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U*(g) and the third order Ramanujan’s mock theta function f(g). The inner
relationships among them are discussed although they are defined in different ways.
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MSC: 11F37;11F03; 11F99

Keywords: bilateral series; mixed mock modular form; harmonic weak Maass form;
Appell-Lerch sums

1 Introduction

Recall that the definition of the unimodal sequence of weight # is the following [1].

Definition 1.1 Assume there exists a sequence of integers {d;,ds, ...,d,} such that:

W) Xrdi=n

(2) Forsomej,wehavel<d) <---<dj1<dj>dj.>--->d,>1

Then the sequence of integers {d1, d>, ..., d,,} is called the unimodal sequence of weight #.

The number of the unimodal sequences of weight # is denoted by u(#n). For instance,
u(3) = 4. The unimodal sequences of weight 3 are {1,1,1}, {1,2}, {2,1}, and {3}.

Definition 1.2 The strongly unimodal sequence of weight # is a sequence just with the
condition (2) in Definition 1.1 replaced by:

(2)" Forsomej,wehave O<di <---<diy<dj>dj1>--->d, >0.

Denote the number of strongly unimodal sequences of weight n by u*(n). For example,
u*(3) = 3. The strongly unimodal sequences of weight 3 are {1,2}, {2,1}, and {3}.
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If the unimodal sequences of weight # are not strongly unimodal sequences of weight n,
then they are usually referred as weakly unimodal sequences. For example, the sequences
of binomial coefficients {( )}]” o are the unimodal sequences of weight 2”. If 1 is even in the
2", then the associated sequences of binomial coefficients {( )}” o are strongly unimodal
sequences of weight 2”. If n is odd in the 2", then the associated sequences of binomial
coefficients {( )}}” o are weakly unimodal sequences of weight 2”.

In order to introduce the result of Rhoades for u*(n), let us give some notations first.

Suppose N := [n%]. We define the periodic function ((x)) as follows [2]:

@)

) x=[x] - %, ifx e R\Z,
(@):= {o, ifx e Z.

Then the Dedekind sum is defined by [2]
k-1
hr [ hr 1
s(h, k) -=, 2
-2 [7]-3) @

it also can be represented as

o 2 ()

Finally, by following Rhoades, we define wy,x := exp(wis(h, k)).
Then Rhoades (Theorem 1.1 in [1]) gave a precise asymptotic for the strongly unimodal

sequences as follows:

k-1
* 1 1+e
u*(n) = W Z ZAk t,n ng(24n 1)+ O( ) (4)
0<k<N, 21/( =0
where
- 1 cosh(ZX (K ) p
Loi(m) o= / sinh| — m(l - xz) dx, form=>1 (5)
0 cosh(zﬁ) 6k

and

—k k+ k= 7ihn
=07y ()T h( ) e (6)

h(mod k)

withkodd,0 <<k, 0<h<k, (hk)=1.
As n — 00, he also described the leading order asymptotic behavior of u*(n),

2
u*(n):%)guexp<6x/24 —1)(1—2” o1 +o(l>>. )

2(24n 201 (24m—1)% n

The generating functions for {u(n)}32, and {u*(n)}32, are denoted by U(q) = > -, u(n)q"
and U*(q) = Y -, u*(n)q", respectively.
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The key theory in the proof of the asymptotic for u*(n) relies on an identity expressing
U*(g) as a mixed mock modular form. The function f(g) is called a mixed mock modular
form if it is the product of a modular form and a mock theta function. Indeed, both U*(g)
and the related mixed mock modular form are associated with the Ramanujan mock theta
functions. By using the pseudo-modularity of mixed mock modular forms, and a version
of the circle method developed by Bringmann and Mahlburg [3], the asymptotic formulas
for u*(n) are proved by Rhoades.

Auluck in 1951 [4] and Wright in 1971 [5] proved the following identity, respectively:

T~ 4
tia) = ZO @@ ®)

where (x), = (x;9), := ]_[;’:_01 (1 -xg).
On the other hand, Stanley [6] obtained a different form for U(g),

1 ol hll)
U(q)=%2(—1) g7, )

n>1

where (¥)oo = (6 @)oo = [T (1 — x¢).
Rhoades explored the relationship between u*(#) and the weakly modular object (-g)2,

by using a pair of Ramanujan’s mock theta functions. It is clear that

uq) =Yy a3 (10)

n=0

Then he proved the following identity.

Proposition 1 (Theorem 1.3 in [1]) Let

fl@):= 7 (11)
; (—q)?

be the third order mock theta function. Then

4U*(q) = ~f(q) + (~9%E(9), (12)

n(n+1)

2 q 2 . .
> ez g is @ mock theta function.

oo(_q)c%o

where F(q) = @

Denote

F(q):=f(q) +4U"(q). (13)

It is easy to see that

E(q) = (~9):2F(q) (14)
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and

Flg) = — . (15)

Remark 1
(a) Itis easy to see that

U = S 5 (F@) - a2 @) (16)

where F (@) - (-9)32f (q) is a mixed mock modular form.
(b) Andrews [7], Theorem 1, recently proved a similar identity for U*(g) by using a
different pair of mock theta functions. Namely, he established

U*(q) = o(-q) + 2(-q)%a(~q), (17)

n2

where w(gq) = Y07, (;W is one of the third order Ramanujan’s mock theta function
n+le_ 2,2

[8-10], and a(q) = Y57 LA

been termed a second-order mock theta function by McIntosh [11].

appears in Ramanujan’s lost notebook and has

The authors [12] also used this identity (17) to establish the inner relationships for
the two different forms of the implied constant series O(1) in the Ramanujan claim
for the third order mock theta function f(q).
(c¢) The function F(q) = (—q)gof-" (q) is referred to as a mixed mock modular form as it is
the product of a modular form and a mock theta function.

2 Statement of results

For the fixed mock theta function M(q) := )", _, c(n; ), we define its associated bilateral

n>0
series by [13]
BM;q) = ) c(mq). (18)

Then the tail of the bilateral series B(M; g) is the following:

-1

Z c(n;q). (19)

n=-00

In this note, by considering the bilateral series B(U*; q) and B(f; q), we define the follow-
ing new functions:

Hi(q)=B(U*q) =Y u'(mq" =) _ 4" (-9)%, (20)
ne’ ne’
-1 n2 -1
Hyg)= Y (fq)2 +4 Y " )? (21)
Hig)=) (ffq)z +4Y g™ (~q)} (22)
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We mainly want to study the modular properties of these new series and the inner con-
nections among them.
First, recall the Appell-Lerch sums defined by [9, 14]

1 o (_l)rqr(r—l)/ZZr
Y = ) 23
m(x, q,z) @ rzz—;o [ (23)
where
j63.q) = (%)oo (/)00 ()0 = Z (-1)"g"" Pk, (24)

Then we give the following results.

Theorem 2.1 Suppose we have all of the notation and hypotheses above. Then

n(n+l)

1 q :

- = (g2 m(1,q,-1 25
2 21 (—q)sem(l,q,-1) (25)

Hi(q) =

is a mixed mock modular form of weight 1/2.

Theorem 2.2 Let B(f;q) is the bilateral series of the third order Ramanujan’s mock theta
function f(q). Then

q"

Hy(q) = 4B(U*;q) =4 ) q""(-q)} = 4Hi(q) = B(f3q) =

nez nez

is a mixed mock modular form of weight 1/2. Moreover, let Hy(q) = (-q);2H>(q), then Hy(q)
is a mock theta function.

Theorem 2.3 Suppose we have all of the notation and hypotheses above. Then

H3(q) = 2Hy(q) = 8H(9) = 8(~4)3m(1,q,~1) (27)
is a mixed mock modular form of weight 1/2.

Theorem 2.4 Let H,(q) = (-q)2H(q). Then:
1) Izll(q) =m(l, q, -1) is a mock theta function.
(2) g 'Hy(q®) + g *(q®) is a harmonic weak Maass form of weight 1/2 on I'1(1,024),
where g°(q) = 3,20 (_1)n+17q(ﬂ‘;1)2 ——
(g )n+1
According to the above theorems and the results in the previous introduction, we can
deduce the following corollaries directly.

Corollary 2.5 Assume all of the notation and hypotheses above. Then

n(n+l)
2

Z o =4 q"'(-q) = ;IHI” (28)

nez nez (Q)oo nez
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and
7" n2o)\* (11
+ 3 g g); = 5i —( ) M(—,—;T) 29)
2 gyt =it (e ) el 3
where
n(t) =q"*112,(1-¢"), (30)

and according to Zwegers 9], then

n(n+l)

em’u (_l)ne2ﬂinvqT
w(u,v;t) = : — , (31)
Hv; 1) =~ 1 - e2riugn
IW;T) = Z eniu21+2niv(v+%). (32)
ve%+Z
Corollary 2.6 In the notation above, we see that
7’
F(q)=Ha(q)=B(f;q) =) - 4(-q)%m(1,q,-1) (33)

nez

is a mixed mock modular form of weight 1/2.

Remark 2 Bajpai et al. in [13] pointed out that B(f;¢) is a mixed mock modular form
but they did not give the proof of their claim. In this note, we give a reasonable proof in
agreement with them. We can express the B(f;g) in terms of Appell-Lerch sums also.

3 Proofs of the theorems
In this section, we give the proofs of the four theorems. First, recall that the substitution
n— —n in (x;¢q), is the following:

(_l)nx—nqn(ml)/z

(q/%;q)n (34)

(% q)-n =

In the proof of Theorem 2.1, we consider

Hi@) =) "' (- + ) d"" ()

n=— n=0

= lf(q) +U*(q)

1
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Rhoades used the following identity of Choi [15, 16] to prove the relation which is asso-
ciated with Lerch sums,

Z (aq) bq) an (a_l)n(b_l)n = iq% 1- ﬂ)ﬂ_%b% (ﬂ_lq)oo(b_l)oou(u, v;T), (36)

n=1

with a = ¥ and b = 2™,

Leta =b=-1,namely take u =v = % in the above identity to obtain

F(q) =f(q) +4U"(q)

(O (11
-t (35 1(337)
n(n+1)

2 2
LI (37)
(q)oo nez 1+ q”

But here we consider the following identity of Ramanujan [17] and Mortenson [18].
For a,b # 0, we have
a1y n2

Z( a l’q)nﬂ( qb l,q) Z( —aq; q)n-1(=b; q)nq"

- ﬁ j(=b; g)m(alb,q,-b). (38)

Let a = b =1 in the above identity, it follows that

00 qWZ
L DY (gD -L9uq"
Z( L @)~ D) Zl 1
= %ﬂ—l; gm(1,q,-1). (39)

Namely we have

1 o0
ZZ( ot +Zq”“< T = f(q)+U*(q)

= Hi(q)

ﬁ (L g)m(L, q,-1)

)2n n(n-1)/2

1
- 2(‘])001 1( -1 q) Z 1+q"!

_ 1 q °
2q)oonezl+q”
1

= —F(qg). 40
2 (9) (40)
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Finally, the modularity of Hi(q) can be proved by the mixed mock modular forms
F(q) = (-q)%,F(q) of weight 1/2 since it is the product of a modular forms and a mock
theta function.

According to the proof above, we have

L2\ /11
s - (55 ) n(537)

11 11
= iq”élﬁ(—&i)éu( )

T
22
.1 11
i a5 557)
1

= mj(_l; gm(l,q,-1)

1
= D (L @)oo ()00 (@) (1, g, -1)
= (_Q)iom(L 9, _1)' (4‘1)

Remark 3 Therefore, we point out that the inner relationship between Lerch sums and
Appell-Lerch sums is the following:

L1 11
m(l,q,-1)=iq 2 5,5;1: , (42)

where g = &7, T ¢ H.

In the proof of Theorem 2.2, we see that

1
H(q) = Z 1

Il
N
;l\Q
N

= B(f;q). (43)

On the other hand, we have

-1 2 -1

q n
Hy(gq) = Z W +4 Z 7" (~q);
n=-—00 n n=—00

00 -1

=4) g -qh+4 Y 4" (-9
n=0 n=—00

=4) ¢ (-q);
nez

= 4B(U*; q)
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= 4H,(q)

= F(q). (44)

Hence, we get

-1 2

Hy(q) = Z . +4 Z 7" (-q);

= B(f;q)
= 4B(U*;q)

= 4H,(q)

= F(q). (45)

Therefore, H(g) is a mixed mock modular form of weight 1/2 from the modularity of
F(g). Using the results of Proposition 1, we know that Hz(q) = (-q)32Ha(q) = (-q)2F(q) is
a mock theta function.

In the proof of Theorem 2.3, we use the following identity of Mortenson in [14]:

o a1
Z bq Z(ﬂq! nl bQ)

H=—00 (_ﬂ 1; q)n+1 qb 1:q P

i ﬁj(‘b; @ym(alb,q,~b). (46)

If we let a = b =1 in the above identity, then we have

Z (L@ ni (-G @)n Z(_q;q)"_l(_l;q)nqn
1
= Wj(_l; CI)WI(L% -1), (47)
namely we have
00 qnz i 1 '
_Z_OO gal @}(—L qm(l,q,-1), (48)
and
Y CGDur(-L9ud" = Y (-4 Du(-L@ung"
-9 Z —4;q 2 n+l
"G ) ——j(=Lq)m(1,q,-1). (49)
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Considering the definition of H3(g) and using the above two identities, we can see that

Ha(q) =) (i]q)z +4y g -q);

nez nez

= z(q%j(_l; q)Wl(L 9 -1) + z(q%j(_l;Q)m(l’qx -1)

= 4wL (-1, q)m(1, q,-1). (50)
(@

Combining with the definitions and the relationships of H;(q), H2(q), and F(q), we de-
duce that

Hs(q) = B(f;q) + 4B(U*;q) = 2H,(q)
= 4H,(q) + 4H1(q) = 8Hi(q)

=2F(q). (51)

In the proof of Theorem 2.4, for the first assertion, by using the result of Remark 3, we
have

Hi(q) = (~q)32Hi(q)

9. _1 11
= (-q)2iq (_q)i"u(i’?t)

. 11
=1 - T
q K )

=m(l,q,-1)

.1 (11
:lq 24/L E’E;t . (52)

According to the theory of Zwegers, we know that iq’ﬁ u(%, %; 7) is a mock theta func-
tion. So is H,(q).
On other hand, in view of Proposition 1, we know that F(g) is a mock theta function,

combining with the fact that

Fl@)=(-a)2F(@) and Flg)=4Hi(g) 3)
we have
i) = (-0):20) = 1F(@). (54

Hence H; (q) is also a mock theta function.

For the second assertion, Mortenson in [14] proved the following identities:

[e¢]

Z (_1)nqn2 (q; qz)n = m(x q 1)+ ]122
(=% @) i1 (=q*%;4%)n T 2j(—x; q)

(55)

n=0
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and

e ()" (562 Jia
1+a7! =m(x,q,-1) — —— , (56)
( )g (~q%, ~q/%,q*)nn1 1 2j(~x, q)

where ], := j(g*; q"") for a and m being integers with m positive.
From the two identities above, we have

13 (D' (@) o (D' (@)
m(l,q,-1) = ~ + (57)
4 HZ; (g% a*); 2; @45
Ken Ono [19, 20] defined the following series K’ and K”:
[e%s) 2
: (-1)"q" (5:4°)»
K'(w;z):= , (58)
XO: (g% ) n(w q% )
and
o0 2
(-1)"q" (44*)na
K" (w;z) := , (59)
; (g d*)n(@™' g5 G*)n
where 0O <a <c.
Let . := e% and f; := m. ForO<a<c,g= 2™z denote
~ 1
K(a,cz):= 26 (n ﬁ)qfl%K/(fca;z) + sin(n Z)qél(”(if;z). (60)
c c

Then Ono proved that K(a, ¢; 2f?z) is a weakly holomorphic modular form (harmonic
weak Maass form) of weight 1/2 on I'1(64f*).
Take a = 1, ¢ = 2 in the definition of K(a, ¢; z), we get

: (1S @G o GV (@),
K(1,22)=¢q S(ZZ_O: CER _Z_; ol ) (61)

Combining the identities (57) with (61), we have

K(1,2;2) = g $m(l,q,-1) + 24 8 K" (~1;2). (62)
We can see that f; = 2 if ¢ = 2. According to the result of K(a,c; 2f2z), we see that
K(1,2;82) =q'm(1,4% 1) + 27" K" (~1;82) (63)

is a weakly holomorphic modular form (harmonic weak Maass form) of weight 1/2 on
I'1(1,024). This is the end of the proofs.

Finally, the first assertion of Corollary 2.5 follows from the identities (25) and (26). The
second assertion of Corollary 2.5 follows from the identities (41) and (45). The assertion
of Corollary 2.6 follows from the identities (25) and (45).
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