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Abstract
This paper deals with higher-order sensitivity analysis in terms of the higher-order
adjacent derivative for nonsmooth vector optimization. The relations between the
higher-order adjacent derivative of the minima/the proper minima/the weak minima
of a multifunction and its profile map are given. Then the relationships between the
higher-order adjacent derivative of the perturbation map/the proper perturbation
map/the weak perturbation map, and the higher-order adjacent derivative of a
feasible map in objective space are considered. Finally, the formulas for estimating the
higher-order adjacent derivative of the perturbation map, the proper perturbation
map, the weak perturbation map via the adjacent derivative of the constraint map,
and the higher-order Fréchet derivative of the objective map are also obtained.
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1 Introduction
Sensitivity analysis provides quantitative information as regards the solution map of a pa-
rameterized multiobjective optimization problem. A number of interesting results have
been obtained in sensitivity analysis for multiobjective optimization problems. One of
the first results was given by Tanino in [, ]. By using the first-order contingent deriva-
tive, some results concerning the behavior of perturbation maps were obtained. The TP-
derivative was presented in [] and used to weaken some assumptions in [, ]. Refer-
ences [–] investigated the perturbation map in nonsmooth convex problems. In [–],
the Clarke derivatives were used for analyzing the sensitivity. The concept of the proto-
differentiability of a multifunction, in which the contingent cone coincides with the ad-
jacent cone at a point to its graph, was presented by Rockafellar in []. In [, ], the
important results on the proto-differentiability of the efficient solution maps were ob-
tained for generalized equations, a general model including optimization problems. Some
developments were obtained in [, ]. A second-order sensitivity analysis via the second-
order contingent derivatives were considered in [, ]. In [], the second-order proto-
differentiability of a multifunction was proposed to discuss the second-order sensitivity
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properties for generalized perturbation maps. The second-order radial-asymptotic deriva-
tive, introduced in [], was used in qualification conditions to consider the second-order
proto-differentiability of the efficient solution map and the efficient frontier map of a pa-
rameterized vector optimization problem in []. Some results in higher-order sensitiv-
ity analysis using a higher-order adjacent derivative in [] and a higher-order contingent
derivative in [] of perturbation maps in a parameterized vector optimization were given.
Using higher-order variational sets, presented in [], some results in higher-order sensi-
tivity analysis were obtained in [].

Unlike higher-order contingent derivatives based on encounter information, the mth-
order variations of a map, based on the different rates of change of the point under con-
sideration in the domain space and the range space of a map, were proposed to obtain the
open mapping principle in [] and consider Hölder metric regularity of set-valued maps
in []. Another kind of mth-order derivatives, presented in [], was used to establish the
optimality condition for isolated local minima of nonsmooth functions and modified to
characterize weak sharp minima in []. The mth-order derivatives in [] were general-
ized to set-valued maps in [–] to establish higher-order optimality conditions. In [],
the higher-order sensitivity was consider by using the mth-order contingent-type deriva-
tives. In [], the lower Studniarski derivative of a perturbation map in vector optimization
was considered.

To the best of our knowledge, there is no paper dealing with the sensitivity of the mth-
order adjacent derivatives of perturbation maps of parameterized vector optimization
problems. Moreover, the proper perturbation maps and the case that the objective func-
tion is higher-order Fréchet differentiable in constraint vector optimization have not been
considered yet. Motivated by the above observations, in this paper, by making use of the
mth-order adjacent derivatives of set-valued maps which were introduced in [], we in-
vestigate quantitatively the perturbation map, the proper perturbation map, and the weak
perturbation map of parameterized vector optimization problems. The paper is organized
as follows. Section  contains preliminary facts we need in the paper. In Section , the re-
lations between the mth-order adjacent derivatives of a set-valued map and those of its
profile map are discussed. The obtained results are employed in Section  to investigate
the relationships between the mth-order adjacent derivatives of the perturbation map/the
proper perturbation map/the weak perturbation map and the mth-order adjacent deriva-
tive of the feasible map in the objective space. In Section , the formulas for estimating
the mth-order adjacent derivatives of the perturbation map, the proper perturbation map,
and the weak perturbation map via the adjacent derivative of constraint map and the mth-
order Fréchet derivative of the objective map are also given.

2 Preliminaries
In this paper, if not otherwise stated, let X, Y , and Z be normed spaces, and C ⊆ Y be a
pointed closed convex cone. U (x) is used for the set of neighborhoods of x. R, R+, and
N stand for the set of the real numbers, nonnegative real numbers, and natural numbers,
respectively (shortly, resp.). For M ⊆ X, int M, cl M, bd M denote its interior, closure, and
boundary, resp. A convex set B ⊆ Y is called a base of C iff  /∈ cl B and C = {tb | t ∈
R+, b ∈ B}. Clearly C has a compact base B if and only if C ∩ bd B is compact. If Y is a
finite dimensional space, then C has a compact base. For F : X ⇒ Y , the domain, graph,
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and epigraph of F are defined by, resp.,

dom F :=
{

x ∈ X | F(x) �= ∅}
, gr F :=

{
(x, y) ∈ X × Y | y ∈ F(x)

}
,

epi F :=
{

(x, y) ∈ X × Y | y ∈ F(x) + C
}

.

The profile map of F is F + C (defined by (F + C)(x) := F(x) + C). We recall some concepts
of optimality/efficiency in vector optimization as follows, for a ∈ A ⊆ Y .

(i) a is called a local (Pareto) minimal/efficient point of A (with respect to C), and
denoted by a ∈ MinC A, iff there exists U ∈ U (a) such that

(A ∩ U – a) ∩ (
–C \ {}) = ∅.

(ii) Supposing that int C �= ∅, a is said to be a local weak minimal/efficient point of A,
denoted by a ∈ WMinC A, iff there exists U ∈ U (a) such that

(A ∩ U – a) ∩ (– int C) = ∅.

(iii) Assuming that C is pointed, a is termed a proper minimal/efficient point of A,
denoted by a ∈ PrMinC A, iff there exists a convex cone K � Y with C \ {} ⊆ int K
and U ∈ U (a) such that

(A ∩ U – a) ∩ (–K) = {}.

If U = Y , the word ‘local’ is omitted, i.e., we have the corresponding global notions. For
a subset A ⊆ Y , A is said to have the domination property iff A ⊆ MinC A + C and A is said
to have the proper domination property iff A ⊆ PrMinC A + C. Similarly, when int C �= ∅,
A has the weak domination property iff A ⊆ WMinC A + int C ∪ {}.

Recall now the four kinds of higher-order derivatives which we are most concerned with
in the sequel. Let F : X ⇒ Y , u ∈ X, m ∈N, and (x, y) ∈ gr F .

(i) ([]) The mth-order radial-contingent derivative of F at (x, y) is defined by

Dm
S F(x, y)(u) :=

{
v ∈ Y | ∃tn > ,∃(un, vn) → (u, v) : tnun → ,

y + tm
n vn ∈ F(x + tnun)

}
.

(ii) ([]) The mth-order contingent-type derivative of F at (x, y) is defined by

DmF(x, y)(u) :=
{

v ∈ Y | ∃tn ↓ ,∃(un, vn) → (u, v), y + tm
n vn ∈ F(x + tnun)

}
.

(iii) ([]) The mth-order adjacent derivative of F at (x, y) is defined by

DbmF(x, y)(u) :=
{

v ∈ Y | ∀tn ↓ ,∃(un, vn) → (u, v), y + tm
n vn ∈ F(x + tnun)

}
.

(iv) ([]) The mth-order lower Studniarski derivative of F at (x, y) is defined by

DlmF(x, y)(u) :=
{

v ∈ Y | ∀tn ↓ ,∀un → u,∃vn → v, y + tm
n vn ∈ F(x + tnun)

}
.
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Remark . DlmF(x, y)(u) ⊆ DbmF(x, y)(u) ⊆ DmF(x, y)(u), ∀u ∈ X.

The reverse conclusions in Remark . may not hold. The following examples show the
cases.

Example . Let I = { 
n : n ∈N} and F : R⇒R be defined by

F(x) =

⎧
⎪⎨

⎪⎩

{}, if x ≤ ,
{–x}, if x ∈ I ,
∅, otherwise.

Then, for (x, y) = (, ) ∈ gr F , we can check that

DF(x, y)() = {–}.

Taking tn = 
n , then tnun = un

n � I for all un → . Indeed, suppose to the contrary that
there exists a subsequence { 

k } ⊆ I , k ≥ n, such that tnun = 
k . Then un = 

 . n
k ≤ 

 , i.e.,
un �→ , a contradiction. Hence, for the above tn, F(x + tnun) = ∅. Consequently,

DbF(x, y)() = ∅.

Hence,

DF(x, y)() � DbF(x, y)().

Example . Let F : R⇒R
 be defined by

F(x) =

{
{(y, y) ∈R

 : y ≤ x, y ≤ }, if x < ,
{(y, y) ∈R

 : y ≤ , y ≥ x}, if x ≥ .

Then, for (x, y) = (, (, )),

DbF(x, y)(x) =

⎧
⎪⎨

⎪⎩

{(y, y) ∈R
 : y ≤ , y ≤ }, if x < ,

{(y, y) ∈R
 : y ≤ , y ∈R}, if x = ,

{(y, y) ∈R
 : y ≤ , y ≥ }, if x > ,

and

DlF(x, y)(x) =

⎧
⎪⎨

⎪⎩

{(y, y) ∈R
 : y ≤ , y ≤ }, if x < ,

{(y, y) ∈R
 : y ≤ , y = }, if x = ,

{(y, y) ∈R
 : y ≤ , y ≥ }, if x > .

Hence,

DbF(x, y)() � DlF(x, y)().

Definition . (see []) For u ∈ X, F : X ⇒ Y is called mth-order u-directionally contin-
gent compact at (x, y) ∈ gr F iff, for any tn ↓ , (un, vn) ∈ X × Y such that un → u, and
y + tm

n vn ∈ F(x + tnun) for all n, there exists a convergent subsequence of {vn}.
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Definition . Let F : X ⇒ Y be a set-valued map, x ∈ X, m ∈N \ {}, and α > .
(i) F is said locally Hölder continuous of order α at (x, y) ∈ gr F if there exist λ > ,

and U ∈ U (x) such that

F(x) ⊂ F(x) + λ‖x – x‖αBY , ∀x, x ∈ U ,

where BY stands for the closed unit ball in Y .
(ii) F is said locally pseudo-Hölder calm of order m (see []) at (x, y) ∈ gr F if there

exist a real number λ > , ∃U ∈ U (x), and ∃V ∈ U (y) such that

F(x) ∩ V ⊂ {y} + λ‖x – x‖mBY , ∀x ∈ U .

When m = , the word ‘Hölder’ is replaced by ‘Lipschitz’. If V = Y , then ‘locally pseudo-
Hölder calm’ is replaced by ‘locally Hölder calm’. In [], F is called upper locally Lipschitz
at x ∈ dom F if there exist a real number λ >  and U ∈ U (x) such that F(x) ⊂ F(x)+λ‖x–
x‖BY , ∀x ∈ U . It is easy to see that if F is upper locally Lipschitz at x and F(x) = {y}
then F is locally Lipschitz calm at (x, y).

Proposition . (see []) Let F : X ⇒ Y , (x, y) ∈ gr F , and Y be finite dimensional space.
If Dm

S F(x, y)() = {}, then F is mth-order u-directionally contingent compact at (x, y)
for all u ∈ X.

Proposition . Let F : X ⇒ Y , (x, y) ∈ gr F , and Y be finite dimensional space. If F is
locally Hölder calm of order m at (x, y) ∈ gr F , then Dm

S F(x, y)() = {}.

Proof Consider an arbitrary y ∈ Dm
S F(x, y)(). Then there exist yn → y, xn → , and tn >

 such that y + tm
n yn ∈ F(x + tnxn) and tnxn → . Since F is locally Hölder calm of order m

at (x, y), we derive that, for n large enough, there exists λ >  such that

y + tm
n yn ∈ y + λ‖tnxn‖mBY .

Consequently,

yn ∈ λ‖xn‖mBY .

It follows from the above equation that xn → , and yn → y that one has y = . �

Corollary . Let F : X ⇒ Y , (x, y) ∈ gr F , and Y be finite dimensional space. If F is
locally Hölder calm of order m at (x, y) ∈ gr F , then F is mth-order u-directionally con-
tingent compact at (x, y) for all u ∈ X.

Proof It follows from Proposition . and Proposition . that the conclusion is ob-
tained. �

Definition . (see []) Let f : X → Y be a vector-valued map. f is said to be mth-order
Fréchet differentiable at x ∈ X iff there exists a linear continuous operator dmF(x) : X ×
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· · · × X → Y (m times X), such that

f (x) = f (x) + dmf (x)(x – x, . . . , x – x) + o
(‖x – x‖m)

(m times x – x),

where o(‖x – x‖m) satisfies o(‖x – x‖m)/‖x – x‖m →  when x → x. dmf (x) is called
the mth-order Fréchet derivative. f is said mth-order Fréchet differentiable on X if f is
mth-order Fréchet differentiable at any x ∈ X. If dmf (·) is continuous at x then f is said
to be mth-order continuously Fréchet differentiable at x.

Remark . (see []) For f : X → Y and x, u ∈ X, if there exists dmf (x), then

{
dmf (x)(u, u, . . . , u)

}
= Dlmf

(
x, f (x)

)
(u) = Dbmf

(
x, f (x)

)
(u)

= Dmf
(
x, f (x)

)
(u) = Dm

S f
(
x, f (x)

)
(u).

3 Higher-order adjacent derivatives of set-valued maps
In this section, the relations between higher-order adjacent derivative of a set-valued map
and those of its profile map are discussed. Such relations for various kinds of efficient
points of these derivatives are also investigated.

Proposition . Let (x, y) ∈ gr F . Then, for any u ∈ X,

DbmF(x, y)(u) + C ⊆ Dbm(F + C)(x, y)(u). ()

Proof Let z = v + c for some v ∈ DbmF(x, y)(u) and c ∈ C. Then, for all tn ↓ , there exists
(un, vn) → (u, v) such that y + tm

n vn ∈ F(x + tnun) for all n. Setting vn := vn + c, one has
vn → v + c and, for all n,

y + tm
n vn = y + tm

n (vn + c) ∈ F(x + tnun) + C = (F + C)(x + tnun).

So, z = v + c ∈ Dbm(F + C)(x, y)(u). �

Note that the opposite inclusion of () may not hold. The following example illustrates
the case.

Example . Let C = R+, F : R⇒R be defined by

F(x) =

{
{–, x}, if x ≥ ,
{}, if x < .

Let (x, y) = (, ) ∈ gr F . Then

DbF(, )(u) =

{
{u}, if u ≥ ,
{}, if u < ,

Db(F + C)(, )(u) =

{
R, if u ≥ ,
R+, if u < .

Hence, for all u,

Db(F + C)(x, y)(u) � DbF(x, y)(u) + C.
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Proposition . Suppose that either of the following conditions is satisfied:
(i) for any u ∈ X , F is mth-order u-directionally contingent compact at (x, y);

(ii) C has a compact base and Dm
S F(x, y)() ∩ (–C) = {};

(iii) C has a compact base and Dbm(F + C)(x, y)(u) has domination property.
Then, for all u ∈ X,

DbmF(x, y)(u) + C = Dbm(F + C)(x, y)(u).

Proof It follows from Proposition . that we only need to show the reverse inclusion of ().
(i) Let v ∈ Dbm(F + C)(x, y)(u). If (u, v) = (, ), we have  ∈ DbmF(x, y)() + C. For

(u, v) �= (, ), for all tn ↓ , there exists (un, vn) → (u, v) such that y + tm
n vn ∈ (F + C)(x +

tnun), ∀n. Hence, there exists cn ∈ C such that y + tm
n (vn – cn/tm

n ) ∈ F(x + tnun). By the
u-directionally contingent compactness of F at (x, y), we can assume that vn – cn/tm

n →
v̄ ∈ DbmF(x, y)(u). Since cn/tm

n = vn – (vn – cn/tm
n ) → v – v̄ and C is a closed convex cone,

one gets v – v̄ ∈ C. Hence, v ∈ v̄ + C ⊆ DbmF(x, y)(u) + C.
(ii) Let u ∈ X and v ∈ Dbm(F +C)(x, y)(u) be arbitrary. As in (i), we need to consider only

(u, v) �= (, ). We see that, for all tn ↓ , there exist (un, vn) → (u, v), and cn ∈ C such that
y + tm

n vn ∈ F(x + tnun) + cn for all n. If there exists n such that cn =  for all n > n, then
v ∈ DbmF(x, y)(u) +  ⊆ DbmF(x, y)(u) + C. Now, assume that cn �=  and cn/‖cn‖ → c
for some c ∈ C with norm one. There are only two cases for sn := m√‖cn‖ > .

Case : sn/tn → +∞. Then sn[(tn/sn)un] = tnun → . Since

y + (sn)m[
(tn/sn)mvn – cn/sm

n
] ∈ F

(
x + sn

[
(tn/sn)un

])
,

(tn/sn)myn – cn/sm
n → –c, and (tn/sn)un → , one has –c ∈ Dm

S F(x, y)(), an impossibility.
Case : {sn/tn} is bounded, and assume sn/tn → α ≥ . Then, since

y + (tn)m[
vn – (sn/tn)m(

cn/sm
n
)] ∈ F(x + tnun),

vn – (sn/tn)m(cn/sm
n ) → v – αmc, and un → u, one gets v – αmc ∈ DbmF(x, y)(u), and hence

v ∈ DbmF(x, y)(u) + C.
(iii) Since Dbm(F + C)(x, y)(u) has the domination property, for any u ∈ X,

Dbm(F + C)(x, y)(u) ⊆ MinC Dbm(F + C)(x, y)(u) + C. ()

We claim that, for any u ∈ X,

MinC Dbm(F + C)(x, y)(u) ⊆ DbmF(x, y)(u). ()

Indeed, let v ∈ MinC Dbm(F + C)(x, y)(u). Then, for all tn ↓ , there exist (un, vn) → (u, v)
and cn ∈ C such that, for all n, y + tm

n (vn – cn) ∈ F(x + tnun). Since C has a compact base,
we may assume that cn = αnbn with αn >  and bn → b �= . We now show that αn → .
Suppose to the contrary that αn �→ . Then there exists ε >  such that αn ≥ ε for all n.
Setting cn = (ε/αn)cn. Then, for any n, cn – cn = ( – ε/αn)cn ∈ C and

y + tm
n (vn – cn) = y + tm

n (vn – cn) + tm
n (cn – cn) ∈ F(x + tnun) + C = (F + C)(x + tnun).
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Since vn – cn = vn – (ε/αn)cn = vn – εbn → v – εb, we have v – εb ∈ Dbm(F + C)(x, y)(u) and
v – (v – εb) = εb ∈ C \ {}, which contradicts v ∈ MinC Dbm(F + C)(x, y)(u). Therefore,
αn →  and vn – cn = vn – αnbn → v, i.e., v ∈ DbmF(x, y)(u). Thus, () holds. It follows
from () and () that

Dbm(F + C)(x, y)(u) ⊆ DbmF(x, y)(u) + C, ∀u ∈ X.

The proof is complete. �

Proposition . Suppose that either of the following conditions holds:
(i) for any u ∈ X , F is mth-order u-directionally contingent compact at (x, y);

(ii) C has a compact base and Dm
S F(x, y)() ∩ (–C) = {};

(iii) C has a compact base and Dbm(F + C)(x, y)(u) has domination property.
Then, for all u ∈ X,

MinC DbmF(x, y)(u) = MinC Dbm(F + C)(x, y)(u).

Proof Similarly to the proof of Proposition . in [], we obtain the conclusion. �

Since the following propositions are proven similarly, the proofs are omitted.

Proposition . Suppose that either of the following conditions holds:
(i) for any u ∈ X , F is mth-order u-directionally contingent compact at (x, y);

(ii) C has a compact base and Dm
S F(x, y)() ∩ (–C) = {};

(iii) C has a compact base and Dbm(F + C)(x, y)(u) has proper domination property.
Then, for all u ∈ X,

PrMinC DbmF(x, y)(u) = PrMinC Dbm(F + C)(x, y)(u).

Proposition . Assume that int C �= ∅ and K̃ is a closed convex cone with K̃ ⊆ int C ∪{}.
Suppose further that either of the following conditions holds:

(i) for any u ∈ X , F is mth-order u-directionally contingent compact at (x, y);
(ii) C has a compact base and Dm

S F(x, y)() ∩ (–K̃) = {};
(iii) C has a compact base and Dbm(F + K̃)(x, y)(u) has weak domination property.

Then, for all u ∈ X,

WMinC DbmF(x, y)(u) = WMinC Dbm(F + K̃)(x, y)(u).

The following example illustrates that we cannot replace K̃ by C in the conclusion of
Proposition ..

Example . Let X = R, Y = R
, (x, y) = (, (, )), C = R


+, and F : R⇒ R

 be defined
by F(x) = {(x, x)}. Then we can check that D

SF(x, y)(u) = DbF(x, y)(u) = {(u, )} for
any u ∈R, and

Db(F + C)(x, y)(u) =
{

(y, y) ∈R

+ : y ≥ u, y ≥ 

}
.
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Hence, WMinC DbF(x, y)(u) = {(u, )} and

WMinC Db(F + C)(x, y)(u)

=
{

(y, y) ∈R

+ | y ≥ u, y = 

} ∪ {
(y, y) ∈R


+ | y = u, y ≥ 

}
.

Since D
SF(x, y)() ∩ (–C) = {} and C has a compact base B = {(y, y) ∈ R

, y + y =
, y ≥ , y ≥ }, the assumption (ii) is fulfilled. We can check that

WMinC Db(F + C)(x, y)(u) � WMinC DbF(x, y)(u).

4 Higher-order adjacent derivatives of perturbations maps
In this section, we consider the following parameterized vector optimization problem:

MinK f (x, u) =
(
f(x, u), f(x, u), . . . , fq(x, u)

)
, s.t. x ∈ X(u) ⊆R

l,

where x is a l-dimensional decision variable, u is a p-dimensional parameter, fi is a real
valued objective function on R

l ×R
p for i = , , . . . , q, X is a set-valued map from R

p to R
l ,

which defines a feasible decision set, and K is a nonempty pointed closed convex ordering
cone in R

q. Let F(u) be the value at u of the feasible set map in the objective space, i.e.,

F(u) :=
{

y ∈ R
q | y = f (x, u) for some x ∈ X(u)

}
.

We define the perturbation/frontier map F , the weak perturbation/frontier map W , and
the proper perturbation/frontier map P of the considered problem as follows:

F (u) := MinK F(u), W(u) := WMinK F(u), P(u) := PrMinK F(u).

For u ∈R
p and a closed convex cone K̃ ⊆R

q,
(i) F is said to be K-dominated by F near u iff F(u) ⊆F (u) + K , for all u in some

U ∈ U (u).
(ii) F is said to be K-dominated by P near u iff F(u) ⊆P(u) + K , for all u in some

U ∈ U (u).
(iii) F is said to be K̃-dominated by W near u iff F(u) ⊆W(u) + K̃ , for all u in some

U ∈ U (u).

Remark . Since F (u) ⊆ F(u), the K-dominatedness of F by F near u implies that, for
all u ∈ U , F (u) + K = F(u) + K . Hence, if F is K-dominated by F near u, then for any
u ∈R

p, y ∈F (u), and u ∈ U ,

Dbm(F + K)(u, y)(u) = Dbm(F + K)(u, y)(u).

Similar assertions are true for P and W as follows.
(i) Dbm(P + K)(u, y)(u) = Dbm(F + K)(u, y)(u) for any u ∈R

p, y ∈P(u), and
u ∈ U if F is K-dominated by P near u.

(ii) Dbm(W + K̃)(u, y)(u) = Dbm(F + K̃)(u, y)(u) for any u ∈R
p, y ∈W(u), and

u ∈ U if F is K̃-dominated by W near u.
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4.1 Higher-order adjacent derivatives of perturbation maps without constraints
Now, the relations between the higher-order adjacent derivative of feasible map and the
higher-order adjacent derivative of perturbation/ weak perturbation maps are investigated
in this subsection.

Proposition . Assume that F is mth-order u-directionally compact at (u, y) for any
u ∈ R

p.
(i) If F is K -dominated by F near u, then, for u near u,

MinK DbmF(u, y)(u) ⊆ DbmF (u, y)(u).

(ii) If F is K -dominated by P near u, then, for u near u,

PrMinK DbmF(u, y)(u) ⊆ DbmP(u, y)(u).

(iii) If int K �= ∅, there is a closed convex cone K̃ satisfying K̃ ⊆ int K ∪ {}, and F is
K̃ -dominated by W near u, then, for u near u,

WMinK DbmF(u, y)(u) ⊆ DbmW(u, y)(u).

Proof Since the proof is similar, we prove only assertion (iii). Observe that, being a pointed
closed convex cone inR

q, K clearly has a compact base and hence so does K̃ . Moreover, F is
mth-order u-directionally compact at (u, y) implies that W is mth-order u-directionally
compact at (u, y). Therefore, one has

WMinK DbmF(u, y)(u) = WMinK Dbm(F + K̃)(u, y)(u)

= WMinK Dbm(W + K̃)(u, y)(u)

= WMinK DbmW(u, y)(u)

⊆ DbmW(u, y)(u).

Here the first and third equalities are due to Propositions ., and the second one follows
from Remark .. �

Now, we investigate the reverse conclusion in Proposition ..

Proposition . Suppose that the following conditions are satisfied:
(i) F is locally Hölder continuous of order m at u;

(ii) F is K -dominated by F near u;
(iii) there is a neighborhood U of u such that for any u ∈ U , F (u) is a single-point set.

Then, for any u ∈R
p,

DbmF (u, y)(u) ⊆ MinK DbmF(u, y)(u).

Proof Let u ∈ R
p and v ∈ DbmF (u, y)(u). Then, for any sequence tn ↓ , there exists

(un, vn) → (u, v) such that

y + tm
n vn ∈F (u + tnun) ⊆ F(u + tnun), ∀n. ()
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Suppose to the contrary that v /∈ MinK DbmF(u, y)(u). Then, there exists v ∈ DbmF(u,
y)(u) such that v – v ∈ K \ {}. Hence, for the preceding tn, there exists (un, vn) → (u, v)
such that

y + tm
n vn ∈ F(u + tnun), ∀n. ()

Since F is K-dominated by F near u, there exists U ∈ U (u) such that, for all u ∈ U,

F(u) ⊆F (u) + K . ()

It follows from the locally Hölder continuity of order m of F that there exist U ∈ U (u)
and L >  such that, for all u, u ∈ U and

F(u) ⊆ F(u) + L‖u – u‖mBRq . ()

Naturally, since tn ↓ , there exists N >  such that

u + tnun, u + tnun ∈ U ∩ U ∩ U, ∀n > N . ()

Therefore, from (), (), (), and (), there exists bn ∈ BRq such that, for all n large enough,

y + tm
n
(
vn – L‖un – un‖mbn

) ∈ F(u + tnun) ⊆F (u + tnun) + K . ()

Thus, it follows from (), (), and assumption (iii) that

y + tm
n
(
vn – L‖un – un‖mbn

)
–

(
y + tm

n vn
)

= tm
n
(
vn – L‖un – un‖mbn – vn

) ∈ K . ()

Since vn – L‖un – un‖mbn – vn → v – v and K is a pointed closed convex cone, one has
v – v ∈ K , which contradicts v – v ∈ K \ {}. This completes the proof. �

The following example shows that the assumption (iii) in Proposition . cannot be
dropped.

Example . Let p = , q = , K = {(y, y) ∈ R
 | y = , y ≥ }, (u, y) = (, (, )), and

F : R⇒R
 be defined by

F(u) =

{
K , if u = ,
K ∪ {(y, y) ∈R

 | y = u, y ≥ –
√

 + u}, if u �= .

Then

F (u) =

{
{(, )}, if u = ,
{(, ), (u, –

√
 + u)}, if u �= .

Hence, we can check that F (u) is not a single-point set near u, F is K-dominated by F
near u, and F is locally Hölder continuous of order  at u. By direct calculation, one has,
for any u ∈R,

DbF(u, y)(u) = K ∪ {
(y, y) ∈R

 | y = u},
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DbF (u, y)(u) =
{

(, )
}

,

and then

MinK DbF(u, y)() = ∅.

Therefore,

DbF (u, y)() � MinK DbF(u, y)().

Remark . Similar properties to Proposition . for higher-order contingent-type
derivatives of perturbation maps have not yet been investigated in []. With some suitable
modifications, we can obtain similar properties for higher-order contingent-type deriva-
tives of perturbation maps in [].

Proposition . Suppose that the following conditions are satisfied:
(i) F is locally Hölder continuous of order m at u;

(ii) F is K -dominated by P near u;
(iii) there is a neighborhood U of u such that for any u ∈ U , P(u) is a single-point set.

Then, for any u ∈R
p,

DbmP(u, y)(u) ⊆ PrMinK DbmF(u, y)(u).

Proof The proof is similar to that of Proposition .. �

Proposition . Assume that int K �= ∅. If F is locally Hölder continuous of order m at u,
then, for any u ∈ R

p,

DbmW(u, y)(u) ⊆ WMinK DbmF(u, y)(u).

Proof Let u ∈ R
p and v ∈ DbmW(u, y)(u). Then, for any sequence tn ↓ , there exists

(un, vn) → (u, v) such that

y + tm
n vn ∈W(u + tnun) ⊆ F(u + tnun), ∀n. ()

Suppose to the contrary that v /∈ WMinK DbmF(u, y)(u). Then there exists v ∈ DbmF(u,
y)(u) such that v – v ∈ int K . Hence, for the preceding tn, there exists (un, vn) → (u, v) such
that

y + tm
n vn ∈ F(u + tnun), ∀n. ()

It follows from the locally Hölder continuity of order m of F that there exist U ∈ U (u)
and L >  such that, for all u, u ∈ U , one has

F(u) ⊆ F(u) + L‖u – u‖mBRq . ()
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Naturally, since tn ↓ , there exists N >  such that

u + tnun, u + tnun ∈ U , ∀n > N . ()

Therefore, from (), (), and (), there exists bn ∈ BRq such that, for all n large enough,

y + tm
n
(
vn – L‖un – un‖mbn

) ∈ F(u + tnun). ()

It follows from vn – (vn – L‖un – un‖mbn) → v – v and v – v ∈ int K that we have vn – (vn –
L‖un – un‖mbn) ∈ int K for n large enough. Therefore, for n large enough,

y + tm
n vn –

(
y + tm

n
(
vn – L‖un – un‖mbn

)) ∈ int K ,

which contradicts with (). The conclusion is obtained. �

4.2 Higher-order adjacent derivatives of perturbation maps with constraints
In this section, the formulas for estimating higher-order adjacent derivative of perturba-
tion map/ weak perturbation map via adjacent derivative of constraint map together with
higher-order Fréchet derivative of the objective function are established.

Proposition . Let u ∈R
p, x ∈ X(u), y = f (x, u). Assume that f is mth-order Fréchet

continuously differentiable at (x, u). Then, for any u ∈R
p,

{
y ∈ R

q | ∃x ∈ DbX(x, u)(u), y = dmf (x, u)
(
(x, u), . . . , (x, u)

)}

⊆ DbmF(u, y)(u). ()

Moreover, if X is (first-order) u-directionally compact at (u, x) for any u ∈ R
p, then the

reverse inclusion of () is also valid.

Proof Let y be as in the left hand side of (). Then there exist u ∈ R
p and x ∈

DbX(x, u)(u) such that y = dmf (x, u)((x, u), . . . , (x, u)). Since x ∈ DbX(x, u)(u), for all
tn ↓ , there exists (un, xn) → (u, x) such that, for all n, x + tnxn ∈ X(u + tnun). Then

f (x + tnxn, u + tnun) ∈ F(u + tnun), ∀n. ()

It follows from the mth-order Fréchet continuously differentiability of f and () that we
have

f (x, u) + tm
n dmf (x, u)

(
(xn, un), . . . , (xn, un)

)
+ o

(
tm
n
∥∥(xn, un)

∥∥m) ∈ F(u + tnun).

Consequently,

y + tm
n

(
dmf (x, u)

(
(xn, un), . . . , (xn, un)

)
+

o(tm
n ‖(xn, un)‖m)

tm
n

)
∈ F(u + tnun). ()

It follows from () and

dmf (x, u)
(
(xn, un), . . . , (xn, un)

)
+

o(tm
n ‖(xn, un)‖m)

tm
n

→ dmf (x, u)
(
(x, u), . . . , (x, u)

)
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when n → ∞, one has y = dmf (x, u)((x, u), . . . , (x, u)) ∈ DbmF(u, y)(u). Hence, () has
been established.

Now, let y ∈ DbmF(u, y)(u). Then, for all tn ↓ , there exists (un, yn) → (u, y) such that
y + tm

n yn ∈ F(u + tnun), ∀n. Hence, there exists xn ∈ X(u + tnun) such that

y + tm
n yn = f (xn, u + tnun), ∀n. ()

Setting x̃n := xn–x
tn

, we have

x + tñxn ∈ X(u + tnun) ()

and

y + tm
n yn = f (x + tñxn, u + tnun), ∀n. ()

Since X is first-order u-directionally compact at (u, x), for preceding tn, un, and x̃n, by
taking subsequence if necessary, one gets x̃n → x̃ ∈ DbX(x, u)(u). It follows from ()
and the mth-order Fréchet continuously differentiability of f at (x, u) that one has

y + tm
n yn = f (x, u) + tm

n dmf (x, u)
(
(̃xn, un), . . . , (̃xn, un)

)
+ o

(
tm
n
∥∥(̃xn, un)

∥∥m)
.

It implies that

yn = dmf (x, u)
(
(̃xn, un), . . . , (̃xn, un)

)
+

o(tm
n ‖(̃xn, un)‖m)

tm
n

.

Letting n → ∞, we have

y = dmf (x, u)
(
(̃x, u), . . . , (̃x, u)

)
.

The proof is complete. �

The following example illustrates that the assumption for the validity of the reverse in-
clusion of () in Proposition . cannot be omitted.

Example . Let p = q = l = , m = , f (x, u) = x, and X : R⇒R be defined by X(u) = {x ∈
R |  ≤ x ≤ }. Then F(u) = {y ∈R |  ≤ y ≤ }.

Let (x, u) = (, ). Then y = f (x, u) = . We can check that X is not u-directionally
compact at (u, x) for any u ∈ R. Indeed, by taking tn = 

n , un → u, and xn = 
 n, we have

x + tnxn = 
 ∈ F(u + tnun), and xn has no convergent subsequence.

By direct calculation, one has, for any u ∈R,

DbX(u, x)(u) = R+, DbF(u, y)(u) = R+,

df (x, u) =

[
x 

 

]

,
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and then

df (x, u) =

[
 
 

]

.

Hence, for any u ∈R,

{
y ∈ R | x ∈ DbX(x, u)(u), y = df (x, u)

(
(x, u), (x, u)

)}
= {}� DbF(u, y)(u).

Corollary . Let u ∈ R
p, x ∈ X(u), y = f (x, u), and X̃ : Rp ×R

q ⇒R
l be defined by

X̃(u, y) := {x ∈ X(u) : y = f (x, u)}. Assume that f is mth-order Fréchet continuously differen-
tiable at (x, u). Let one of the following conditions be fulfilled:

(i) X is locally Lipschitz calm at (u, x) ∈ gr X ;
(ii) DSX(u, x)() = {};

(iii) X̃ is (u, y)-directionally compact at ((u, y), x) for any (u, y) ∈R
p ×R

q;
(iv) X̃ is locally Lipschitz calm at ((u, y), x) ∈ gr X̃ ;
(v) DSX̃((u, y), x)(, ) = {};

(vi) X̃ is locally pseudo-Lipschitz at ((u, y), x).
Then, for any u ∈R

p,

DbmF(u, y)(u) =
{

y ∈R
q | ∃x ∈ DbX(x, u)(u), y = dmf (x, u)

(
(x, u), . . . , (x, u)

)}
.

Proof From Proposition ., Corollary ., Proposition . and the analysis similar the
proof of Corollary . and Proposition . in [], we obtain the conclusion. �

Theorem . Let u ∈ R
p, x ∈ X(u), y = f (x, u). Suppose that the following conditions

are satisfied:
(i) F is mth-order u-directionally compact at (u, y) for any u ∈ R

p;
(ii) F is K -dominated by F near u;

(iii) F is locally Hölder continuous of order m at u;
(iv) there exists U ∈ U (u) such that for any u ∈ U , F (u) is a single-point set;
(v) f is mth-order Fréchet continuously differentiable at (x, u);

(vi) X is first-order u-directionally compact at (u, x).
Then, for any u ∈R

p,

DbmF (u, y)(u)

= MinK DbmF(u, y)(u)

= MinK
{

y ∈R
q | ∃x ∈ DbX(x, u)(u), y = dmf (x, u)

(
(x, u), . . . , (x, u)

)}
.

Proof It follows from Proposition .(i), Proposition ., and Proposition . that the
proof is complete. �

The result in Theorem . is illustrated in the following example.

Example . Let p = q = l = , m = , K = R+, f (x, u) = x, and X : R⇒ R be defined by
X(u) = {x ∈R | u ≤ x ≤ u}. Then

F(u) =
{

y ∈R | u ≤ y ≤ u},



Tung Journal of Inequalities and Applications  (2016) 2016:112 Page 16 of 18

F (u) =
{

u}.

Let (x, u) = (, ). Then y = f (x, u) = . It is easy to see that the assumptions (ii) and
(iv) in Theorem . are satisfied. Since D

SF(u, y)() = {}, from the Proposition ., the
assumption (i) Theorem . is fulfilled.

Moreover, we can check that F is locally Hölder continuous of order  at u and X is
first-order u-directionally compact at (u, x). Hence, the assumptions (iii) and (vi) in The-
orem . are fulfilled.

By direct calculation, one has, for any u ∈R,

DbX(u, x)(u) = {}, DbF(u, y)(u) = {},
DbF (u, y)(u) = {},

df (x, u) =

[
 
 

]

,

and then

df (x, u)
(
(x, u), (x, u)

)
= x.

Thus, all the assumptions in Theorem . are satisfied. For any u ∈ R and x ∈ DbX(u,
x)(u), i.e., x = , one has

df (x, u)
(
(x, u), (x, u)

)
= .

Hence, for any u ∈R,

DbF (u, y)(u)

= MinK DbF(u, y)(u)

= MinK
{

y ∈R | x ∈ DbX(x, u)(u), y = df (x, u)
(
(x, u), (x, u)

)}
.

Theorem . Let u ∈R
p, x ∈ X(u), y = f (x, u). Suppose that the following conditions

are satisfied:
(i) F is mth-order u-directionally compact at (u, y) for any u ∈ R

p;
(ii) F is K -dominated by P near u;

(iii) F is locally Hölder continuous of order m at u;
(iv) there exists U ∈ U (u) such that for any u ∈ U , P(u) is a single-point set;
(v) f is mth-order Fréchet continuously differentiable at (x, u);

(vi) X is first-order u-directionally compact at (u, x).
Then, for any u ∈R

p,

DbmP(u, y)(u)

= PrMinK DbmF(u, y)(u)

= PrMinK
{

y ∈R
q | ∃x ∈ DbX(x, u)(u), y = dmf (x, u)

(
(x, u), . . . , (x, u)

)}
.
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Proof It follows from Proposition .(ii), Proposition ., and Proposition . that the
conclusion is obtained. �

Theorem . Let u ∈ R
p, x ∈ X(u), y = f (x, u). Suppose that the following conditions

are satisfied:
(i) F is mth-order u-directionally compact at (u, y) for any u ∈ R

p;
(ii) int K �= ∅, there is a closed convex cone K̃ satisfying K̃ ⊆ int K ∪ {} and F is

K̃ -dominated by W near u;
(iii) F is locally Hölder continuous of order m at u;
(iv) f is mth-order Fréchet continuously differentiable at (x, u);
(v) X is u-directionally compact at (u, x).

Then, for any u ∈R
p,

DbmW(u, y)(u)

= WMinK DbmF(u, y)(u)

= WMinK
{

y ∈R
q | ∃x ∈ DbX(x, u)(u), y = dmf (x, u)

(
(x, u), . . . , (x, u)

)}
.

Proof It follows from Proposition .(iii), Proposition ., and Proposition . that the
conclusion is given. �

5 Conclusions
Although there are some similar properties between the contingent derivatives and the
adjacent derivatives, the adjacent derivatives have some advantages and drawbacks in
some cases. When using adjacent derivatives instead of contingent derivatives in sensi-
tivity analysis, the proto-differentiability assumption, such as in Theorem . in [], The-
orem . in [], Theorem . in [], can be omitted. The drawbacks of using of the adja-
cent derivatives is that the adjacent derivatives can be empty set in some cases such as in
Example .. Hence, in the case that the adjacent derivatives are not empty and avoiding
the proto-differentiability assumption, the adjacent derivatives can be used. Based on the
above observation, the mth-order adjacent derivatives was employed to consider higher-
order sensitivity analysis for nonsmooth vector optimization in this paper. First of all, we
considered the relationships between the mth-order adjacent derivatives of the perturba-
tion map/the proper perturbation map/the weak perturbation map, and the mth-order
adjacent derivative of feasible map in objective space. Then the above relations were used
to establish the formulas for estimating the mth-order adjacent derivatives of the pertur-
bation map, the proper perturbation map, and the weak perturbation map via the adjacent
derivative of constraint map and the mth-order Fréchet derivative of the objective map.
Some examples are provided to ensure the need of the assumptions and illustrate the re-
sults. When m = , the results become the first-order sensitivity analysis using adjacent
derivatives and also may be new.

Competing interests
The author declares that there is no conflict of interests.

Acknowledgements
The author would like to thank Professor Alexander Zalavski and the handling editors for the help in the processing of the
paper. The author is very grateful to the anonymous referees for the useful suggestions and remarks which helped to
improve the contents of this article.



Tung Journal of Inequalities and Applications  (2016) 2016:112 Page 18 of 18

Received: 31 December 2015 Accepted: 1 April 2016

References
1. Tanino, T: Sensitivity analysis in multiobjective optimization. J. Optim. Theory Appl. 56, 479-499 (1988)
2. Tanino, T: Stability and sensitivity analysis in convex vector optimization. SIAM J. Control Optim. 26, 521-536 (1988)
3. Shi, DS: Contingent derivative of the perturbation map in multiobjective optimization. J. Optim. Theory Appl. 70,

385-396 (1991)
4. Kuk, H, Tanino, T, Tanaka, M: Sensitivity analysis in vector optimization. J. Optim. Theory Appl. 89, 713-730 (1996)
5. Balbás, A, Jiménez Guerra, P: Sensitivity analysis for convex multiobjective programming in abstract spaces. J. Math.

Anal. Appl. 202, 645-648 (1996)
6. Jiménez Guerra, P, Melguizo, MA, Muñoz, MJ: Sensitivity analysis in convex programming. Comput. Math. Appl. 58,

1239-1246 (2009)
7. Kuk, H, Tanino, T, Tanaka, M: Sensitivity analysis in parameterized convex vector optimization. J. Math. Anal. Appl. 202,

511-522 (1996)
8. Shi, DS: Sensitivity analysis in convex vector optimization. J. Optim. Theory Appl. 77, 145-159 (1993)
9. Chuong, TD, Yao, J-C: Generalized Clarke epiderivatives of parametric vector optimization problems. J. Optim. Theory

Appl. 146, 77-94 (2010)
10. Garcia, F, Melguizo Padial, MA: Sensitivity analysis in convex optimization through the circatangent derivative.

J. Optim. Theory Appl. 165, 420-438 (2015)
11. Jiménez Guerra, P, Melguizo Padial, MA: Sensitivity analysis in differential programming through the Clarke derivative.

Mediterr. J. Math. 9, 537-550 (2012)
12. Rockafellar, RT: Proto-differentiablility of set-valued mappings and its applications in optimization. Ann. Inst. Henri

Poincaré, Anal. Non Linéaire 6, 449-482 (1989)
13. Levy, AB, Rockafellar, RT: Sensitivity analysis of solutions to generalized equations. Trans. Am. Math. Soc. 345, 661-671

(1994)
14. Levy, AB, Rockafellar, RT: Variational conditions and the proto-differentiation of partial subgradient mappings.

Nonlinear Anal. 26, 1951-1964 (1996)
15. Lee, GM, Huy, NQ: On proto-differentiablility of generalized perturbation maps. J. Math. Anal. Appl. 324, 1297-1309

(2006)
16. Lee, GM, Huy, NQ: On sensitivity analysis in vector optimization. Taiwan. J. Math. 11, 945-958 (2007)
17. Wang, QL, Li, SJ: Second-order contingent derivative of the pertubation map in multiobjective optimization. Fixed

Point Theory Appl. 2011, Article ID 857520 (2011)
18. Wang, QL, Li, SJ: Sensitivity and stability for the second-order contingent derivative of the proper perturbation map

in vector optimization. Optim. Lett. 6, 731-748 (2012)
19. Li, SJ, Liao, CM: Second-order differentiability of generalized perturbation maps. J. Glob. Optim. 52, 243-252 (2012)
20. Tung, LT: Second-order radial-asymptotic derivatives and applications in set-valued vector optimization. Pac.

J. Optim. (accepted for publication)
21. Tung, LT: On second-order proto-differentiability of perturbation maps (submitted for publication)
22. Sun, XK, Li, SJ: Stability analysis for higher-order adjacent derivative in parametrized vector optimization. J. Inequal.

Appl. 2010, Article ID 510838 (2010)
23. Tung, LT: Higher-order contingent derivatives of perturbation maps in multiobjective optimization. J. Nonlinear

Funct. Anal. 2015, Article ID 19 (2015)
24. Khanh, PQ, Tuan, ND: Variational sets of multivalued mappings and a unified study of optimality conditions. J. Optim.

Theory Appl. 139, 45-67 (2008)
25. Anh, NLH, Khanh, PQ: Variational sets of perturbation maps and applications to sensitivity analysis for constrained

vector optimization. J. Optim. Theory Appl. 158, 363-384 (2013)
26. Frankowska, H: An open mapping principle for set-valued maps. J. Math. Anal. Appl. 127, 172-180 (1987)
27. Frankowska, H, Quincampoix, M: Hölder metric regularity of set-valued maps. Math. Program. 132, 333-345 (2012)
28. Studniarski, M: Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control

Optim. 25, 1044-1049 (1986)
29. Studniarski, M, Ward, D: Weak sharp minima: characterizations and sufficient condition. SIAM J. Control Optim. 38,

219-236 (1999)
30. Anh, NLH, Khanh, PQ, Tung, LT: Higher-order radial derivatives and optimality conditions in nonsmooth vector

optimization. Nonlinear Anal. TMA 74, 7365-7379 (2011)
31. Diem, HTH, Khanh, PQ, Tung, LT: On higher-order sensitivity analysis in nonsmooth vector optimization. J. Optim.

Theory Appl. 162, 463-488 (2014)
32. Sun, XK, Li, SJ: Weak lower Studniarski derivative in set-valued optimization. Pac. J. Optim. 8, 307-320 (2012)
33. Sun, XK, Li, SJ: Lower Studniarski derivative of the perturbation map in parameterized vector optimization. Optim.

Lett. 5, 601-614 (2011)
34. Anh, NLH, Khanh, PQ: Calculus and applications of Studniarski’s derivatives to sensitivity and implicit function

theorems. Control Cybern. 43, 35-47 (2014)
35. Aubin, JP, Frankowska, H: Set-Valued Analysis. Birkhäuser, Boston (1990)


	On higher-order adjacent derivative of perturbation map in parametric vector optimization
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Higher-order adjacent derivatives of set-valued maps
	Higher-order adjacent derivatives of perturbations maps
	Higher-order adjacent derivatives of perturbation maps without constraints
	Higher-order adjacent derivatives of perturbation maps with constraints

	Conclusions
	Competing interests
	Acknowledgements
	References


