers m(k)

j ,

P
(
N (k)

n (Bj) = m(k)
j , j = , , . . . , s; k = , , . . . , r

)

→ P
(
N (k)(Bj) = m(k)

j , j = , , . . . , s; k = , , . . . , r
)
.

Theorem . Suppose that the levels u(k)
n ( ≤ k ≤ r) satisfy

P
(

max
≤i≤n

Xi ≤ u(k)
n

)
→

∫ +∞

–∞
exp

(
–e–xk –γ +

√
γ z)φ(z) dz as n → ∞,

with u()
n ≥ u()

n ≥ · · · ≥ u(r)
n . Let S(k)

n be the numbers of exceedances of u(k)
n by {Xi,  ≤ i ≤ n}

that satisfy the conditions of Theorem .. Then, for k ≥ , k ≥ , . . . , kr ≥ ,

P
(
S()

n = k, S()
n = k + k, . . . , S(r)

n = k + k + · · · + kr
)

−→ τ
k
 (τ – τ)k · · · (τr – τr–)kr

k!k! · · ·kr !

·
∫ +∞

–∞

(
exp(

√
γ z – γ )

)k+k+···+kr · exp
(
–e–xk –γ +

√
γ z)φ(z) dz. (.)
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Theorem . Let {Xi, i ≥ } be a normal sequence satisfying the conditions of Theorem ..
Let u(k)

n = xk/an + bn + m∗
n. Then, for x > x, as n → ∞,

P
(
an

(
M()

n – bn – m∗
n
) ≤ x, an

(
M()

n – bn – m∗
n
) ≤ x

)

−→
∫ +∞

–∞

(
exp(–x – γ +

√
γ z) – exp(–x – γ +

√
γ z) + 

)

× exp
(
–e–x–γ +

√
γ z)φ(z) dz (.)

and

P
(


n

L()
n ≤ t, an

(
M()

n – bn – m∗
n
) ≤ x

)
−→

∫ x

–∞
H(y, t) dy, (.)

where

H(y, t) =
∫ +∞

–∞
( – t) exp(–y – γ +

√
γ z) exp

(
–( – t)e–y–γ +

√
γ z)φ(z) dz

·
∫ +∞

–∞
t exp(–y – γ +

√
γ z) exp

(
–te–y–γ +

√
γ z)φ(z) dz

+
∫ +∞

–∞
exp

(
–( – t)e–y–γ +

√
γ z)φ(z) dz

·
∫ +∞

–∞
t exp(–y – γ + 

√
γ z) exp

(
–te–y–γ +

√
γ z)φ(z) dz.

3 The proofs of main results
The proof of Theorem . will use the famous Berman inequality, which was first pre-
sented by Slepian [] and Berman [] and then polished up by Li and Shao []. For the
latest results related to Berman’s inequality, we refer the reader to Hashorva and Weng
[] and Lu and Wang []. The upper bound of Berman’s inequality gives an estimate of
the difference between two standardized n-dimensional distribution functions by a conve-
nient function of their covariances. According to Hashorva and Weng [], some results
for normal sequences may be extended to nonnormal cases. The proof of Theorem .
also depends on the following lemma of Zhang [].

Lemma . Suppose that {Xi, i ≥ } is a standardized normal sequence with correlation
coefficient rij satisfying (.). Define un = un(x) = x/an + bn and ρn = γ / log n. Then

(i) rij →  as j – i → +∞,
(ii)

∑
≤i<j≤nb |rij – ρn| exp(– u

n
+wij

) →  as n → +∞,
where  < b < +∞ and wij = max{|rij|,ρn}.

Proof of Theorem . It is sufficient to show that, as n goes to ∞,
(a) E(Nn(B)) → E(N(B)) for all sets B of the form (c, d] × (r, δ], r < δ,  < c < d, where

d ≤ , and E(·) is the expectation, and
(b) P(Nn(B) = ) → P(N(B) = ) for all sets B that are finite unions of disjoint sets of

this form.
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First, consider (a). If B = (c, d] × (r, δ] intersects any of the lines, suppose that these are
Ls, Ls+, . . . , Lt ( ≤ s < t ≤ r). Then

Nn(B) =
t∑

k=s

N (k)
n

(
(c, d]

)
, N(B) =

t∑

k=s

N (k)((c, d]
)
,

and the number of points j/n in (c, d] is ([nd] – [nc]). As in the proof Theorem .. on
p. in Leadbetter et al. [], we have E(Nn(B)) = ([nd] – [nc])

∑t
k=s( – F(u(k)

n )) and

 – F
(
u(k)

n
)

=  – �
(
u(k)

n – mj
)
,  ≤ j ≤ n.

Using conditions (.) and (.) yields

n
(
 – �

(
u(k)

n – mj
))

= n
(
 – �(xk/an + bn + mn – mj)

) ∼ e–xk as n → ∞, (.)

where the last ‘∼’ attributes to the well-known fact that n( – �(xk/an + bn)) ∼ e–x implies
n( – �(xk/αn + βn)) ∼ e–x if αn/an →  and (βn – bn)/an → . Thus, we have E(Nn(B)) ∼
n(d – c)

∑t
k=s(

e–xk
n + o( 

n )) → (d – c)
∑t

k=s e–xk . So, since

E
(
N(B)

)
=

t∑

k=s

E
(
(d – c) exp(–xk – γ +

√
γ ζ )

)

=
t∑

k=s

(d – c)e–xk –γ · e
(
√

γ )
 =

t∑

k=s

(d – c)e–xk ,

the first result follows. In order to prove (b), we must prove that P(Nn(B) = ) → P(N(B) =
), where B =

⋃m
 Ck with disjoint Ck = (ck , dk] × (rk , sk]. It is convenient to neglect any set

Ck that does not intersect any of the lines L, L, . . . , Lr . Because there are intersections and
differences of the intervals (ck , dk], we may write B in the form

⋃s
k=(ck , dk] × Ek , where

(ck , dk] are disjoint, and Ek is a finite union of semiclosed intervals. So we have

{
Nn(B) = 

}
=

s⋂

k=

{
Nn(Fk) = 

}
, (.)

where Fk = (ck , dk] × Ek . Llk stands for the lowest Lj intersecting Fk . The aforementioned
thinning property induces

{
Nn(Fk) = 

}
=

{
N (lk )

n
(
(ck , dk]

)
= 

}

=
{

Mn(ck , dk) ≤ u(lk )
n

}
, (.)

where Mn(ck , dk) stands for the maximum of {Xk} with index k ([cn] < k ≤ [dn]). Calculat-
ing the probabilities of (.) and (.), we obtain

P
(
Nn(B) = 

)
= P

( s⋂

k=

{
Mn(ck , dk) ≤ u(lk )

n
}
)

. (.)
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In order to get the limit of the right-hand side of (.), we first prove the following re-
sult. Define a sequence {X̄i = Ȳi + mi, i ≥ }, where {Ȳi, i ≥ } is a standardized normal
sequence with correlation coefficient ρ , and {mi, i ≥ } is the same as that in {Xi, i ≥ }.
Mn(c, d;ρ) stands for the maximum of {X̄k} with index k ([cn] < k ≤ [dn]). It is well known
that Mn(c, d;ρ), . . . , Mn(ck , dk ;ρ) have the same distribution as ( – ρ)/Mn(c, d; ) +
ρ/ζ , . . . , ( – ρ)/Mn(ck , dk ; ) + ρ/ζ , where c = c < d < · · · < ck < dk = d, and ζ is a stan-
dard normal variable. In the following, we estimate the bound of

∣∣∣∣∣
P

( s⋂

k=

{
Mn(ck , dk) ≤ u(lk )

n
}
)

– P

( s⋂

k=

{
Mn(ck , dk ,ρn) ≤ u(lk )

n
}
)∣∣∣∣∣

, (.)

where ρn = γ / log n.
Using Berman’s inequality, the bound of (.) does not exceed


π

∑
|rij – ρn|

(
 – ρ

n
)–/

exp

(
–


 ((ui

n) + (uj
n))

 + ωij

)

≤ C
∑

≤i<j≤n

|rij – ρn| exp

(
–


 ((xi/an + bn) + (xj/an + bn))

 + ωij

)

· exp
((

(xi/an + bn)
(
mi – m∗

n
)

+ (xi/an + bn)
(
mi – m∗

n
)

–


((

m∗
n – mi

) +
(
m∗

n – mj
)))/( + ωij)

)
, (.)

where the first sum is carried out over i, j ∈ ⋃s
k=([ckn], [dkn]], i < j, ui

n or uj
n stands for

u(lk )
n – mi or u(lk )

n – mj when i or j ∈ ([ckn], [dkn]], and ωij = max{|rij|,ρn}. Using the proof
of Theorem .. on p. in Leadbetter et al. [], (.) implies that


n

n∑

i=

exp

(
(xi/an + bn)

(
mi – m∗

n
)

–


(
mi – m∗

n
)

)
→ .

Since ωij is bounded, we further get

sup
≤i<j≤n

exp

( (xi/an + bn)(mi – m∗
n) – 

 (mi – m∗
n)

 + ωij

)
< C.

So, (.) does not exceed

C
∑

≤i<j≤n

|rij – ρn| exp

(
–


 ((xi/an + bn) + (xj/an + bn))

 + ωij

)

< C
∑

≤i<j≤n

|rij – ρn| exp

(
–

((min≤i≤n xi)/an + bn)

 + ωij

)

→ .
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The last ‘→’ attributes to Lemma .. In order to get the desired limit of (.), we only
need to prove

P

( s⋂

k=

{
Mn(ck , dk ,ρn) ≤ u(lk )

n
}
)

→ P
(
N(B) = 

)
.

By the definition of Mn(ck , dk ,ρn) it clearly follows that

P

( s⋂

k=

{
Mn(ck , dk ,ρn) ≤ u(lk )

n
}
)

= P

( s⋂

k=

{
( – ρn)


 Mn(ck , dk , ) + ρ




n ζ ≤ u(lk )
n

}
)

=
∫ +∞

–∞
P

( s⋂

k=

{
Mn(ck , dk , ) ≤ ( – ρn)– 


(
u(lk )

n – ρ



n z
)}

)

φ(z) dz,

where the proof of the last ‘=’ is the same as the argument on the first line from the bottom
on p. in Leadbetter et al. []. Since an = ( log n) 

 , bn = an + O(a–
n log log n), and ρn =

γ / log n, it is easy to show that

( – ρn)– 

(
u(lk )

n – ρ



n z
)

=
xlk + γ –

√
γ z

an
+ bn + o

(
a–

n
)
.

Furthermore, we have

P

( s⋂

k=

{
Mn(ck , dk , ) ≤ ( – ρn)– 


(
u(lk )

n – ρ



n z
)}

)

= P

( s⋂

k=

{
ξ̃[ck n]+ ≤ ( – ρn)– 


(
u(lk )

n – ρ



n z
)

– m[ck n]+, . . . , ξ̃[dk n]

≤ ( – ρn)– 

(
u(lk )

n – ρ



n z
)

– m[dk n]
}
)

→
s∏

k=

exp
(
–(dk – ck)e–xlk –γ +

√
γ z),

where ξ̃k stands for independent standard normal variables, and the proof of the last ‘→’
is the same as that of (.). Using the dominated convergence theorem yields that

∫ +∞

–∞
P

( s⋂

k=

{
Mn(ck , dk , ) ≤ ( – ρn)– 


(
u(lk )

n – ρ



n z
)}

)

φ(z) dz

→
∫ +∞

–∞

s∏

k=

exp
(
–(dk – ck)e–xlk –γ +

√
γ z)

φ(z) dz

= P
(
N(B) = 

)
.

The proof of (b) is completed. �
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Proof of Corollary . Using Theorem ., the proof is similar to that of Corollary .. in
Leadbetter et al. []. So we omit it. �

Proof of Theorem . By Corollary . the left-hand side of (.) converges to

P
(
S() = k, S() = k + k, . . . , S(r) = k + k + · · · + kr

)
, (.)

where S(i) = N (i)([, ]) is the ith component of N . In our paper, the structure of the Cox
process is similar to that of the Poisson process in plane in Leadbetter et al. []. So we can
refer to the proof of Theorem .. in Leadbetter et al. [], and hence (.) equals

(k + k + · · · + kr)!
k!k! · · ·kr !

(
τ

τr

)k(τ – τ

τr

)k(τr – τr–

τr

)kr

· P
(
N (r)((, ]

)
= k + k + · · · + kr

)
.

The proof is completed since

P
(
N (r)((, ]

)
= k + k + · · · + kr

)

=
∫ +∞

–∞
(exp(–xr – γ +

√
γ z))k+k+···+kr

(k + k + · · · + kr)!
· exp

(
–e–xr–γ +

√
γ z)φ(z) dz

=
(exp(–xr))k+k+···+kr

(k + k + · · · + kr)!

∫ +∞

–∞

(
exp(–γ +

√
γ z)

)k+k+···+kr

× exp
(
–e–xr–γ +

√
γ z)φ(z) dz. �

Proof of Theorem . Clearly, the left-hand side of (.) is equal to

P
(
an

(
M()

n – bn – m∗
n
) ≤ x, an

(
M()

n – bn – m∗
n
) ≤ x

)

= P
(
S()

n = 
)

+ P
(
S()

n = , S()
n = 

)
,

where S(i)
n is the number of exceedances of u(i)

n by X, X, . . . , Xn. Using Theorem . can
complete the proof. In order to prove (.), write I , J for intervals {, , . . . , [nt]}, {[nt] +
, . . . , n}, respectively, and M()(I), M()(I), M()(J), M()(J) for the maxima and the second
largest of {Xi,  ≤ i ≤ n} in the intervals I , J . Let Kn(x, x, x, x) be the joint d.f. of the
normalized r.v.s

X()
n = an

(
M()

n (I) – bn – m∗
n
)
, X()

n = an
(
M()

n (I) – bn – m∗
n
)
,

Y ()
n = an

(
M()

n (J) – bn – m∗
n
)
, Y ()

n = an
(
M()

n (J) – bn – m∗
n
)
.

Consider an interesting case of x > x and x > x, that is,

Hn(x, x, x, x)

= P
(
M()

n (I) ≤ u()
n , M()

n (I) ≤ u()
n , M()

n (J) ≤ u()
n , M()

n (J) ≤ u()
n

)

= P
(
N ()

n
(
I ′) = , N ()

n
(
I ′) ≤ , N ()

n
(
J ′) = , N ()

n
(
J ′) ≤ 

)
,
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where I ′ = (, t] and J ′ = (t, ]. By Corollary . with B = I ′ and B = J ′ we have

lim
n→∞ Hn(x, x, x, x)

= lim
n→∞ P

(
N ()

n
(
I ′) = , N ()

n
(
I ′) ≤ 

) · P
(
N ()

n
(
J ′) = , N ()

n
(
J ′) ≤ 

)

=
∫ +∞

–∞

((
e–x – e–x

)
t exp(

√
γ – γ ) + 

)
exp

(
–te–x–γ +

√
γ z)φ(z) dz

×
∫ +∞

–∞

((
e–x – e–x

)
( – t) exp(

√
γ – γ ) + 

)
exp

(
–( – t)e–x–γ +

√
γ z)φ(z) dz

= Ht(x, x)H–t(x, x) = H(x, x, x, x).

Now the left-hand side of (.) is equal to

P
(
M()

n (I) ≤ u()
n , M()

n (I) ≥ M()
n (J)

)

+ P
(
M()

n (I) ≤ u()
n , M()

n (J) > M()
n (I) ≥ M()

n (J)
)
. (.)

Obviously, H is absolutely continuous, and the boundaries of sets in R such as {(w, w, w,
w) : w ≤ x, w > w} and {(w, w, w, w) : w ≤ x, w > w ≥ w} have zero Lebesgue
measure. Thus, by Corollary ., (.) converges to

P(X ≤ x, X ≥ Y) + P(X ≤ x, Y > X ≥ Y).

Using the joint distribution H(x, x, x, x) and a simple evaluation complete the proof. �
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