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1 Introduction and main results
Let (ax)k>1 be a strictly increasing positive sequence such that
21
Z — < +00. 1.1)
o1

Many authors study the computational formula for infinite sums of reciprocal a,

0o -1
{(Z aik) J neN, 1.2)
k=n

where |x| denotes the integer part of x.
For example, let (Fy) be the famous Fibonacci sequence: Fy,1 = Fy + F_; with the initial
values Fy = 0 and F; = 1. Ohtsuka and Nakamura [2] showed that

i 1 - ) E if n>2is even,

i~ Fi F,o—1 ifn>1isodd,

i 1 - F,1F,-1 ifn>2iseven,
F? -

on F,F, 4 ifn>1isodd.

Xu and Wang [3] obtained a complex computational formula for a; = F}.
Zhang and Wang [4] studied this problem for the Pell numbers Px and showed that

-1
L(i 1 ) J P,1+P, if n > 2 is even,

ken Py P,1+P,,-1 ifn>1isodd,
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where the Pell numbers Py are defined by Py = 0, P; = 1, and the recurrence relation Py, =
2Pk + Pk—l'

For some other results related to recursive sequences, recursive polynomials, and their
promotion forms, see [5-13] and references therein.

Very recently, Lin [1] investigated the related problem for the sequence a; = k* with
integer s > 2 and showed the following two interesting identities:

oo -1

(£
o0 1 -1

L(Z E) J =2n(n-1). (1.4)
k=n

This is an important problem, which has a close relationship with the Riemann zeta-
function ¢(s). Lin noted that there does not exist an integer-coefficient polynomial g(x)
of degree 3 such that the following identity holds:

00 -1
{(Z 1(1—4) J = q(n). (1.5)
k=n

In [1], Lin declared that giving a precise calculation formula for (}_;7, &)~ with s = 4 is
a very complicated problem. In this paper, we tackle this open problem.

Theorem 1 For all integer n > 2, we have the identity
=1\ (2n + (1)
Soo) |=-tedn—s? ez | T (1.6)
k* 4
k=n
Furthermore, for a; = k°, we also have an analogous computational formula.

Theorem 2 For all integer n > 4, we have
=1)” (n+1)(n-2)
2—5 =51+ 9n% — 81 + 4n* + {%J 1.7)
—~k 3

2 Proof of Theorem 1
Assume that

) —gln+1) < ,}4 <f ) —f(n+1),

and f(00) = g(0o0) = 0. Summing the inequalities from # to oo, we have

o]

g0 <Y 5 <. @1

k=n

These inequalities allow us to study the computational formulas of Theorem 1. The prob-
lem of finding the functions f(n), g(n) (or F(n), G(n) in Section 3) is transformed into
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solving the finite continued fraction approximation solution of difference equation for

‘large’ n:

y(n) —y(m+1)= % (2.2)

We will apply the multiple-correction method (see [14—16]) and solve it as follows.

b
n3+aon? +ain+ag
sion ng(n) — no(n +1) — %4 into power series expansion in 1/n, we easily obtain

Step 1 (The initial correction) Choosing 1o(#n) = and developing the expres-

1
no(n) —no(n +1) - prs
1 1 !
= (3b—1)— + (~6b — 4asb)— + (10b — 5a,b + 10azb + 5a3b) —

n n

7

1 1
+ (—15b —6aogb +15a1b — 20a,b + 12a1a,b — 15a§b - 6a§b) — + O<—8>. (2.3)
n n

,dy = —%, a = %, ag = —%, then we can get the approximation solution

) ’
n)=
g m +an? +an+ ag

of difference equation (2.2), which is the best possible rational approximation solution of

such structure as # tends to infinity.

Step 2 (The first correction) Choose n;(n) = W% and developing the expres-

+axn“+ayn+ag+ v

sion ny(n) —m(n+1) - ;—4 into power series expansion in 1/n, we easily obtain
1 7 7 1 4 1 1
n-mn+l)-—=|\-—--u)|—+-(u+2uw)—+0| — ). 2.4
mn - min+ 1) - — ( -3 )ng S (+ 2)— (nm) (2.4)

Ifu-= —%, v= —%, then we can get the approximation solution

b

m+ayn® + ayn + ag + 7

Sf(n) =

of difference equation (2.2), which has a better approximation rate than g(») for ‘large’ n.
So we can get following inequalities necessary in the proofs of our theorems.

Lemmal Let

8

fn) . —. (2.5)

C -1+10m 1202 + 813 — 5

Then, for n > 2,

f(n) —f(n+1)>%. (2.6)
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Proof We easily check that

1
T+ )L+ n+n2) (=1 +2n - 212 + n3)’

f(n) —f(n+1)—%

Note that —1 + 21— 2n% + 1% = (=2 + n)(2 + n2) + 3, so the above polynomial is positive for
n>2.Then, forn e N,

f(n)—f(n+1)—%>0. 0

Lemma 2 Let

() = i 27)
SV = 33 10n—1212 + 813)° '
Then, for n € N,
1
gn)—gn+1)< pr (2.8)

Proof We have

() —g(n+1) 1 -281n*+9
n-gn+l)— — = ,
g g n* n*(-3+10m—12n2 + 8n3)(3 + 101 + 1212 + 8n3)

where h(n) := =3 + 10— 121> + 813 = (=2 + n)(18 + 41 + 812) + 33 > 0 for n > 2, and (1) =
3> 0. So h(n) > 0 for n € N. This completes the proof of Lemma 2. d

Proof of Theoremn 1 Summing the inequalities of the form

gn)—gln+1)< % <f(n)—f(n+1)

from # to oo and noting that f(co0) = g(co) = 0, we have

gm<y /714 <f(n), n=>2. (2.9)
k=n

Then, for n > 2,

a1

3/ -3 s o3 =1 3 " o s

= —3+10n—-12n* + 8% | < E = <§(—3+10n—12n +8n°). (2.10)
k

8\ 2n-1 .

Note that
3 2n-1 1
g(—3+10n—12n2+8n3) =3 -5’ +4n—1+ (% - §>

and

3/ -3
—< —3+10n—12n2+8n3>:3n3—5n2+4n—1+(

n(2n-1) 9 1
8\2n-1 ’

4 8(2n-1 8
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For n > 5, we have ﬁ < é. Then

n2n-1) 1 - n(2n—-1) 9 1 - n2n-1) 1
L 4 _§J—L 4 _8(2n—1)_§J_{ 4 _ZJ

2n+1)(n-1)
4

and, for n € N,

Ln(Zn—l) IJ_ 2n+1)(n-1)

4 8 4

It follows that, for n > 5,

n2n-1) 1 ~ n(2n—1) 9 1] 2n+1)(n-1)
1] | o |onetecn)

(2.11)

Finally, we note that the above identities hold for n = 2, 3,4. Combining (2.10) and (2.11),

we prove Theorem 1.

3 Proof of Theorem 2

O

Similarly to Section 2, by the multiple-correction method we can solve the finite continued

fraction approximation solution F(n), G(n) of the differential equation

1
y(n) —y(n+1) = —-
n
So we have the following inequalities.

Lemma 3 Let

9
—2 —48n + 84n2 - 7213 + 36’

F(n) =
Then, for n > 2,
1
F(n)—F(n+1)> —.
n
Proof

F(n)—F(n+1) - %

-1+ 660#n>

- n5(=1 — 24n + 42n2 — 3613 + 18n*) (-1 + 24n + 42n2 + 3613 + 18n%)’

Note that
~1-24n +42n* - 361> + 18n* = (n - 2)(60 + 421 + 181%) + 119.

Then, for n > 2, we have

F(n)—F(n+1)—%>O.

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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Lemma 4 Let

Gln) > (3.6)
n) = . .
—1/4 — 48n + 84n% —72n3 + 36n*
Then, for n > 5,
1
Gn)-Gn+1) < —. (3.7)

78]

Proof Similarly to the proof of Lemma 3, we have
1
Gn)-Gn+1) - —
n
1-37,536n% + 2,0161*
n5(=1—192n + 336m2 — 288n3 + 144n4)(~1 + 1921 + 33612 + 28813 + 144n*)’

Note that

1-37,5361> +2,0161* = (=5 + 1)(64,320 + 12,8647 + 10,0801> + 2,0161°) + 321,601
and

~1-192n+336n° —288n° +144n" = (=4 +n) (5,760 +1,488n+288n> +144n°) +23,039.
Then, for n > 5, the inequality G(n) — G(n + 1) — n% < 0 holds. O

Proofof Theorem2 We assume that n > 5 in the following proof. Summing the inequalities
of the form

Gn)-Gn+1)< 711—4 <F(n)-F(n+1)

from n to oo and noting that F(oo) = G(c0) = 0, we have

2 2
—5n+9n2—8n3+4n4+<—§—z+n—)

3 3
-1
00
1
k=n

1
<—5n+9n® —8n® + 4nt + (———ﬁ+n—>. (3.8)

L—E—LH—T{-L-E*"—ZJ{MJ' (3.9)
9 3 3 36 3 3 3
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it suffices to prove that

L_L_EJJ’:J - LWJ (3.10)
36 33 3

We will consider three cases.

Case 1. 1If n = 3m, m € N, then we have

L_L_ﬁ+”_2J{WJ=_1_m+3m2,
36 3 3 3

Case2.1f n=3m +1, m € N, then we have

L_i_z+ﬁJ:LMJ:_1+m+3m2,
36 3 3 3

Case 3.1f n=3m + 2, m € N, then we have

L_L_E+fJ:LWJ:Bm+BmZ.

This proves that (3.10) holds. Finally, combining (3.8) and (3.9), we prove Theorem 2. [
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