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Abstract

The focus of the present study is to prove some new Pélya-Szegd type integral
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1 Introduction and motivation

The celebrated functionals were introduced by the Chebyshev in his famous paper [1] and
were subsequently rediscovered in various inequalities (for the celebrated functionals) by
numerous authors, including Anastassiou [2], Belarbi and Dahmani [3], Dahmani et al.
[4], Dragomir [5], Kalla and Rao [6], Lakshmikantham and Vatsala [7], Ntouyas et al. [8],
Ogiinmez and Ozkan [9], Sudsutad et al. [10], Sulaiman [11]; and, for very recent work,
see also Wang et al. [12]. This type of functionals is usually defined as

b b b
T(f,9)= / f(x)g(x)dx—(ﬁ / f(x)dx) (ﬁ / g(x)dx), (1)

where f and g are two integrable functions which are synchronous on [4, 8], i.e.,

(F@) -f)(gx) —g») =0, (1.2)

for any x,y € [a, D].
The well-known Griiss inequality [13] is defined by
(M —m)(N —n)

IT(f.9)] < Y (1.3)

where f and g are two integrable functions which are synchronous on [, b] and satisfy the
following inequalities:

m<fx)<M and n<g(y) <N, (1.4)

for all x,y € [a, b] and for some m, M,n, N € R.
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Pélya and Szeg6 [14] introduced the following inequality:

Lpwas@ds 1 [V [ory w9
(S f @ dx [P gxydnp ~ 4\V mn YV MN) .
Dragomir and Diamond [15] by using the Pélya and Szegé inequality, proved that

IT(f.9)| < 4?24 ;Z)(N ) / f(x)dx / 2(x)dx, (1.6)

where f and g are two positive integrable functions which are synchronous on [a, ], and
0<m<f(x) <M< o0, 0<n=<gly) <N<oo, (1.7)

for all x,y € [a, b] and for some m, M,n, N € R.

Recently, k-extensions of some familiar fractional integral operator like Riemann-
Liouville have been investigated by many authors in interesting and useful manners (see
[16-18], and [19]). Here, we begin with the following.

Definition 1.1 Let k > 0, then the generalized k-gamma and k-beta functions defined by
(20]

- nlk"(nk £t
[ew) = lim % (L8)

where (x),,«, is the Pochhammer k-symbol defined by
()i = x(x + k) (x + 2k) - - - (x +(n— l)k) (n>1).

Definition 1.2 The k-gamma function is defined by

o0 Lk
[r(x) = / Fle F dt, R(x)> 0.
0

K
It is well known that the Mellin transform of the exponential function e T is the k-
gamma function. Clearly

'(x) = llgnl Ir(x), Tilx)= ki (%) and Ti(x + k) = xTx(x).

Definition 1.3 If k > 0, let f € L'(a,b), a > 0, then the Riemann-Liouville k-fractional
integral R}, of order > 0 for a real-valued continuous function f() is defined by ([21];
see also [22])

a k{f lf(r T (t €la, b]) (19)

For k =1, (1.9) is reduced to the classical Riemann-Liouville fractional integral.
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Definition 1.4 Ifk > 0,letf € L'"[a,b], a > 0,r € R\ {-1} then the generalized Riemann-
Liouville k-fractional integral R, of order & > 0 for a real-valued continuous function f(t)
is defined by ([19])

1_,
Rl = (1/<+rr()a) e e (cclab), (1.10)

where I'; is the Euler gamma k-function.

The generalized Riemann-Liouville k-fractional integral (1.10) has the properties
Ryl Ruif @} = R0} = Ry Ref ()} (11)

and

tr+1 _ i+l %
R {1} = Gt LY (1.12)
’ (r+ 1) T(a + k)

In this paper, we derive some new Pélya-Szegé type inequalities by making use of the
generalized Riemann-Liouville k-fractional integral operators and then use them to estab-
lish some Chebyshev type integral inequalities.

We organize the paper as follows: in Section 2, we prove some generalized Pélya-Szego
type integral inequalities involving the generalized Riemann-Liouville k-fractional inte-
gral operators that we need to establish main theorems in the sequel and Section 3 contains
some Chebyshev type integral inequalities via generalized Riemann-Liouville k-fractional
integral operators.

2 Some Podlya-Szego types inequalities

In this section, we prove some Pélya-Szego type integral inequalities for positive inte-
grable functions involving the generalized Riemann-Liouville k-fractional integral opera-
tor (1.10).

Lemma 2.1 Let f and g be two positive integrable functions on [a, 00). Assume that there
exist four positive integrable functions ¢1, @2, V1, and Yy on [a, 00) such that:

(H1) 0<@i(7) =f(7) = 92(7), 0 < Yn(r) =g(7) = V(7)) (T € [a, ], £ > a).

Then, fort>a,k>0,a>0,a >0, andr € R\ {-1}, the following inequality holds:

R o f YRS 1 {01028} (t) - 1 o)

(R (@1 + o21ra)fg}(£))? 4’

Proof From (Hy), for T € [a,t], t > a, we have

S (Pz(f)
@ = ) (22)
which yields

p(r) f)
(%(r) - g(r)> z0. (2.3)
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Analogously, we have

(™) _fo)
Ya(T) ~ g(r) (2.4)
from which one has
J@ _ ¢1(7)
(5~ vaer) =© 23
Multiplying (2.3) and (2.5), we obtain
(wz(r) f(f))(f(f) <ﬂ1(f)> -
Ya(r) g(r)/\g(r) Yn(x)/) ~
or
(wz(f) @1(7) )f(f) fz(f) @1(t)ga(T) (2.6)
Vi(t)  Ya(r) ) glr) ~ g%(7) Wl(f)%(f)' '
The inequality (2.6) can be written as
(@1 (OV(T) + @2 (T)Y2 (1)) (1)g (1) = Y1 ()Y (T)F(T) + 91 (T2 (T)g2 (7). (2.7)

4 o _
(1+V)17 % (tr+1_.rr+l) % 1

Now, multiplying both sides of (2.7) by e

and integrating with respect to
7 from a to t, we get

RZ:;C{(%‘/M + <P21/f2)fg}(t) > RZ;:{l/flwzld}(t) + Rﬂ/:{%(/?zg }( ).

Applying the AM-GM inequality, i.e., a + b > 2+/ab, a,b € R*, we have

RZ:;Z{(%% + <P21ﬂ2)fg}(t) >2 RZ,',:{llfﬂﬂzfz}(t)RZ:Z{fplfngz}(f),

which leads to

r 1 o1
R Avvnf? JORS 10287 }(8) < Z(Ra:k{((ﬁ’lwl + o2} ).
Therefore, we obtain the inequality (2.1) as required. d

Lemma 2.2 Let f and g be two positive integrable functions on [a, 00). Assume that there
exist four positive integrable functions @1, a2, Y1, and W, satisfying (Hy) on [a, 00). Then,
fort>a,k>0,a>0,a>0,8>0,andr € R\ {-1}, the following inequality holds:

Ryilpro2) ORG (W Y2) ORN ORI 1

. (2.8)
(R HERL (gl () + Rl oaf OR (g} ()2 ~ 4

Proof To prove (2.8), using the condition (H;), we obtain

@o(T) f(_f)
(wl(m - g(m) =0 2.9)
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and

f@) </>1(f)>

(g(p) Va(p) =0 (2.10)
which imply that

((pl(r) soz(t))f(f) A1) ei(ea(r)

020) ) ) g0) = 20 T o) 1)

Multiplying both sides of (2.11) by ¥ (0)¥x(0)g2(p), we have

e1(T)f (T)Y1(0)g(p) + a2 (T)f (T) V2 (0)g ()
> Y1(p)¥2(p)f* (1) + o1(T)@a(7)g” (p). (2.12)

Multiplying both sides of (2.12) by

a+ V)l_% 1+ r)l—%(tﬁl _ .L.r+1)%—1(tr+1 _ pr+1)%—l
kT i (c)kT(B)

and double integrating with respect to t and p from a to ¢, we have

RET (o MORD g} () + R {paf ORE  {yag) (8)
> RO HORD (v} (8) + R {pipa ()R {1 0).

Applying the AM-GM inequality, we get

R f ORD (yng) () + R oaf ORD 1 {1ragh ()

> 2\/133,',2 {f2}(t)Rg,’;{Wllﬁz}(t)Rak{<P1<P2}( )Ri}: g2},
which leads to the desired inequality in (2.8). The proof is completed. d

Lemma 2.3 Let f and g be two positive integrable functions on [a, c0). Assume that there
exist four positive integrable functions g1, ¢, Y1, and V, satisfying (Hy) on [a, 00). Then,
fort>a,k>0,a>0,0>0,8>0,andr € R\ {-1}, the following inequality holds:

RPN ORD g} 0) < R (pafie) 1y HORL L (Waf2) /g } (0). (213)
Proof From (2.2), we have

1-% pt «
e [

1
< Q+r)7k t(tr+1 ,L.r+1)**1 §02(f)

Ta@) ——f(r)g(r)dr,

Yi(z)

which implies

Ry A1) < Ry (@af@) 1n } (2). (2.14)
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By (2.4), we get

1 -8
(k;:()ﬁ)k (- o) o) dp
D' v

r+l1 r+l1 d
i (B) a( P o) PP dp,

from which one has
RO {&”}6) < RE{ (vaf) o } (0). (2.15)
Multiplying (2.14) and (2.15), we get the desired inequality in (2.13). a

Corollary 2.1 Let f and g be two positive integrable functions on [0, 00) satisfying

(Hy) 0<m<f(r)<M<00,0<n=<g(t)<N<oo(r€lat],t>a).

Then, fort>a,k>0,a>0,0>0,8>0,andr € R\ {-1}, we have
(RN O RGN 0) _ MN

R OR feye)  — mn

(2.16)

3 Chebyshev type integral inequalities

In the sequel, we establish our main Chebyshev type integral inequalities involving the
generalized Riemann-Liouville k-fractional integral operator (1.10), with the help of the
Pélya-Szego fractional integral inequality in Lemma 2.1 as follows.

Theorem 3.1 Let f and g be two positive integrable functions on [a,00), a > 0. Assume
that there exist four positive integrable functions ¢1, 2, Y1, and , satisfying (Hy). Then,
fort>a,k>0,a>0,a>0,andreR\{-1}, the following inequality is fulfilled:

(tr+1 _ (l”l)%

(r+ 1)%Fk(ot + k)

< |G(f, 01, 02)()G(g, Y1, ) (¢

R Afg} () — REAFHORS g )

)2, (3.1)

where

T —aE (R + wu()?
4r+ DT + k) R vw(t)

Glu, v, W)(¢) = — (R u)(8))”. (3.2)

Proof Letf and g be two positive integrable functions on [a, 00). For 7, p € (a,t) with ¢ > a,
we define A(t, p) as

A(t,0) = (f(r) - f(p)) (g(2) ~ g(0)), (3.3)

or, equivalently,

A(t, p) = f(2)g(z) + f(p)g(p) - f(2)g(p) - f(p)g(2). (3.4)
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o o
1- k ) (t”l—r”l) * -1 (t”l r+1) %1

. . . (1+r)2(
Multiplying both sides of (3.4) by oL

and double integrating

with respect to 7 and p from a to ¢, we get

1+ )%

W / / r+1 r+1)*—1(tr+1 r+1) A(‘[ p)dtdp

(tr+1 r+1) %

i ZW R {f2)(e) - 2R () (1) (R /1 ). (3.5)

By using the Cauchy-Schwartz inequality for double integrals, we have

Q+r -

‘W[ / r+1 r+1)*—l(tr+1 r+1) A(‘L’ ,O)d‘f dp

2(1-% T
|:(1k+rl;) / f r+1 r+1 1(tr+1 r+1) fZ( )d'( d,O

2(1-
t/:l—";)(a));( / / r+1 r+1) &-1 (tr+1 r+1) f (,0) dr d,O

1

t;rz(a ? / / ) (gt ) B f(r)f(p)drdp]
[lk+rrk)2a) / / (e =) e = ) () de dp
tk}rk)(j)_)z / / (7 =)@ ) ) dedp
2% / / (¢ =) 1g(r)g(p)alwlp}l. (3.6)

Therefore, we obtain

1

(tHl _aHl)% or [ 2 o7 2:|2
2| ———R —(R*
: |:(r+ D% Tl + k) “yk{f }(t) ( a,k{f}(t))

1

(tr+1 r+1)g . .12
x |:( { }(t) (Ra:k{g}(t))i| . (3-7)

r+1)ka(a+k)

By applying Lemma 2.1, for v (¢) = ¥»(£) = g(£) = 1, we get

o, F [ £2 1 (Ru {(901 + <P2)f}(t))2
RO = = @
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(tr+1 _ 6[’”"'1)% R {f2 } (t) B (Ra’r{f}(t))z
(r+ DI+ k) ™ o
@ —at (RO (g + @) }(1))? or 2
i _ R »
T A+ DI+ k) Ry} () (RealN®)
= G(f, o1, 2)(8). (3.8)
Similarly, we get
(tr+1 r+l)% rer )
(r+1) 3 o + k) { }(t) ( a’k{g}(t))
T —at R+ ¥} 0)? 2
4+ DET(a + k) Ry vy} (o) - (Raxle)®)
= G(g, v, ¥)(8). 3.9)

Finally, combining (3.5), (3.7), (3.8), and (3.9), we arrive at the desired result in (3.1). This
completes the proof. d

Remark 3.2 If ¢; = m, ¢ = M, Y, = n, and ¥, = N, then we have

(M - )2 o1

G(f, m, M)(®) = ﬁ(zeﬂ;k{f}(t))z, (3.10)
N 2

G(g,n,N)( _ ¢ . N”’) (R {gh(®)’. (3.11)

Theorem 3.3 Let f and g be two positive integrable functions on [a,00), a > 0. Assume
that there exist four positive integrable functions ¢1, 2, Y1, and Y, satisfying (Hy). Then,
fort>a,k>0,a>0,a>0,8>0,andr € R\ {-1}, the following inequality is true:

(! - r+1)% G ar+1)§
—— He) + ——— R0
(r+1)kl“k(a+k) wilf (r+ )FT(B+K) 11

~ R ORI )0 - R g} ORE{f)(0)

[T

< |Gi(f, 01, 2)(2) + Ga(f 01, 02)(2)|

X |Gl(g> 1;[fh 1;1’2)(” + Gl(gr wlr (312)

where

r+1 r+1 & o1 2
Gilu v w(p) = — @ (Rak{(vr +wu(0)
4r + DFTR(B + k) a,k{vw}(t)

— R () (ORD (1) 8),

(tr+1 _ ar+1)% (RZ’,:{(V + W)M}(t))2

G ,V, = o
2(u, v, w)(t) 4(r + 1)k Ti(a + k) Rg,,l:{VW}(t)

~ R () (ORE ) @),

Page 8 of 13
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Z*M r+l__r+l -1 r+l_ r+l ﬁ71
Proof Multiplying both sides of (3.4) by & * ¢ k2_I‘l;< (a))rkk( ﬂ()t "% and double inte-
grating with respect to T and p from 4 to ¢, we obtain

1+r -4 t o 5
kZFk(;)Fk(ﬂ) / / (tr+1 _ TV+1)k 1(tr+1 _ pr+1) T IA(‘L',,O) dt dp

(tr+1 _ 61”1)% b ; (tr+1 _ tl”l)%
4r+DF Telor + k) (r+ ) FTW(B +K)

- RGN ORL) (@) - REAOR (£ (0).

Ry {fe) ()
(3.13)

By using the Cauchy-Schwartz inequality for double integrals, we have

(1+r)2_7 r+1 ey i
s [ [ e e - ) ag paras

i[L

”1 o+l Flirel r+1
k2T () T ( ,3)/ / )<t ) 2 (r)drdp
& r+1 r+1 *—1 rel r+1 2
kZFk(Ol)Fk(,B)/ / )F(e ) “fAp)drdp

1
1+7r)

2T Fk(ﬂ)_// F e - pr ) f(p)dedp

(1+72_7 r+1 _ r+1 -1/ i1 r+l g
X[m//t ) =) e @ dp
(1+V)2 r+1 r+1 *—1 r+l r+l i -1 2
drd
k2rk(a)rk(ﬁ)/ / (=) g ) dedp

1
1Q+7r)

r+1 r+1 1/ 41 1 21 2
ksz a)Fk(ﬂ)// (t -p")E g(r)g(p)drdp} .

Therefore, we get

1 2_7
#W/ / r+1 r+1)k 1(tr+1 r+1) A(‘L’ ,O)d‘f dp‘
(! r+1% 2 Cazes ”1)F i
PN N —R p
: [(r+1)ka(a +k) “ @)+ AT G)

(r+ l)k Ce(B + k)
~ 2R ()R “Z{f(t)}r

Cazs ar+1)% i 2 -+ - ar+1)7€— ot
B T4 0 Ee i Y Z7PT
" [(Hlﬁrk(wk) e T s e )
- 28 let0)R2gleo) | 1
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Applying Lemma 2.1 with ¥ (¢) = ¥»(£) = g(¢) = 1, we have

A i LIRS <= kR + )0
eningrh T T araningg e Rexlaed®
This implies that
(tr+1 _ d”l)%

——— RO - R ORGS0
(r+1)xTCx(B + k)

@ =@k R+ 92 )0
T4+ Dfr Bk Radeead©

= Gi(f, 91, 92)(t) (3.15)

— R ORI @)

and
(! - ar+1)%
(r+1)%Ti(a + &)

¢ —aht R+ e))0)?
T A+ DI+ k) RS {o192)(2)

= Gay(f, 1, 02)(2). (3.16)

REH O = RN ORGS0

REFYORDFI(@)

Also, applying the same procedure with ¢ (£) = ¢5(£) = f(¢) = 1, we get

(tr+1 _ ﬂ”l)g

(r+ ) ETL(B + k)
< Gi(g, Y1, ¥2)(8) (3.17)

R} - RE g} R (g} (1)

and

(tr+1 _ a”l)% Br( 2 o b
— Rl —R® R
s D T 2 o e 810 - Rk OR )0

< Galg, Y1, ¥2)(8). (3.18)

Finally, considering (3.13) to (3.18), we arrive at the desired result in (3.12). This completes
the proof of Theorem 3.3. d

Remark 3.4 We conclude the present investigation by remarking that if we follow
Sarikaya and Karaca [18] then our main results become the results recently given by
Ntouyas et al. [8]. Similarly, after some parametric changes our results reduce to numerous
well-known results presented in the literature.

4 Examples
In this section, we show some approximations of unknown functions by using four linear
functions. Let us define the constants m1, w5, M1, My, n1, 15, N1, N> € R such that

(Hs) O<myt+my <f(t) <Mt +My, 0<mt+ny <g(t) <Nit+Ny (r €[a,t], t>a).
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Proposition 4.1 Suppose that f and g are two positive integrable functions on [a,0),a > 0
satisfying (Hs). Then, fort >a,k>0,a>0,a >0, 8 >0, and r € R\ {-1}, we have

(VllNlRZ:]:{Tzf2 } (t) + (I’llNz + Vlle)RZ’]:{TfZ } (t) + VlzNzRZ:]: {f2 } (t))

X (mlMlRZ,',Z{ 1) + (M + szl)Rak{rg }(8) + maML RS, {£1®)

1
1((m1n1 + MiNDRS T2/} (8) + (mumy + mamy + MyN, + MayN)RS {Tfg) ()
+ (myny + MzNz)RZf/t{fg}(t))zo (4.1)

Proof Setting ¢1(t) = m1T + My, 92(t) = Myt + Mo, Y1(T) = mt + ny, and Yo () = N1T + No,
and applying Lemma 2.1, we obtain (4.1) as desired. d

Corollary 4.1 Let all assumptions of Proposition 4.1 be fulfilled with my = M; = n; =
Ny =0.Then, fort>a,k>0,a>0,a>0,8>0,andr € R\ {-1}, the following inequality
holds:

RPN OR, g o _ /leng M2N2 @2
(R {f2)(1))? - 4 2N2 mzl’lz '

Proposition 4.2 Suppose that f and g are two positive integrable functions on [a, o),
a > 0 satisfying (Hs). Then, fort >a,k>0,a>0,a >0, and r € R\ {-1}, we get the follow-
ing inequality:

(tr+1 _ 61”1)%

T i U2} E) = RN ORG(g) (1)

MI'—‘
—
o
w
~

< |G*(f, my, may, My, My)(£) G*(g, m1, 12, Ny, Ny ) (£)

where

G*(u, v, w,x,9)(¢)

_ @eamhE (v RGHTH) () + (W y)RE () (1)
A+ DETe(a + k) vERSHT2HE) + (vy + wa)RET{T () + wyRS {1}(0)
— (R tuy(®)”. (4.4)

Proof By setting ¢1(7), ¢2(7), ¥1(7), and ¥» () as in Proposition 4.1 and using Theorem 3.1,
we get the inequality (4.3). O

Remark 4.3 If m; = M; = n; = N = 0, then we have

G*(f’ 0, my, O,MZ)(t) = G(f’ Wl,M)(t),

G*(g 0, 1’12,0 N2 G(g n, N)(t

where G(f, m, M)(t) and G(g, n, N)(¢) are defined by (3.10) and (3.11), respectively.
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Proposition 4.4 Assume that f and g are two positive integrable functions on [a,00),a > 0
satisfying (Hs). Then, fort >a,k>0,a>0,a >0, 8> 0, and r € R\ {-1}, we obtain the

following estimate:
a B
(tr+1 _ a”l)F b (t”l _ a”l)?
——— RN + ————— R {fgd ()
(r+ DT+ k) (r+1)ka(,3+k)

- R ORI @) (1) - R ORE ) (0)

1
< |Gf(f; my, m2rM1:M2)(t) + G;(f! ml:m2:M1rM2)(t)| 2

X |G>1k(g; ni, n2;N17N2)(t) + G;(g; n, n2;N1;N2)

(4.5)
where

Gy (s, v, w, %, 9)(2)

C @ ea)E (DR 0) + W )R () (0)
4(r+1)§rk(ﬂ+k) VAR AT2H(8) + (vy + wa) R AT} () + wyRT {13(2)

— R {u}(ORE {u) (o),

G5 (u, v, w,%,9)(£)

@t —ak (v + )R {Tu} () + (w+ )R (1) (1))
CA(r+ 1) F Tl +K) vaﬁ TT2)(0) + (vy + wRDL{T)(8) + wyRE (1) (0)

— R () (ORD (1} (0).

Proof By setting the four linear functions as in Proposition 4.1 and using Theorem 3.3, we
get the estimate (4.5). O

Corollary 4.2 Ifm; =My =n =Ny =v=x=0, then we obtain
Gy (u,0,w,0,y)(t
B-a
(tr+1 —LIHI)TF (Ol + k) "
-2/ f ) DR (g
(r+1) * Tx(B +k)

— R u)(t )Rf;;{u}(t),
G (u,0,w,0,y)(t

r+1 _ i+l e b
(5 \f ) DB o
(r+1) % I'(a +k)

— R} (ORD (1} (8).
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