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1 Introduction
Let X and Y be Banach spaces. The essential norm of a bounded linear operator 7: X — Y

is its distance to the set of compact operators K mapping X into Y, that is,
I T|lex—y = inf{|T = K|l x-y : K is compact},

where || - || x— v is the operator norm.

Let D be the open unit disk in the complex plane C and H (D) the space of analytic func-
tions on D. Let ¢ be a nonconstant analytic self-map of D, u € H(D), and # be a nonneg-
ative integer. The generalized weighted composition operator, denoted by Df , is defined
on H(D) by

(D )@ = u@)f " (p(2)), zeD.

When 7 = 0, the generalized weighted composition operator Dy , is the weighted compo-
sition operator, denoted by uC,,. In particular, when # = 0 and u = 1, we get the compo-
sition operator C,. If n =1 and u(z) = ¢'(z), then Dy, =DC,, which was widely studied,
for example, in [1-9]. If u(z) = 1, then Dg,u = C,D", which was studied, for example, in
[1, 5, 10, 11]. For the study of the generalized weighted composition operator on various
function spaces see, for example, [12-21]. Recently there has been a huge interest in the
study of various related product-type operators containing composition operators; see,
e.g., [22-30] and the references therein.
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The Bloch space, denoted by B, is defined to be the set of all f € H(D) such that
Iflls = |f(0)] + suﬂg(l - 1z)|f'(2)] < c0.
ze

B is a Banach space with the above norm. An f € B is said to belong to the little Bloch space
By if lim,1 |f'(2)|(1 - |2|%) = 0. See [31] for more information of Bloch spaces. Composi-
tion operators, as well as weighted composition operators mapping into Bloch-type spaces
were studied a lot see, for example, [3, 6, 16, 32—-45].

The Zygmund space, denoted by Z, is the space consisting of all f € H(D) such that

Ifllz = [f(0)] + |f(0)| + sug(l —1z1?)|f"(2)| < 0.

It is easy to see that Z is a Banach space with the above norm || - || z. See [4, 7, 12, 15, 16,
22, 36, 46-50] for some results of the Zygmund space and related operators mapping into
the Zygmund space or into some of its generalizations.

In 1995, Madigan and Matheson proved that C, : B — B is compact if and only if (see
(38])

(1- |Z|2) {

Iw(zl)\nil 1-le@)?) (Z)| =0

In 1999, Montes-Rodrieguez in [40] obtained the exact value for the essential norm of the

operator C,: B— B, i.e.,

- 1 -1z)¢'(2)|
ICylle,s—p =lim sup ———————
‘ s=>lps (L= 9(2)]?)

Tjani in [43] proved that C, : B — B is compact if and only if lim; 1 [|Cyo,llz = 0

where o, = {=_. Wulan et al. in [44] showed that C, : B — B is compact if and only if
lim;_, o0 l¢/ll5 = 0. Ohno et al. studied the boundedness and compactness of the operator
uC, on the Bloch space in [41]. The estimate for the essential norm of the operator uC,
on the Bloch space was given in [37]. Some new estimates for the essential norm of uC,
on the Bloch space were given in [33, 39]. In [21], Zhu has obtained some estimates for the
essential norm of D , on the Bloch space when 7 is a positive integer.

Stevi¢ studied the boundedness and compactness of D} , : B — Z in [16] (see also [50]).
In [12], Li and Fu obtained a new characterization for the boundedness, as well as the
compactness for Dj) , : B — Z by using three families of functions. We combine the results
in [12] and [16] as follows.

Theorem A Let n be a positive integer, u € H(D), and ¢ be an analytic self-map of D.
Suppose that Dy, : B — Z is bounded, then the following statements are equivalent:

(a) The operator Dy, : B — Z is compact.

(b)

W]l:,)r‘n_AHDnufw HZ hrln_)lHDwqu ”Z Whr‘n_A”Dqu ”Z
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where
_L-lpw)P? (1= Jpw)?)?
f‘P(W)(Z)_ I—WZ, o(w) Z)= (I—Wz)z_,
(1= lpw))

A o mep

(c)

. 1 - |z1?)|u" (2)] — lim A - |z1?)|u)|l¢’ (2)|*
b@i=1 1-]p@)2)"  wal-1 (- |pz)2)?

. (1— [21)126/ (2)¢'(2) + u(2)p" (2)] _
(@)1 (1 - |p(2)]?)t*n

0.

Motivated by these observations, the purpose of this paper is to give some estimates of
the essential norm for the operator D} , : B — Z. Moreover, we give a new characteriza-
tion for the boundedness, compactness, and essential norm of the operator Dj) , : B — Z.

Throughout this paper, we say that P < Q if there exists a constant C such that P < CQ.

The symbol P~ Q means that P < Q < P.

2 EssentialnormofDy,  :B— Z
In this section, we give two estimates of the essential norm for the operator D) , : B — Z.

Theorem 2.1 Let n be a positive integer, u € H(D), and ¢ be an analytic self-map of D such
that Dy, : B — Z is bounded. Then

||Dg,u ||e B—Z ~ maX{A, B1 C} ~ maX{E, F, G},
where
1-|al? 1—1al?)?
A :=limsup DZu( |f| > , B:=limsup D$u<( |Z| )2 ) ,
lal—1 "N l-az /| z laj—1 “\ (1-az) =
1-|al?)? 1= IzI2) "
C:=limsup D;u(%) ) F :=limsup M,
ais1 |\ A -a2)” Sz -1 (L= le@)?)"
E = limsup =1 )24/ (2)¢'(2) + u(2)9" (2)|
lo(@)| -1 (1= lp(z)|?) ’
and
1-— 2 / 2
G o= limsup L PN

lp(z)|—1 (1 - |<P(Z)|2)"+2
Proof First we prove that max{A, B, C} < 1Dy ylles—z. Let a € D. Define

a2 C2)2 112)3
T a@- e k- Tak e

Ja(2) =

(1-az)3’

It is easy to check that f;,g,,/, € By and ||, ll5 <1, llgalls S 1, allp S1forallaeD
and f, g, h, converge to 0 weakly in 5 as |a| — 1. This follows since a bounded sequence

Page 3 of 16
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contained in By which converges uniformly to 0 on compact subsets of D converges weakly
to 0 in B (see [37, 42]). Thus, for any compact operator K : By — Z, we have

lim [|Kf,l z =0, lim ||Kg.lz =0, lim [|Kh,| z = 0.
la|—1 la|—1 la|—1
Hence
|0 =Kl 552 fim sup| (D3~ K)fa 2
a|—
> limsup|| D} .f, | » - limsup |Kf, || z = A,
la|—1 la|—1
125 =Kl 5. 2 2 Nimsup (D, - Keal -

> limsup ||Dgyuga
1

lal—

Iz - lim sup | Kgallz = B,
al|—

and
104 =Kl sz 2 1iglligpll (D= K)hal -

> lim sup”D

m oulla ”Z 1i‘I‘ITSl;p||I<hu||z =C.
—1 al—

Therefore, from the definition of the essential norm, we obtain

1oy, | = inf[| D 2 max{A, B, C}.

eB—Z Q.U I<”B Zz

Next, we prove that || D) ,[l,5- z 2 max{E, F, G}. Let {zj};cn be a sequence in D such that
lp(zj)] = 1 asj — oo. Define

o)< L~ lo(z)I? 2n+5  (1-lp(z)*)? 2 1-le()*)?
i(2) = — - LA AT Lo/ /A AN
1-¢(z)z m+1)n+3) (1-9(z)2)? E+DI+3) (1-¢(z)2)?
1) = = @I 20+3)  (A-leE)?)” 2 (L= lo@z) )
/ 1—90(_21')2 2+mn+1)(n+4) (1—90(_2;)2)2 2+ (n+1)(n+4) (1—§0(—Z,')Z)3’
and
my(2) - 1-lp(x)I” 2 (1-lez))? 2 1- |<ﬂ(Z;)|2)3

l—9G)z  n+1 (l-pg)2)?  (+Dn+2) 1-p(g)2)?

Similarly to the above we see that all k;, /;, and m; belong to Bj and converge to 0 weakly
in B. Moreover,

(n) ) _ n+2 (n+1 n! |</7(Zj)|"+1
K (0z)) =0, k" (p(z)) =0, |k (o)) = 3 =l P
(1) N\ (n+2) (N W W 2n! lo(z)]"
" o) =0,  ["7(e(z) =0, [["(e(z)|= 2 e e D) A= o) B
lp(z))]"+2

m(0@) =0, m" () =0, |m"?(e()| =2n QPR
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Then for any compact operator K : B — Z, we obtain

15~ K. 2 imsupl[ D7, ()| - ~lim sup | K (k)] -
Jj—o00

> limsup 1 -1z 126 (z))¢' (z)) + MZ(Z,»)?”(Z,')II</>(ZJ<)I””,
e 1 o) Py

125 =Kl . 2 2 limsup | D7, ()] - ~limsup | KL -
Jj—00

A2 1 (7 AV
2 lim sup 1- |Z]| )Nu (Z/)|2|‘p(z])|
00 (I-lp(z)*)"

)
and

15 = K. 2 2 Timsup| D, o) ~tim sup | K| -
j—oo

> limsup a- IZ,‘|2)|u(zj)|Iw/(j,')IZIw(zj)l”+2
j—>00 (1 - lg(z)[*)"*

From the definition of the essential norm, we obtain

”D ||eB~>Z _lnf”D@u I<||B~>Z
> Jim sup 1 - 1z1*)12u'(z))¢' (z)) + uz(zj)clo”(zj)lIgo(z/)l”+1
j—00 (1= 1lo(z) )™
i 1 - |z1)|2u/ (2)¢' (z) + u(2)¢" (2)|
= lim sup o =L,
lo(z)|—>1 (1 - |(/7(Z)| )

”D ||eB~>Z - IEfHDZ,u _I<|| B—2Z
. A - I3 (Z)l(z)]"
>
~ I;Igigp 1= lp(z) )"

s (L D)
-1 1—le@)?)" ’

and
“D ||eB—>Z - 1nf||D§0u 1<||B—>Z
> limsu 1 - 1z1D)u(z)l¢' (z)*1@(z)] "+
~ Jj—00 (1 - |¢(Zj)|2)n+2
 Jim sup (1- |21 u@)lle'@)* _
|p(2)]—1 (1 - |(p(z)|2)n+2
Hence
|04l 5 2 max{E,F,G}.
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Now, we prove that

||D;,M ||e,sﬁ - Smax{4,B,C} and ||D; ) He,& 5 Smax{E,F,G}.

For r € [0,1), set K, : H(D) — H(D) by (K,f)(z) =f,(z) =f(rz), f € H(D). It is obvious that
fr = f uniformly on compact subsets of D as r — 1. Moreover, the operator K, is compact

on Band ||K;| 55 <1(see[37]). Let {r;} C (0,1) be a sequence such thatr; — 1 asj — oo.

Then for all positive integer j, the operator Dj K, : B — Z is compact. By the definition
of the essential norm, we get

||DZ,L£ ||e,B—>Z S hm sup ||DZ7,M - DZ,HIC"/‘ ” B—>Z"
J—>00

(2.1)

Therefore, we only need to prove that

limsup||D},, - D}, K| 5, - < max{4,B,C}
Jj—o0

and

limsup| D}, - D} K. | 5 . 5 < max{E,F,G}.
j—oo
For any f € B such that ||f||z <1, we consider
| (D5 = DGuk)f | 2
= [u(0)f " (¢(0)) - ru(0)f ™ (rjp(0)) |

+ [ O)(f - £,)" (#(0)) + u(O)(f - £,)""*" (#(0))¢(0)|
u-F=£)" 00,

2.2)
where |||, = sup,cp(1 = |212)[f" (2)].
It is obvious that

Jim [(0)f " ((0)) ~ 7 u(O)f " (9(0)) | =0

(2.3)
and

lim |/ 0)(f = £,)" (9(0)) + u(0)(f — £;,)"(¢(0))¢'(0)] = 0.

(2.4)
Now, we consider

Jj—o00

limsupllu - (f = ;)" o |,

<limsup sup 1= 12P)|(f =£)" D (0(2) | |24 (29 (2) + u(z)e" ()|
j—00  |o(2)|<rn

+ limsup| (S;l|p (1-121%)|(f —ﬁ,-)(n+1>(§0(l))||2M/(z)<p/(z) + u(2)g(2)|
j—>00  |p@)|>rn
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+limsup sup (1- |z|2)|(f—ﬁ/)(”)(¢(z))||u”(z)|

J=oo o)<y

+limsup sup (1—|z|2)|(f—fr,)(")(<ﬂ(z))||u”(z)|

J=oo le@)l>rn

+limsup sup (1-[212)|(F =) 2 (0(2))||¢' @) [*|u(2)|

j=oo lp@)|<rn

+limsup sup (1= 121%)|(f - £,)"? (0(2)) |0 @ |u(2)]

j=oo  lp@)|>ry

=Q+ Q2+ Q3+ Qq+ Q5+ Qs (2.5)

where N € N is large enough such that r; > % forallj > N,

Qi:=limsup sup (1-21%)[(f - £,)" M (p(2))||2 ()¢ (2) + u(2)¢" (2)

J=oo lel@)l=ry

Qy:=limsup sup (1-1[z)|(f ;)" (¢(2))| |24 ()¢’ (2) + u(2)¢" (2)

j=oo lp@)l>rn

Qs:=limsup sup (1-|21%)|(f ;)" (¢(2)]|" (2)

j—=oo  le(@)|<ry

Qu:=limsup sup (1-|21%)|(f ;)" (¢(2)| " (2)

j=oo  le@)l>ry

Qs:=limsup sup (1-[21%)[(f —£,)" 2 (0(2) ||¢' (@) |ua(2)

j=oo  le@)|<rn

’

)

’

’

)

and

Qs:=limsup sup (1-|z)|(f —£;)"*2(0(2) || (@) |’ |u(2)].

j=oo lp(@)I>rn

Since D , : B — Z is bounded, by Theorem 1 of [12], we see that u € Z,

K = sup(l - |z|2) ‘2u’(z)<p’(z) + u(z)(p”(z)’ <00

zeD

and

K = su}g(l - |z|2)|g0/(z)|2|u(z)| < 00.
ze

Since r}“lﬁE"”) — £, as well as rf*2ﬂ§"+2) — £+ uniformly on compact subsets of I

as j — oo, we have

Qi < Kilimsup sup [f"V(w) — D ()| = 0 (2.6)

. ]
j=oo  |wlsry

and

Qs < K, limsup sup [f(”"z)(w) - r}?‘+2f("+2)(;7w)| =0. (2.7)

j—oo  |wl=ry
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Similarly, from the fact that # € Z we have

Qs < |lu| zlimsup sup [f(”)(w) - r}"‘f(”)(r,»w)‘ =0. (2.8)

j—oo  wlsry

Next we consider Q. We have Q; < limsup;_, . (51 + S2), where

Si= sup (1-121%)[f"" (p(2)) |26 (2)¢' (2) + ul2)¢" (2)|

lp(@)>rn

and

Sy:= sup (1 - |z|2)rf*lv("*1) (rjgo(z)) | ’2u/(z)<p/(z) + u(z)<p”(z)|.

lp(@)>rN

First we estimate S;. Using the fact that ||f||z <1 and Theorem 5.4 in [31], we have

Si= sup (1-1zP)[f"V(p()|[2¢ (2)¢' (2) + u(2)¢" ()|

lp(2)1>rn
1- |(»0(Z)|2)”+1(}’l +3) |(,0(Z)|n+ln!
lp@)I"tnt (4 3)A - lp()P)!
< % sup (1 [2°) 26/ (2)¢'(2) + u(2)¢" ()|
Ty lp@)|>rn
nllp(z)|"!

(n+3)(1 - |p(2)|?)!

, , " ! ( ) n+l
< Jup (1-12) |24 (2)¢'(2) + u(2)¢" (2)] o 3’;(|1¢_Z|¢|7 G
< Sup D (f“ B (n(inl;-(i)fg) ey 12)}(1;4 ; 3)) .
< e IR i Pl
* (n+1)(n+3) \SES\,”D;’u(ha) ”Z 29

Taking the limit as N — oo we obtain

limsup $; < lim sup”D;,u(fa)HZ +lim supHDZ,M(ga)HZ

j—>00 lal—>1 la|—>1
+1lim sup||D$‘M(ha) [ =z
|a|—1
=A+B+C.

Similarly, we have limsup;_, ., S SA + B+ C, i.e., we get

Q SA+B+C<max{4,B,C}. (2.10)
From (2.9), we see that

1 - 213124 (2)¢' (2) + u(z)¢" (2)| _E

limsup S; < limsup
00 lo(2)—1 (1-|o(z)[?)m+
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Similarly we have limsup;_, , S» < E. Therefore
Q <E
Next we consider Q4. We have Q4 <limsup,_, ,,(S3 + S4), where

S3:= sup (1-12P)|f" (e()] | (2)]

lp(2)[>rn

and

Sy:= sup (1—|z|2)r;’[f(”)(;7g0(z))||u”(z)|.

lp(2)[>rn

After some calculation, we have

S = sup (1= 2P)[f" (¢()[|w' ()]

lp(@)>rn
y A -lp@) )2+ (n+1)(n +4)) 2 nllo(2)|"
2n!|p(2)|" 2+ (m+1)(m+4) Q-le(2)>)"
< 2"(2 + (712+ '1)(}’1 +4)) Iflls sup (1 _ |Z|2) |u//(z)|
n. lp@)|>rn
y 2 n!lp(2)]"
2+ (m+1)(n+4) 1-](2)?)"
< 2n! (L= 121" @)l le(2)]"
S osup
lo@)|>rN 2+ (}’Z + 1)(” + 4‘) (1 - |<P(Z)|2)"
2(n +3)

< n _ sm+5) Y
~ EII:PNHDW%) Iz 2+(mn+1)(n+4) JEBV 1082 2

2 1
Y Do a) S 1P 2

< sup | D} ()] 5 + sup | D}, (ga)| 5 + sup | D), (1) 5
lal>rn lal>rn

lal>rn

Taking the limit as N — oo we obtain
limsup S; < lim sup”DZ,u(fa) H z +lim sup”Dg,u(g,l) HZ
j—>00 la|—1 la]—1

+limsup| D} ,(ha)| 5

lal—1

=A+B+C.
Similarly, we have limsup; , ., Ss SA + B+ C, i.e., we get
Qs SA+B+ C<Smax{A,B,C}.
From (2.12), we see that

1- |z |u" (z
limsup S3 < limsup M =
j—o00 lp(z)|—>1 (1 - |(/7(Z)| )n

Page 9 of 16
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Similarly we have limsup,_, ., S4 < F. Therefore
Qs SF. (2.14)
Finally we consider Qg. We have Qs < limsup;_, (S5 + S¢), where

Ssi= sup (1= 2P2) " (p@) ||¢' @) |ut)

lp@)>rn

and

Sei= sup (1= |zP)r2[f" 2 (rig(2) ||¢' @) |u(2)].

lp(@)|>rn

After some calculation, we have

5, < 2 ls

n+2
ST s (1= )l @ )| A

le@@)l>rn (1-|o(z)[?)+2

2n+2 9 21’1!|(,0(Z)|n+2
< 1 _ 2 /
<, (Dl @ G

2 2
o (f. - ’ ’
W(f L +(n+1)(n+2)h)

2 2
< D" _ D" D"
~ ISEE\[” %u(fu)“Z + n+1 ‘:ES\[” (p,u(ga)”Z + (I’l + 1)(71 + 2) ISEB\[” w,u(hﬂ)”Z

= sup | D) + sup [ D] z + sup [ D], ()] - (215)
lal>ry jal>ry jal>ry

< sup

lal>rn

Z

Taking the limit as N — oo we obtain

limsup S5 < lim sup||D$,u(fa)”Z +1lim sup||D$,u(ga)HZ
la]—1 lal—1

Jj—00

+limsup [ D2, ()|

la|—>1

=A+B+C.
Similarly, we have limsup;_, ., S¢ S A + B+ C, i.e., we get
Qs S A+ B+ C<Smax{A,B,C}. (2.16)

From (2.15), we see that

=G.

1-— 2 ’ 2
lim sup S5 < limsup (1 - 12)lp (ZZI IL;(Z)I
j—>o0 lp(z)|—1 (1 - |(P(Z)| )n+

Similarly we have limsup;_, ., S¢ < G. Therefore

Qs SG. (2.17)
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Hence, by (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.8), (2.10), (2.13), and (2.16) we get

limsup| D, - Dy Ky | 5, -
j—o00

= lim sup sup ||( n =Dl S | 5
j—oo Ifllg
=limsup sup |u-(f-f;)" 0|, <max{4,B, C}. (2.18)

j=oo  flp=1

Similarly, by (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.8), (2.11), (2.14), and (2.17) we get

max{E, F, G}. (2.19)

limsup”DZ D” e HB—>2~
j—o0

Therefore, by (2.1), (2.18), and (2.19), we obtain

1D}l > Smax{4,B,C} and D], 5 . 5 < max{E,F,G}.
This completes the proof of Theorem 2.1. 0

3 New characterizationof D, ,: B — Z
In this section, we give a new characterization for the boundedness, compactness, and
essential norm of the operator D) , : B — Z. For this purpose, we present some definitions
and some lemmas which will be used later.

The weighted space, denoted by H;°, consists of all f € H(DD) such that

Il = sup v(@)|f (2)] < o0,

where v: D — R, is a continuous, strictly positive, and bounded function. H;° is a Banach
space under the norm || - ||,. The weighted v is called radial if v(z) = v(|z|) for all z € D. The

associated weight v of v is as follows:

7= (sup{|f@)]:f e H®, Ifl,<1}), zeD.

When v = v4(2) = (1 - |2]%)* (0 < « < 00), it is well known that 7, (2) = v, (2). In this case, we
denote H;° by H;?.

Lemma 3.1 [33] Fora > 0, we have limj_, oo k* || 27, = (32)~.

Lemma 3.2 [51] Letvandw be radial, non-increasing weights tending to zero at the bound-
ary of D. Then the following statements hold.
(a) The Weighted composition operator uC, : Hy° — HY° is bounded if and only if

supzeD T |u(z)| < 00. Moreover, the following holds:

u(z)|.

14Co g e = sup =
e s | (w(Z))|
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(b) Suppose uC, : Hy° — Hy° is bounded. Then

: w(z)
l4Cylle e pge = im sup ———— |u(z)|.
vlef " s—17 lo(2)|>s V(‘P(Z)) ’ ‘

Lemma 3.3 [52] Letvandw beradial, non-increasing weights tending to zero at the bound-

ary of D. Then the following statements hold.

K
(a) uC, : Hy° — HSY is bounded if and only if sup; ”ﬁz‘”k”“w < 00, with the norm

comparable to the above supremum.
(b) Suppose uC, : H,° — H’ is bounded. Then

- loep* [l
4Cy lle,rge—mge = limsup ————.
k—oo 1125

Theorem 3.1 Let n be a positive integer, u € H(D), and ¢ be an analytic self-map of D.
Then the operator D), , : B — Z is bounded if and only if

Supjz1jn+l||(2u/<p' +ue ), < 00,
sup; /" 1”@y, < 00, (3.1)
sup. /"2 lug?@ 7y, < o

Proof By [16], Dy, : B — Z is bounded if and only if

A-1z)12¢/ (2)¢’ (2)+u(2)e” (2)]

)
SUP,ep R (1-|g(z)2)+1 < 00,
1- "
SUPzep ((117;();;1251;” <00, (3.2)
)

A-1z)u@)|l¢’ (@)1

SUPzeD (g2 < OO

By Lemma 3.2, the first inequality in (3.2) is equivalent to the weighted composition op-
erator (2u'¢" + ug”)C, : H;° — H,? is bounded. By Lemma 3.3, this is equivalent to

12 ¢ + ug” )™ ||y,
— <00
=1 |2z | P

The second inequality in (3.2) is equivalent to the operator u”C, : H;” — H}® is bounded.
By Lemma 3.3, this is equivalent to

"¢ 1,
sup ————— < 00.
=1 77,

The third inequality in (3.2) is equivalent to the operator upC, : H® — H,? isbounded.

Vn+2

By Lemma 3.3, this is equivalent to

gy,
=1 177,

By Lemma 3.1, we see that Dj; , : B — Z is bounded if and only if

QU+ up”) Ml
JHUZ v,

sp{)j”” H (2u/<p’ + M<P//)‘Pj_1 ”1/1 ~ S,u?
jz =
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AN, =1
. i1 ~ ] llze" ¢/ ”vl
sup/”||u/'<ﬂ’ ||V1“SUP T
>1 j=1 ]” ”vn

’

and

. i i

sup 7+2 M(ﬂa(/)] 1 Asup——m———— 12

j>1 / ” H CR S T (et -/ [P

The proof is completed. d

Theorem 3.2 Let n be a positive integer, u € H(D), and ¢ be an analytic self-map of D
such that D)) ,: B — Z is bounded. Then
|D;

2 maxey, My, M),

where

M = lim supj'*" ” (2”/‘/’/ + ”ﬁ"//)‘pj_l ||V1’

J—> 00

M, :=limsup " ||u”<p"_1 ”w’ M := limsup;"+2 ||u(g0/)2g0j_1 ||V1.
j—oo j—o0

Proof From the proof of Theorem 3.1 we know that the boundedness of D) , : B — Z
is equivalent to the boundedness of the operators (2u'¢’ + u¢")C, : HyY — H?, u"C,
H° — H*, and upC, H  — HY.

The upper estimate. By Lemmas 3.1 and 3.3, we get

126" + ue” )|y,

2u'¢" + up”)C, = limsup :
” ( ) ”e,H,?lomaHf,’f 00 ”z/—l ||Vl+n
e+ ug e,
= lim sup Y
j— 00 ] ||Z/ ||v1+n

~ limsup | (260’ + ug") |,

Jj—o00

) u// j—1 ) jo+n—1 u// j—1
Hu”Cq,HeHm_)Hoo = limsup L <p11 l :hmsup]—‘ |l (p11 l
e j—o00 Iz, jooo  JEHT 1z,
~ limsup;” H u'¢g! ||V ,
j— 00 1
and
”u(p/ZC H - limsup g @I, — limsu J* 2 e |y,
© 00 o = = — = T T—
ety = Hiy j—o00 lZ lllvmz j—00 ]n+2||2/ 1||v,,+2
~ limsup;"*? | ugp¢/ ™" ”V]‘
j— o0
It follows that

”Dg,u He,B%Z S ” (2”/‘/’/ + W’N)Cw i‘e,H‘?lc’+n~>H$1° + “ u'C, ||e,H‘S’2HHf,’1°

1 Col e

S maX{Ml,Mz,Mg}.
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The lower estimate. From Theorem 2.1, and Lemmas 3.1 and 3.2, we have

Dbl sz 2E = 100 + )Gyl

. 12e'¢" + ug")¢ Iy
= lim sup =l
j—00 ”Z}_ ||V1+n

~ lim sup;**” || (2u'¢" + W/’//)q’j_l ” v’

j—oo
. w1,
Dn > F = NC = 1 71
” U ”e,B—)Z ~ H Uty He,HSﬁ—)H]?lc I;E)igp “y—l ”Vn
~ lim SuP]qun—l ” u//(pj—l ” o
j—oo 1
and
. @I,
D! > G = |lug™C, =limsup ———=
“ U ||e,B~>Z ~ “ ¢ Ly ||e,H§>;+24>H51° j»oop ||Z/71||v,,+2
~ limsup;"*? |up¢ ™| .
j—00 "
Therefore |D) ,lle5- 2 2 max{Mj, M, M3}. This completes the proof. O

From Theorem 3.2, we immediately get the following result.

Theorem 3.3 Let n be a positive integer, u € H(D), and ¢ be an analytic self-map of D
such that D}, ,: B — Z is bounded. Then D, ,: B — Z is compact if and only if

timsup/ ™" (2 +ug")¢ ™, =0, timsupy[ ', =0,

J—> 00

and

timsup;" u(y') ¢, = 0
J—> 00

4 Conclusion

The boundedness and compactness of Dy, B — Z were characterized in [12] and [16].
In this paper, we give a new characterization for the boundedness and compactness of
Dy, B — Z. Moreover, using the method in [21], we completely characterize the essen-
tial norm of Dy, B— Z.
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