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Abstract
This paper is devoted to the optimal control problem for stochastic linear switching
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backward Riccati equations.
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1 Introduction
The Linear Quadratic (LQ) problem was mathematically formulated and solved, as well as
the filtering one, in the s by Kalman []. An important advantage of the LQ theory is
the existence of explicit feedback forms for optimal state control and the optimal cost value
through the Riccati equations. The deterministic Riccati equation was essentially solved by
Wonham [] by applying Bellman’s principle of quasilinearization []. A detailed research
of stochastic LQ control problems has been performed by Bismut []. The existence of a
unique solution for the associated Riccati equations was studied in [].

Switching systems are more advantageous models to describe the noninvariant phenom-
ena with the continuous law of movement and they have gained considerable attention
in science and engineering. Examples of these systems include many evolutionary pro-
cesses, robotics, integrated circuit design, multimedia, manufacturing, power electronics,
chaos generators, and air traffic management systems [, ]. Optimization problems have
also received growing interest among the researchers of deterministic and for stochastic
switching control systems [–].

Manifold problems of stochastic optimal control theory have been considered in [–
]. Optimal control problems of switching systems have attracted considerable attention,
due to the advantages, for instance, in modeling and improving the transient response on
highly complex systems and systems with large uncertainties. The stochastic maximum
principle via backward stochastic differential equations is derived in [–]. The neces-
sary conditions of optimality for stochastic switching systems earlier have been obtained
in [–]. In [] the linear quadratic control problem has been investigated for a special
type of stochastic systems.
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In this paper, the LQ problem of stochastic switching systems with restrictions is con-
sidered. Ekeland’s variational principle [] has been used to establish the necessary and
sufficient conditions of optimality for a given problem.

2 Statement of main problem
Unless specified otherwise, throughout the paper we use the same notations as in [].

Consider the following stochastic linear control system:

dxl(t) =
[
Al(t)xl(t) + Bl(t)ul(t) + gl(t)

]
dt

+
[
Cl(t)xl(t) + Dl(t)ul(t) + f l(t)

]
dwl(t), t ∈ (tl–, tl], ()

xl(tl–) = �l–(tl–)xl–(tl–) + Kl–(tl–), l = , r; x(t) = x, ()

ul(t) ∈ Ul
∂ ≡ {

ul(·, ·) ∈ L
Fl |ul(t, ·) ∈ Ul ⊂ Rml , a.c.

}
. ()

The elements of Ul
∂ , are called admissible controls.

Our goal is to find an optimal solution (x, u) = (x, x, . . . , xr , u, u, . . . , ur) and a switching
sequence t = (t, t, . . . , tr), that minimize the cost functional:

J(u) = E
r∑

l=

[
〈
Glxl(tl), xl(tl)

〉
+

∫ tl

tl–

(〈
Ml(t)xl(t), xl(t)

〉
+

〈
Nl(t)ul(t), ul(t)

〉)
dt

]
, ()

on the decisions of the system ()-() under the conditions:

E
〈
ql, xl(tl)

〉 ∈ Ql, l = , . . . , r, ()

where Q, . . . , Qr are a closed convex sets in R. The elements of matrices Al , Bl , Cl , Dl , �l ,
Ml , Nl and vectors Gl , Kl , gl , f l are continuous, bounded functions. Gl , Ml are a positively
semi-defined matrices, and Nl are positively defined matrices.

Ai represents the set of elements π i = (t, t, ti, x(t), x(t), . . . , xi(t), u, u, . . . , ui) for each
i = , . . . , r. To describe the main result we need to introduce some concepts, such as a
solution of linear switching systems, admissible element of control problem and optimal
solution for LQ problem of stochastic switching systems. For a detailed account we refer
the reader to [, ].

3 Stochastic LQ problem of switching systems
This section is devoted to the investigation of optimal control problems for linear stochas-
tic switching systems with constraints. The LQ problem belongs to a special class of con-
vex control problems for which the maximum principle is a necessary as well as sufficient
condition of optimality. The next theorem provides necessary and sufficient conditions of
the optimality of stochastic linear switching systems.

Theorem  Let A
r be a set of admissible elements. The elements

π r =
(
t, t, tr , x(t), x(t), . . . , xr(t), u, u, . . . , ur) ∈ A

r

are an optimal solution of problem ()-() if and only if:
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(a) there exist random processes (ψ l(t),β l(t)) ∈ L
F (tl–, tl; Rnl ) × L

F (tl–, tl; Rnl×nl ) which
are the solutions of the following stochastic backward equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dψ l(t) = –[Al∗(t)ψ l(t) + Cl∗(t)β l(t) – Ml(t)x(t)]
+ β l(t) dwl(t), tl– ≤ t < tl,

ψ l(tl) = –λl
Glxl(tl) – λl

ql + ψ l+(tl)�l(tl), l = , . . . , r – ,
ψ r(tr) = –λr

Grxr(tr) – λr
qr ;

()

(b) the candidate optimal controls ul ∈ Ul , l = , r, are defined by

Nl∗(t)ul(t) = Bl∗(t)ψ l(t) + Dl∗(t)β l(t), a.e. θ ∈ [tl–, tl]; ()

(c) the following transversality conditions hold:

ψ l+(tl)
(
�l∗

t
(
tl)xl(tl) + Kl∗

t (tl)
)

= , a.c., l = , . . . , r – . ()

Proof First we investigate given optimal control problem without endpoint constraints ().
Let ul(t) and ūl(t), l = , . . . , r be some admissible controls and xl(t), x̄l(t) be corresponding
trajectories. 	ūl(t) represents the admissible increment of the control ul(t). t = (t, t, . . . tr)
and t̄ = (t̄, t̄, . . . , t̄r) denote different switching laws. The increment of the cost functional
() along the admissible control ū = (ū(t), ū(t), . . . , ūr(t)) looks like

〈
J ′(u), ū – u

〉
= E

r∑

l=

[
〈
Glxl(tl), x̄l(tl) – xl(tl)

〉

+
∫ tl

tl–

(〈
Ml(t)xl(t), x̄l(t) – xl(t)

〉
+

〈
Nl(t)ul(t), ūl(t) – ul(t)

〉)
dt

]
. ()

By ()-() the increments of the trajectories are defined as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d(x̄l(t) – xl(t))
= [Al(t)(x̄l(t) – xl(t)) + Bl(t)(ūl(t) – ul(t))] dt

+ [Cl(t)(x̄l(t) – xl(t)) + Bl(t)(x̄l(t) – xl(t))] dwl(t), t ∈ ( ¯tl–, t̄l],
	xl+(tl) = x̄l+(t̄l) – xl+(tl) = �l(t̄l)x̄l(t̄l) – �l(tl)xl(tl).

()

Let us introduce the stochastic processes ψ l(t), l = , . . . , r, as the solution of the following
stochastic backward differential equations:

⎧
⎪⎨

⎪⎩

dψ l(t) = –[Al∗(t)ψ l(t) + Cl∗(t)β l(t) – Ml(t)x(t)] + β l(t) dwl(t), tl– ≤ t < tl,
ψ l(tl) = –Glxl(tl) + ψ l+(tl)�l(tl), l = , . . . , r – ,
ψ r(tr) = –Grxr(tr).

()

According to the Ito formula for each l = , . . . , r the following identity is satisfied:

d
〈
ψ l(tl), (x̄l(tl) – xl(tl)(	tl

〉

=
〈
dψ l(t),

(
x̄l(t) – xl(t)

)
	tl

〉
+

〈
ψ l(t), d

(
x̄l(t) – xl(t)

)
	tl

〉

+
〈
β l(t), Cl(t)

(
x̄l(t) – xl(t)

)
	tl + Dl(t)

(
ūl(t) – ul(t)

)
	tl

〉
dt.
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Integrating the aforementioned equality and taking the expectation of both sides into
account in () it follows

E
〈
ψ l(tl), (x̄l(tl) – xl(tl)(	tl

〉
–

〈
ψ l(tl–),

(
x̄l(tl–) – xl(tl–)

)
	tl–

〉

= E
∫ tl

tl–

〈
dψ l(t) + Al∗(t)ψ l(t) + Cl∗(t)β l(t),

(
x̄l(t) – xl(t)

)
	tl

〉

+ E
∫ tl

tl–

〈
Bl∗(t)ψ l(t) + Dl∗(t)β l(t),

(
ūl(t) – ul(t)

)
	tl

〉
dt.

Due to this equality equation () can be rewritten as

〈
J ′(u), ū – u

〉
= E

r∑

l=

[〈
Glxl(tl), x̄l(tl) – xl(tl)

〉
+

〈
ψ l(tl), x̄l(tl) – xl(tl)

〉

– E
∫ tl

tl–

〈
dψ l(t) + Al∗(t)ψ l(t) + Cl∗(t)β l(t),

(
x̄l(t) – xl(t)

)
	tl

〉

– E
∫ tl

tl–

〈
Bl∗(t)ψ l(t) + Dl∗(t)β l(t),

(
ūl(t) – ul(t)

)
	tl

〉
dt

+
∫ tl

tl–

(〈
Ml(t)xl(t), x̄l(t) – xl(t)

〉
+

〈
Nl(t)ul(t), ūl(t) – ul(t)

〉)
dt

]
. ()

Further, using equation () we get a more succinct expression:

〈
J ′(u), ū–u

〉
= E

r∑

l=

∫ tl

tl–

〈
Nl(t)ul(t)–Bl∗(t)ψ l(t)–Dl∗(t)β l(t),

(
ūl(t)–ul(t)

)
	tl

〉
dt. ()

It is well known that a necessary and sufficient condition of optimality for the convex
functional is given by J ′(u) = . The validity of () and (), hence the necessary conditions
of optimality for the considered unrestricted problem ()-() follows from equations ()
and (). At last, according to the independence of the increments 	x̄l(t), 	ūl(t), 	t̄l ,
sufficiency follows from equation ().

To construct the optimality condition of LQ problem ()-() with the right endpoint con-
straints (), the above mentioned problem by using Ekeland’s variational principle [] is
converted into a sequence of unconstrained problems. Based on the results already ob-
tained for problem ()-(), necessary and sufficient conditions for the sequence of switch-
ing systems are established.

To apply Ekeland’s variational principle we introduce the following approximating func-
tional:

Ij(u) = min
(c,yl)∈ε

√√
√√

r∑

l=

∣∣cl – εl
j – ESl(x, u, t)

∣∣ +
r∑

l=

∣∣yl – Eqlxl(tl)
∣∣.

Here Sl(x, u, t) = 〈Glxl(tl), xl(tl)〉+
∫ tl

tl–
(〈Ml(t)xl(t), xl(t)〉+ 〈Nl(t)ul(t), ul(t)〉) dt; limj→∞ εl

j =
; c = c + · · · + cr ; ε = {c : c ≤ J, yl ∈ Ql}; let J be a minimal value of the functional in the
problem ()-().
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Let V l ≡ (Ul
∂ , d) be the space of controls obtained by means of the following metric:

d
(
ul, vl) = (l ⊗ P)

{
(t,ω) ∈ [tl–, tl] × � : ν l

t 
= ul
t
}

.

For each l = , . . . , r, let V l be a complete metric space []. �

For the following fact it is significant that we can provide a relation between the sequence
of controls from the metric space V l and the sequence of corresponding trajectories of
system ()-().

Lemma  ([], Lemma .) Let (v,n, . . . , vr,n) be the sequence of admissible controls from
(V , . . . , V r), and (x,n, . . . , xr,n) be the sequence of corresponding trajectories of the system
()-(). Let for each l = , . . . , r the condition d(vl,n, ul) →  when n → ∞ be met. Then

lim
n→∞

{
sup

tl–≤t≤tl
E
∣
∣xl,n(t) – xl(t)

∣
∣

}
= ,

where xl(t) is a trajectory corresponding to admissible controls ul(t), l = , . . . , r.
Due to Ekeland’s variational principle, we see that (x,j(t), . . . , xr,j(t), u,j(t), . . . , ur,j(t)) is a

solution of the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jj(u) = Ij(u) + E
∑r

l=

√
εl

j
∫ tl

tl–
δ(ul(t), ul,j(t)) dt

→ min dxl,j(t) = [Al(t)xl,j(t) + Bl(t)ul,j(t) + gl(t)] dt
+ [Cl(t)xl,j(t) + Dl,j(t)ul(t)] dwl(t), t ∈ (tl–, tl],

xl,j(tl–) = �l–(tl–)xl–,j(tl–) + Kl–(tl–), l = , . . . , r,
x,j(t) = x,
ul,j(t) ∈ Ul

∂ .

()

δ(u, v) is the characteristic function of the set {u, v ∈ V l : u 
= v}.
Based on (), it is found that, if (x,j(t), . . . , xr,j(t), u,j(t), . . . , ur,j(t)) is an optimal solu-

tion of problem (), there exist the random processes (ψ l,j(t),β l,j(t)) ∈ L
Fl (tl–, tl; Rnl ) ×

L
Fl (tl–, tl; Rnl×nl ), which are solutions of the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dψ l,j(t) = –[Al∗(t)ψ l,j(t) + Cl∗(t)β l,j(t) – Ml(t)xl,j(t)]
+ β l(t) dwl(t), tl– ≤ t < tl,

ψ l,j(tl) = –λ
l,j
 Glxl,j(tl) – λ

l,j
 ql + ψ l+,j(tl)�l(tl), l = , . . . , r – ,

ψ r,j(tr) = –λ
r,j
 Grxr,j(tr) – λ

r,j
 qr ,

()

where the non-zero (λl,j
 ,λl,j

 ), l = , . . . , r, are defined as

(
λ

l,j
 ,λl,j


)

=
(–cl + εl

j + Sl(xj, uj, t), –yl + Eqlxl,j(tl))
J
j

; ()

here

J
j =

( r∑

l=

∣
∣yl – Eqlxl,j(tl)

∣
∣ +

∣
∣∣∣
∣

r∑

l=

[
cl – εl

j – ESl(xj, uj, t
)]

∣
∣∣∣
∣

)/

.
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On the one hand, due to (), ∀ũl ∈ V l the following necessary and sufficient condition of
optimality for the unconstrained problem () holds:

Nl∗(t)ul,j(t) = Bl∗(t)ψ l,j(t) + Dl∗(t)β l,j(t), a.e. t ∈ [tl–, tl], a.c. ()

Besides, based on () and () we see that the optimal decision of the problem () satisfies
the transversality condition:

ψ l+,j(tl)
(
�l∗

t (tl)xl,j(tl) + Kl∗
t (tl)

)
= , a.c., l = , . . . , r – . ()

Since
∑r

l= |λl,j
 | + |λl,j

 | =  exists by () (λl,j
 ,λl,j

 ) → (λl
,λl

) if j → ∞.

The truth of () is based upon the following lemma, which can be proved by the same
method as the proof of Lemma  [].

Lemma  Let ψ l(tl) be a solution of system (), ψ l,j(tl) be a solution of system (). If the
sequence of controls (u,j(t), . . . , ur,j(t)) satisfies the assumptions of the Lemma , then

E
∫ tl

tl–

∣
∣ψ l,j(t) – ψ l(t)

∣
∣ dt+E

∫ tl

tl–

∣
∣β l,j(t) – β l(t)

∣
∣ dt → , l = , . . . , r.

Based on Lemma , we can pass to the weak limit in system () and obtain the fulfillment
of (). Following a similar scheme, we take the limits in () and (), and justifications of
(), () are derived. Theorem  is proved.

4 Riccati equations for switching systems
In the theory of LQ problem, it is very natural to connect the LQ problem with the Riccati
equation for the possible feedback design. In this section the optimal control is determined
explicitly via a set of stochastic Riccati equations. First, we investigate the feedback design
problem in the case gl(t) ≡ ; f l(t) ≡  and we search a relation in the form:

ψ l(t) = –pl(t)xl(t), l = , . . . , r, a.c. ()

To determine the stochastic processes pl(t) we introduce the following theorem.

Theorem  Let ψ l(t) be a solution of system (), pl(t) be a stochastic process that satisfies
(), defined as the solution of the following differential equation:

dpl(t) = –
[
pl(t)Al(t) + Al∗(t)pl(t) + γ l(t)Cl(t) + Cl∗(t)γ l(t) + Cl∗pl(t)Cl

+ Ml –
(
pl(t)Bl(t) + γ l(t)Dl(t) + Cl∗(t)pl(t)Dl(t)

)(
Nl(t) + Dl∗(t)pl(t)Dl(t)

)

× (
Bl∗(t)pl(t) + Dl∗(t)γ l(t) + Dl∗(t)pl(t)Cl(t)

)]

+ γ l(t) dwl(t), tl– ≤ t < tl. ()

Proof Suppose that the differential of random processes pl(t) is defined as

dpl(t) = αl(t) dt + γ l(t) dwl(t), l = , . . . , r.
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According to the Ito formula:

dψ l(t) = –dpl(t)xl(t) – pl(t) dxl(t) – γ l(t)
[
Cl(t)xl(t) + Dl(t)ul(t)

]
dt, l = , . . . , r, a.c.

Using () and () we have

[
–Al∗ψ l(t) – Cl∗β l(t) + Ml(t)xl(t)

]
+ β l(t) dwl(t)

= –
[
αl(t)xl(t) dt + γ l(t)xl(t) dwl(t) + pl(t)Al(t)xl(t) dt

+ pl(t)Bl(t)ul(t) dt + pl(Cl(t)xl(t)

+ Dl(t)ul(t)
)

dwl(t) + γ l(t)
(
Cl(t)xl(t) + Dl(t)ul(t)

)
dt

]
, l = , . . . , r. ()

Taking expectation from both side we obtain the following expression for β l(t), l = , . . . , r:

β l(t) = –γ l(t)xl – pl(t)Cl(t)xl(t) – pl(t)Dl(t)ul(t), t ∈ [tl–, tl]. ()

By means of simple transformations taking into account () equation () can be rewrit-
ten as follows:

[
αl(t) + pl(t)Al(t) + Al∗(t)pl(t) + γ l(t)Cl(t)

+ Cl∗(t)γ l(t) + Cl∗pl(t)Cl + Ml]xl(t)

+
[
pl(t)Bl(t) + γ l(t)Dl(t) + Cl∗(t)pl(t)Dl(t)

]
ul(t) = . ()

Considering () in equation () the optimal control can be defined explicitly:

[
Nl(t) + Dl∗(t)pl(t)Dl(t)

]
ul(t)

+
[
Bl∗(t)pl(t) + Dl∗(t)γ l(t) + Dl∗(t)pl(t)Cl(t)

]
xl(t) = . ()

Hence, Theorem  is proved. �

Finally, the feedback design for LQ problem ()-() is obtained by means of the next
theorem.

Theorem  Let ψ l(t) be a solution of system (), pl(t), ν l(t) be a stochastic processes satisfy
to ψ l(t) = –[pl(t)xl(t) + ν l(t)], a.c. Then for each l let the random process ν l(t) be a solution
of the following differential equation:

[(
pl(t)Bl(t) + γ l(t)Dl(t) + Cl∗pl(t)Dl)(Nl(t) + Dl∗(t)pl(t)Dl(t)

)–Bl∗(t) – Al∗(t)
]
ν l(t) dt

+
[(

pl(t)Bl(t) + γ l(t)Dl(t) + Cl∗pl(t)Dl)(Nl(t) + Dl∗(t)pl(t)Dl(t)
)–Dl∗(t) – Cl∗(t)

]

× [
pl∗(t)f l(t) + ϕl(t)

]
dt

= dν l(t) +
[
pl∗(t)gl(t) – γ l∗(t)f l(t)

]
dt + ϕl(t) dwl(t), ν l(tl) = . ()

Here for each l stochastic process pl(t) is the solution of ().
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Proof Suppose that random processes ν l(t) are defined in the following way:

ν l(tl) – ν l(tl–) =
∫ tl

tl–

κ l(t) dt +
∫ tl

tl–

ϕl(t) dwl(t), l = , . . . , r.

According to Ito’s formula for each l:

dψ l(t) + κ l(t) dt + ϕl(t) dwl(t)

= –dpl(t)xl(t) – pl(t) dxl(t) – γ l∗(t)
[
Cl(t)xl(t) + Dl(t)ul(t) + f l(t)

]
dt, a.c. ()

In view of () we obtain the following expression:

β l(t) = –γ l(t)xl(t) – pl(t)Cl(t)xl(t) + pl(t)Dl(t)ul(t) + pl∗(t)f l(t) +ϕl(t), l = , . . . , r, a.c.

Substituting this expression for β l(t) into (), in view of [Nl(t) + Dl∗(t)pl(t)Dl(t)] being
a positively defined matrix, we have

ul(t) = –
[
Nl(t) + Dl∗(t)pl(t)Dl(t)

]–{Bl∗(t)ν l(t) + pl(t)Dl(t)f l(t)

+ Dl∗(t)ϕl(t) +
[
(pl(t)Bl(t) + Dl∗(t)γ l(t) + pl(t)Dl(t)Cl(t)

]
xl(t)

}
. ()

Integrating both sides of () and using equation () of ul(t), bearing in mind that
stochastic processes pl(t), γ l(t) are the solutions of differential equation ():

κ l(t) =
[(

pl(t)Bl(t) + γ l(t)Dl(t) + Cl∗(t)pl(t)Dl(t)
)(

Nl(t) + Dl∗(t)pl(t)Dl(t)
)–

× Bl∗(t) – Al∗(t)
]
ν l(t) +

[(
pl(t)Bl(t) + γ l(t)Dl(t) + Cl∗(t)pl(t)Dl(t)

)

× (
Nl(t) + Dl∗(t)pl(t)Dl(t)

)–Dl∗(t) – Cl∗(t)
][

pl∗(t)f l(t) + ϕl(t)
]

– pl∗(t)gl(t)

– γ l∗(t)f l(t). ()

Therefore, the assertion of the theorem is true. �

5 Conclusion
There are a lot relevant applications of LQ problems in fields such as aerospace, biology,
economics, management sciences, etc. [–].

Switching systems provide a natural and convenient theoretical account for mathe-
matical modeling of many complex real phenomena and practical applications. A broad
spectrum of the latest research is concerned with optimal control problems of stochastic
switching systems [–].

The LQ problem of switching systems in which the endpoint restrictions are defined
with the help of convex closed sets has been investigated. The objective of the present
research is to give an explicit solution to the LQ problem of stochastic switching systems
of which drift and diffusion coefficients comprise non-homogeneous terms. The results
developed in this study can be viewed as an extension of the problems formulated in [,
] for stochastic switching systems.
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