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Abstract
In this paper we present two computational formulae for one kind of reciprocal sums
related to the Riemann zeta-function at integer points s = 4, 5, which answers an open
problem proposed by Lin (J. Inequal. Appl. 2016:32, 2016).
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1 Introduction and main results
Let (ak)k≥ be a strictly increasing positive sequence such that

∞∑

k=


ak

< +∞. (.)

Many authors study the computational formula for infinite sums of reciprocal ak ,

⌊( ∞∑

k=n


ak

)–⌋
, n ∈ N, (.)

where �x� denotes the integer part of x.
For example, let (Fk) be the famous Fibonacci sequence: Fk+ = Fk + Fk– with the initial

values F =  and F = . Ohtsuka and Nakamura [] showed that

⌊( ∞∑

k=n


Fk

)–⌋
=

⎧
⎨

⎩
Fn– if n ≥  is even,

Fn– –  if n ≥  is odd,
⌊( ∞∑

k=n


F

k

)–⌋
=

⎧
⎨

⎩
Fn–Fn –  if n ≥  is even,

FnFn– if n ≥  is odd.

Xu and Wang [] obtained a complex computational formula for ak = F
k .

Zhang and Wang [] studied this problem for the Pell numbers Pk and showed that

⌊( ∞∑

k=n


Pk

)–⌋
=

⎧
⎨

⎩
Pn– + Pn– if n ≥  is even,

Pn– + Pn– –  if n ≥  is odd,
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where the Pell numbers Pk are defined by P = , P = , and the recurrence relation Pk+ =
Pk + Pk–.

For some other results related to recursive sequences, recursive polynomials, and their
promotion forms, see [–] and references therein.

Very recently, Lin [] investigated the related problem for the sequence ak = ks with
integer s ≥  and showed the following two interesting identities:

⌊( ∞∑

k=n


k

)–⌋
= n – , (.)

⌊( ∞∑

k=n


k

)–⌋
= n(n – ). (.)

This is an important problem, which has a close relationship with the Riemann zeta-
function ζ (s). Lin noted that there does not exist an integer-coefficient polynomial q(x)
of degree  such that the following identity holds:

⌊( ∞∑

k=n


k

)–⌋
= q(n). (.)

In [], Lin declared that giving a precise calculation formula for (
∑∞

k=n

ks )– with s =  is

a very complicated problem. In this paper, we tackle this open problem.

Theorem  For all integer n ≥ , we have the identity

⌊( ∞∑

k=n


k

)–⌋
= – + n – n + n +

⌊
(n + )(n – )



⌋
. (.)

Furthermore, for ak = k, we also have an analogous computational formula.

Theorem  For all integer n ≥ , we have

⌊( ∞∑

k=n


k

)–⌋
= –n + n – n + n +

⌊
(n + )(n – )



⌋
. (.)

2 Proof of Theorem 1
Assume that

g(n) – g(n + ) <


n < f (n) – f (n + ),

and f (∞) = g(∞) = . Summing the inequalities from n to ∞, we have

g(n) <
∞∑

k=n


k < f (n). (.)

These inequalities allow us to study the computational formulas of Theorem . The prob-
lem of finding the functions f (n), g(n) (or F(n), G(n) in Section ) is transformed into



Xu Journal of Inequalities and Applications  (2016) 2016:132 Page 3 of 7

solving the finite continued fraction approximation solution of difference equation for
‘large’ n:

y(n) – y(n + ) =


n . (.)

We will apply the multiple-correction method (see [–]) and solve it as follows.

Step  (The initial correction) Choosing η(n) = b
n+an+an+a

and developing the expres-
sion η(n) – η(n + ) – 

n into power series expansion in /n, we easily obtain

η(n) – η(n + ) –


n

= (b – )


n + (–b – ab)


n +
(
b – ab + ab + a

b
) 

n

+
(
–b – ab + ab – ab + aab – a

b – a
b

) 
n + O

(


n

)
. (.)

If b = 
 , a = – 

 , a = 
 , a = – 

 , then we can get the approximation solution

g(n) =
b

n + an + an + a

of difference equation (.), which is the best possible rational approximation solution of
such structure as n tends to infinity.

Step  (The first correction) Choose η(n) = b
n+an+an+a+ u

x+v
and developing the expres-

sion η(n) – η(n + ) – 
n into power series expansion in /n, we easily obtain

η(n) – η(n + ) –


n =
(

–



–



u
)


n +




(u + uv)


n + O
(


n

)
. (.)

If u = – 
 , v = – 

 , then we can get the approximation solution

f (n) =
b

n + an + an + a + u
x+v

of difference equation (.), which has a better approximation rate than g(n) for ‘large’ n.

So we can get following inequalities necessary in the proofs of our theorems.

Lemma  Let

f (n) =



– + n – n + n – 
n–

. (.)

Then, for n ≥ ,

f (n) – f (n + ) >


n . (.)
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Proof We easily check that

f (n) – f (n + ) –


n =


n( + n)( + n + n)(– + n – n + n)
.

Note that – + n – n + n = (– + n)( + n) + , so the above polynomial is positive for
n ≥ . Then, for n ∈N,

f (n) – f (n + ) –


n > . �

Lemma  Let

g(n) =


(– + n – n + n)
. (.)

Then, for n ∈N,

g(n) – g(n + ) <


n . (.)

Proof We have

g(n) – g(n + ) –


n =
–n + 

n(– + n – n + n)( + n + n + n)
,

where h(n) := – + n – n + n = (– + n)( + n + n) +  >  for n ≥ , and h() =
 > . So h(n) >  for n ∈N. This completes the proof of Lemma . �

Proof of Theorem  Summing the inequalities of the form

g(n) – g(n + ) <


n < f (n) – f (n + )

from n to ∞ and noting that f (∞) = g(∞) = , we have

g(n) <
∞∑

k=n


k < f (n), n ≥ . (.)

Then, for n ≥ ,




(
–

n – 
–  + n – n + n

)
<

( ∞∑

k=n


k

)–

<


(
– + n – n + n). (.)

Note that



(
– + n – n + n) = n – n + n –  +

(
n(n – )


–




)

and




(
–

n – 
–  + n – n + n

)
= n – n + n –  +

(
n(n – )


–


(n – )

–



)
.
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For n ≥ , we have 
(n–) ≤ 

 . Then

⌊
n(n – )


–




⌋
≥

⌊
n(n – )


–


(n – )

–



⌋
≥

⌊
n(n – )


–




⌋

=
⌊

(n + )(n – )


⌋

and, for n ∈N,
⌊

n(n – )


–



⌋
=

⌊
(n + )(n – )



⌋
.

It follows that, for n ≥ ,
⌊

n(n – )


–



⌋
=

⌊
n(n – )


–


(n – )

–



⌋
=

⌊
(n + )(n – )



⌋
. (.)

Finally, we note that the above identities hold for n = , , . Combining (.) and (.),
we prove Theorem . �

3 Proof of Theorem 2
Similarly to Section , by the multiple-correction method we can solve the finite continued
fraction approximation solution F(n), G(n) of the differential equation

y(n) – y(n + ) =


n . (.)

So we have the following inequalities.

Lemma  Let

F(n) =


– – n + n – n + n . (.)

Then, for n ≥ ,

F(n) – F(n + ) >


n . (.)

Proof

F(n) – F(n + ) –


n

=
– + n

n(– – n + n – n + n)(– + n + n + n + n)
. (.)

Note that

– – n + n – n + n = (n – )
(
 + n + n) + . (.)

Then, for n ≥ , we have

F(n) – F(n + ) –


n > . �
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Lemma  Let

G(n) =


–/ – n + n – n + n . (.)

Then, for n ≥ ,

G(n) – G(n + ) <


n . (.)

Proof Similarly to the proof of Lemma , we have

G(n) – G(n + ) –


n

= –
 – ,n + ,n

n(– – n + n – n + n)(– + n + n + n + n)
.

Note that

 – ,n + ,n = (– + n)
(
, + ,n + ,n + ,n) + ,

and

––n+n –n +n = (–+n)
(
,+,n+n +n)+,.

Then, for n ≥ , the inequality G(n) – G(n + ) – 
n <  holds. �

Proof of Theorem  We assume that n ≥  in the following proof. Summing the inequalities
of the form

G(n) – G(n + ) <


n < F(n) – F(n + )

from n to ∞ and noting that F(∞) = G(∞) = , we have

–n + n – n + n +
(

–



–
n


+
n



)

<

( ∞∑

k=n


k

)–

< –n + n – n + n +
(

–



–

n


+
n



)
. (.)

Next, for n ≥ , we will prove the following identities:

⌊
–




–
n


+
n



⌋
=

⌊
–




–
n


+
n



⌋
=

⌊
(n + )(n – )



⌋
. (.)

Since

(n + )(n – )


< –



–
n


+
n


< –




–
n


+
n


,
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it suffices to prove that

⌊
–




–
n


+
n



⌋
=

⌊
(n + )(n – )



⌋
. (.)

We will consider three cases.
Case . If n = m, m ∈N, then we have

⌊
–




–
n


+
n



⌋
=

⌊
(n + )(n – )



⌋
= – – m + m.

Case . If n = m + , m ∈N, then we have

⌊
–




–
n


+
n



⌋
=

⌊
(n + )(n – )



⌋
= – + m + m.

Case . If n = m + , m ∈N, then we have

⌊
–




–
n


+
n



⌋
=

⌊
(n + )(n – )



⌋
= m + m.

This proves that (.) holds. Finally, combining (.) and (.), we prove Theorem . �
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