# RESEARCH Open Access



# An asymptotically sharp coefficients estimate for harmonic K-quasiconformal mappings

Hong-Ping Li\*

\*Correspondence: Ihp306@hqu.edu.cn School of Mathematical Sciences, Huaqiao University, Quanzhou, 362021, China

### **Abstract**

By using the improved Hübner inequalities, in this paper we obtain an asymptotically sharp lower bound estimate for the coefficients of harmonic K-quasiconformal self-mappings of the unit disk  $\mathbb D$  which keep the origin fixed. The result partly improves the former results given by (Partyka and Sakan in Ann. Acad. Sci. Fenn., Math. 30:167-182, 2005) and (Zhu and Zeng in J. Comput. Anal. Appl. 13:1081-1087, 2011). Furthermore, using some estimate for the derivative of the boundary function of a harmonic K-quasiconformal self-mapping W of  $\mathbb D$  which keeps the origin fixed, we obtain an upper bound estimate for the coefficients of W.

**MSC:** Primary 30C62; secondary 30C20; 30F15

**Keywords:** Heinz inequality; Hübner inequalities; coefficients estimate; harmonic quasiconformal mapping

# 1 Introduction

Let  $\mathbb{D} = \{z : |z| < 1\}$  denote the unit disk, w(z) be a harmonic mapping defined in  $\mathbb{D}$ . Then w(z) can be presented as  $w(z) = h(z) + \overline{g(z)}$ , where

$$h(z) = \sum_{n=0}^{\infty} a_n z^n \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} b_n z^n$$
 (1)

are both analytic in  $\mathbb{D}$ . By Lewy's theorem [3], we know that w(z) is locally univalent and sense-preserving in  $\mathbb{D}$  if and only if its Jacobian satisfies the following inequality:

$$J_f(z) = |w_z(z)|^2 - |w_{\bar{z}}(z)|^2 = |h'(z)|^2 - |g'(z)|^2 > 0$$

for all  $z \in \mathbb{D}$ . One of the basic properties for harmonic self-mappings of  $\mathbb{D}$  is the Heinz inequality [4].

**Lemma A** Let w map the unit disk harmonically onto itself with w(0) = 0. Then

$$|w_z(0)|^2 + |w_{\bar{z}}(0)|^2 \ge c$$
 (2)

for some absolute constant c > 0.



Subsequently, in 1982, Hall [5] obtained the sharp lower bound of *c*.

**Theorem B** Let  $w(z) = h(z) + \overline{g(z)} = \sum_{n=1}^{\infty} a_n z^n + \overline{\sum_{n=1}^{\infty} b_n z^n}$  be a univalent harmonic mapping of the unit disk onto itself, then its coefficients satisfy the inequality

$$|a_1|^2 + |b_1|^2 \ge \frac{27}{4\pi^2}. (3)$$

The lower bound  $\frac{27}{4\pi^2}$  is the best possible.

Let

$$p(r, x - \varphi) = \frac{1 - r^2}{2\pi (1 - 2r\cos(x - \varphi) + r^2)}$$

denote the Poisson kernel, then every bounded harmonic mapping w defined in  $\mathbb D$  has the following representation:

$$w(z) = P[f](z) = \int_0^{2\pi} p(r, x - \varphi) f\left(e^{ix}\right) dx,\tag{4}$$

where  $z = re^{i\varphi} \in \mathbb{D}$  and f is a bounded integrable function defined on the unit circle  $\mathbf{T} := \partial \mathbb{D}$ .

Suppose that w(z) is a sense-preserving univalent harmonic mapping of  $\mathbb D$  onto a domain  $\Omega \subseteq \mathbb C$ . Then w(z) is a harmonic K-quasiconformal mapping if and only if

$$K(w) := \sup_{z \in \mathbb{D}} \frac{|w_z(z)| + |w_{\bar{z}}(z)|}{|w_z(z)| - |w_{\bar{z}}(z)|} \le K.$$

Under the additional assumption that w(z) is a K-quasiconformal mapping, in 2005 Partyka and Sakan [1] obtained an asymptotically sharp variant of Heinz's inequality as follows (see also [2]).

**Theorem C** Let w(z) be a harmonic K-quasiconformal mapping of  $\mathbb{D}$  onto itself satisfying w(0) = 0. Then the inequality

$$\left|\partial_z w(z)\right|^2 + \left|\partial_{\bar{z}} w(z)\right|^2 \ge \frac{1}{4} \left(1 + \frac{1}{K}\right)^2 \max\left\{\frac{4}{\pi^2}, L_K^2\right\} \tag{5}$$

*holds for every*  $z \in \mathbb{D}$ *, where* 

$$L_K := \frac{2}{\pi} \int_0^{\frac{1}{\sqrt{2}}} \frac{d(\Phi_{1/K}(s)^2)}{s\sqrt{1-s^2}}$$
 (6)

is a strictly decreasing function of K. For L > 0,  $\Phi_L(s)$  is the Hersch-Pfluger distortion function defined by the equalities  $\Phi_L(s) := \mu^{-1}(\mu(s)/L)$ , 0 < s < 1;  $\Phi_L(0) := 0$ ,  $\Phi_L(1) := 1$ , where  $\mu(s)$  stands for the module of Grötzsch's extremal domain  $\mathbb{D}\setminus[0,s]$ .

In 2010, Qiu and Ren [6] improved the Hübner inequalities as follows.

**Theorem D** For all  $s \in (0,1)$  and  $K \in (1,\infty)$ , we have

$$4^{1-K}s^K \le \Phi_{1/K}(s) < 4^{D(s)(1-K)}s^K \tag{7}$$

and

$$s^{1/K} \le \Phi_K(s) < 4^{(1-s^2)^{\frac{3}{4}}(1-1/K)} s^{1/K},\tag{8}$$

where  $D(s) = (1-s)(1+s)^{1/\ln 4}$ .

A sense-preserving harmonic mapping of  $\mathbb D$  onto itself can be represented as the Poisson extension of the boundary function  $f(e^{it}) = e^{i\gamma(t)}$ , where  $\gamma(t)$  is a continuous non-decreasing function with  $\gamma(2\pi) - \gamma(0) = 2\pi$  and  $\gamma(t+2\pi) = \gamma(t) + 2\pi$  (cf. [7, 8]). The coefficients  $a_n$  and  $b_n$  have an alternative interpretation as Fourier coefficients of the periodic function  $e^{i\gamma(t)}$ , and so Heinz's lemma can be viewed as a statement about Fourier series.

In this paper, assuming that w(z) is a harmonic K-quasiconformal mapping of  $\mathbb{D}$  onto itself satisfying w(0) = 0, by using Theorem D we obtain a sharp lower bound for its coefficients as follows:

$$|a_1|^2 + |b_1|^2 \ge B_1(K) := 2 - 2^{2(1 - 1/K)(2 + 2^{5/4})} \frac{2K^2 \Gamma(\frac{2}{K})}{(K + 1)\Gamma^2(\frac{1}{K})}$$
(9)

which satisfies  $\lim_{K\to 1^+} B_1(K) = 1$ , where  $\Gamma$  is the gamma function.

For n > 2 we have

$$|a_n|^2 + |b_n|^2 \ge B_n(K),$$
 (10)

where

$$B_{n}(K) := \chi(K) + \frac{2^{2(1-1/K)(2+2^{5/4})}\Gamma(1+\frac{2}{K})(n-1-\frac{1}{K})!}{\Gamma^{2}(\frac{1}{K})(n+\frac{1}{K})\frac{1}{K}(n-1+\frac{1}{K})!},$$

$$\left(n-1-\frac{1}{K}\right)! := \left(n-1-\frac{1}{K}\right)\left(n-2-\frac{1}{K}\right)\cdots\left(1-\frac{1}{K}\right),$$

$$\left(n-1+\frac{1}{K}\right)! := \left(n-1+\frac{1}{K}\right)\left(n-2+\frac{1}{K}\right)\cdots\left(1+\frac{1}{K}\right),$$

$$(11)$$

and

$$\chi(K) := 2 - \frac{2^{2(1-1/K)(2+2^{5/4})}\Gamma(1+\frac{2}{K})}{\Gamma^2(1+\frac{1}{K})}$$
(12)

is a decreasing function of K with  $\chi(1) = 0$ .

Assume that w(z) = P[f](z) is a harmonic K-quasiconformal mapping of  $\mathbb{D}$  onto itself with the boundary function  $f(e^{it}) = e^{i\gamma(t)}$ , satisfying w(0) = 0. In Theorem 3.2 of [9], Partyka and Sakan proved that the following inequalities:

$$\frac{2^{5(1-K^2)/2}}{(K^2+K-1)^K} \le \left| f'(z) \right| \le K^{3K} 2^{5(K-\frac{1}{K})/2} \tag{13}$$

hold for a.e.  $z = e^{it} \in \mathbf{T}$ . Applying the above inequalities we obtain an upper bound for the coefficients of a harmonic K-quasiconformal self-mapping w(z) of  $\mathbb{D}$  satisfying w(0) = 0 as follows:

$$|a_n|^2 + |b_n|^2 \le A_n(K) := \frac{16}{n^2 \pi^2} K^{6K} 2^{5(K-1/K)}.$$
 (14)

Furthermore we show that (9) and (10) are sharp as  $K \rightarrow 1$ .

# 2 Auxiliary results

**Lemma 1** Let K > 1 be a constant. Then the equality

$$\int_0^{\pi} \sin^{\frac{2}{K}}(t) \cos(2nt) dt = \frac{\pi}{4^{\frac{1}{K}}} \frac{(-1)^n \Gamma(1 + \frac{2}{K})}{\Gamma(1 + \frac{1}{K} - n) \Gamma(1 + \frac{1}{K} + n)}$$
(15)

holds for all nonnegative integer numbers n = 0, 1, 2, ...

**Lemma 2** Let  $\varphi(t) := |\cos \frac{t}{2}|^{\frac{3}{2}} + |\sin \frac{t}{2}|^{\frac{3}{2}}$ , for any  $t \in [0, 2\pi]$ . Then

$$\max_{0 \le t \le 2\pi} \varphi(t) = \varphi\left(\frac{\pi}{2}\right) = \sqrt[4]{2}. \tag{16}$$

**Lemma 3** Let w = P[f](z) be a harmonic K-quasiconformal self-mapping of  $\mathbb{D}$  with the boundary function  $f(e^{it}) = e^{i\gamma(t)}$ . For every  $z_1 = e^{i(s+t)}$ ,  $z_2 = e^{i(s-t)} \in \mathbf{T}$ , let  $\theta = \gamma(s+t) - \gamma(s-t)$ . Then  $f(z_1) = e^{i\theta} f(z_2)$  and the inequalities

$$2^{10-10K}\sin^{2K}(t) \le \sin^2\left(\frac{\theta}{2}\right) \le 2^{2(1-1/K)(1+2^{5/4})}\sin^{2/K}(t) \tag{17}$$

hold for every  $0 \le s < 2\pi$ ,  $0 \le t \le \pi$ .

*Proof* According to the quasi-invariance of the harmonic measure (see (1.9) in [1]), we have

$$\Phi_{1/K}\left(\cos\frac{t}{2}\right) \le \cos\frac{\theta}{4} \le \Phi_K\left(\cos\frac{t}{2}\right) \tag{18}$$

for every  $0 \le s < 2\pi$ ,  $0 \le t \le \pi$ , and  $\theta = \gamma(s+t) - \gamma(s-t)$ . Since  $\Phi_K^2(x) + \Phi_{1/K}^2(\sqrt{1-x^2}) = 1$  holds for every  $0 \le x \le 1$ , this shows that

$$\Phi_{1/K}\left(\sin\frac{t}{2}\right) \le \sin\frac{\theta}{4} \le \Phi_K\left(\sin\frac{t}{2}\right). \tag{19}$$

Using the Hübner inequalities, (7) and (8), we see that  $4^{1-K}s^K \leq \Phi_{1/K}(s) < 4^{D(s)(1-K)}s^K$  and  $s^{1/K} \leq \Phi_K(s) < 4^{(1-s^2)^{\frac{3}{4}}(1-1/K)}s^{1/K}$ . Applying (18), (19), and the above two inequalities, we have

$$\sin^{2}\left(\frac{\theta}{2}\right) \ge 4\Phi_{1/K}^{2}\left(\sin\frac{t}{2}\right)\Phi_{1/K}^{2}\left(\cos\frac{t}{2}\right) \ge 2^{10(1-K)}\sin^{2K}t$$

and

$$\sin^2\!\left(\frac{\theta}{2}\right) \leq 4\Phi_K^2\!\left(\sin\frac{t}{2}\right)\Phi_K^2\!\left(\cos\frac{t}{2}\right) \leq 2^{2(1-1/K)\{2[|\cos(\frac{t}{2})|^{\frac{3}{2}}+|\sin(\frac{t}{2})|^{\frac{3}{2}}]+1\}}\sin^{\frac{2}{K}}(t).$$

By using Lemma 2 we see that

$$\left|\cos\frac{t}{2}\right|^{\frac{3}{2}} + \left|\sin\frac{t}{2}\right|^{\frac{3}{2}} \le \sqrt[4]{2}.$$

This implies that

$$2^{10-10K}\sin^{2K}(t) \le \sin^2\left(\frac{\theta}{2}\right) \le 2^{2(1-1/K)(1+2^{5/4})}\sin^{2/K}(t)$$

hold for every  $0 \le s < 2\pi$ ,  $0 \le t \le \pi$ , and  $\theta = \gamma(s+t) - \gamma(s-t)$ .

This completes the proof.

# 3 Main results

**Theorem 1** Given K > 1, let  $w(z) = P[f](z) = h(z) + \overline{g(z)}$  be a harmonic K-quasiconformal self-mapping of  $\mathbb D$  satisfying w(0) = 0 with the boundary function  $f(e^{it}) = e^{i\gamma(t)}$ , where

$$h(z) = \sum_{n=1}^{\infty} a_n z^n$$
 and  $g(z) = \sum_{n=1}^{\infty} b_n z^n$  (20)

are both analytic in  $\mathbb{D}$ . Then

$$|a_1|^2 + |b_1|^2 \ge B_1(K)$$
,

where  $B_1(K)$  is given by (9) and satisfies  $\lim_{K\to 1^+} B_1(K) = 1$ . For  $n \ge 2$ ,

$$|a_n|^2 + |b_n|^2 > B_n(K)$$

where  $B_n(K)$  is given by (11) and satisfies  $\lim_{n\to\infty} \lim_{K\to 1^+} B_n(K) = 0$ .

*Proof* Since  $w(z) = P[f](z) = \sum_{n=1}^{\infty} a_n z^n + \overline{\sum_{n=1}^{\infty} b_n z^n}$ , using Parseval's relation (*cf.* [7]) we have

$$\frac{1}{2\pi} \int_0^{2\pi} e^{i[\gamma(s+t)-\gamma(s-t)]} ds = \sum_{n=1}^{\infty} (|a_n|^2 e^{2int} + |b_n|^2 e^{-2int})$$

for arbitrary  $t \in R$ . Taking real parts, we arrive at the formula

$$1 - 2J(t) = \sum_{n=1}^{\infty} (|a_n|^2 + |b_n|^2) \cos(2nt), \tag{21}$$

where

$$J(t) = \frac{1}{2\pi} \int_0^{2\pi} \sin^2\left(\frac{\gamma(s+t) - \gamma(s-t)}{2}\right) ds.$$

Since w(z) is a harmonic K-quasiconformal mapping, by Lemma 3 we have

$$2^{10-10K}\sin^{2K}(t) \le J(t) \le 2^{2(1-1/K)(1+2^{5/4})}\sin^{2/K}(t). \tag{22}$$

Hence  $(|a_n|^2 + |b_n|^2) \int_0^{\pi} \cos(2nt)(1 + \cos(2nt)) dt = \int_0^{\pi} (1 - 2J(t))(1 + \cos(2nt)) dt$ . Using (15) we also obtain

$$|a_{n}|^{2} + |b_{n}|^{2} = \frac{2}{\pi} \left( \pi - 2 \int_{0}^{\pi} J(t) (1 + \cos(2nt)) dt \right)$$

$$\geq \frac{2}{\pi} \left( \pi - 2 \cdot 2^{2(1 - 1/K)(1 + 2^{5/4})} \int_{0}^{\pi} \sin^{\frac{2}{K}} (t) (1 + \cos(2nt)) dt \right)$$

$$= 2 - 2^{2(1 - 1/K)(2 + 2^{5/4})} \frac{\Gamma(1 + \frac{2}{K})}{\Gamma^{2}(1 + \frac{1}{K})} - \frac{2^{2(1 - 1/K)(2 + 2^{5/4})} (-1)^{n} \Gamma(1 + \frac{2}{K})}{\Gamma(1 + \frac{1}{K} - n) \Gamma(1 + \frac{1}{K} + n)}$$

$$:= \chi(K) + \frac{2^{2(1 - 1/K)(2 + 2^{5/4})} (-1)^{n+1} \Gamma(1 + \frac{2}{K})}{\Gamma(1 + \frac{1}{K} - n) \Gamma(1 + \frac{1}{K} + n)}.$$

For n = 1, using the formula  $\Gamma(z + 1) = z\Gamma(z)$  and simplifying the above result we obtain the following inequality:

$$|a_1|^2 + |b_1|^2 \ge B_1(K) := 2 - 2^{2(1-1/K)(2+2^{5/4})} \frac{2K^2\Gamma(\frac{2}{K})}{(K+1)\Gamma^2(\frac{1}{K})}.$$

By computation we know that  $B_1(K)$  is a decreasing function of K and satisfies

$$\lim_{K \to 1^+} B_1(K) = 1$$

The above estimate is sharp. Consider the conformal mapping  $w(z) = e^{ix}z$ , where  $x \in \mathbb{R}$  is a real number. Then we have  $|a_1| + |b_1| = 1$ .

For n > 2, we have

$$\Gamma\left(1+\frac{1}{K}-n\right) = \frac{\Gamma(\frac{1}{K})}{(1+\frac{1}{K}-n)(2+\frac{1}{K}-n)\cdots(\frac{1}{K}-1)} = \frac{(-1)^{n-1}\Gamma(\frac{1}{K})}{(n-1-\frac{1}{K})!},$$

$$\Gamma\left(1+\frac{1}{K}+n\right) = \left(n+\frac{1}{K}\right)\left(n+\frac{1}{K}-1\right)\cdots\left(\frac{1}{K}\right)\Gamma\left(\frac{1}{K}\right) = \frac{1}{K}\Gamma\left(\frac{1}{K}\right)\left(n+\frac{1}{K}\right)!,$$

then

$$|a_n|^2 + |b_n|^2 \ge \chi(K) + \frac{2^{2(1-1/K)(2+2^{5/4})}\Gamma(1+\frac{2}{K})(n-1-\frac{1}{K})!}{\Gamma^2(\frac{1}{K})(n+\frac{1}{K})\frac{1}{K}(n-1+\frac{1}{K})!} := B_n(K).$$

By calculating we see that  $\chi(K)$  is a decreasing function of K with  $\chi(1) = 0$ . The function  $B_n(K)$  is a continuous function of K with  $\lim_{K\to 1^+} B_n(K) = \frac{2}{(n+1)n(n-1)}$ . This implies that  $B_n(K) > 0$  holds for all  $n \ge 2$  and some K > 1.

**Remark 1** By computation we obtain

$$B_1(K) > \frac{27}{4\pi^2}$$

for all  $1 \le K \le 1.05174$ . This shows that under the additional assumption that w is a K-quasiconformal mapping, the lower bound of the inequality (3) can be improved.

By the definition of the Gamma function we see that  $\Gamma(-n) = \infty$  holds for all nonnegative integer numbers n. According to the proof of Theorem 1 we know that for all  $n \ge 2$ ,  $\lim_{K \to 1^+} \Gamma(1 + \frac{1}{K} - n) = \infty$ . Therefore

$$\lim_{K\to 1^+} B_n(K) = 0$$

holds for all  $n \ge 2$ .

Let t=0 in equation (21). Then we have  $\sum_{n=1}^{\infty}(|a_n|^2+|b_n|^2)=1$ . The sharp coefficient estimate of  $a_1$  and  $b_1$  shows that if  $K\to 1^+$  then  $|a_1|^2+|b_1|^2\geq B_1(K)\to 1$ . This shows that under the assumptions of Theorem 1 if additionally w(z) is a conformal self-mapping of  $\mathbb D$  satisfying w(0)=0, then all the coefficients  $b_n$  for  $n\geq 1$  and  $a_n$  for  $n\geq 2$  are zeros and  $|a_1|=1$ , that is,  $w(z)=e^{i\theta}z$  for some  $\theta\in\mathbb R$ .

**Remark 2** In [1] the authors showed that an asymptotically sharp inequality holds for all z in  $\mathbb{D}$ . Our Theorem 1, however, gives an estimate at z = 0 only. In this sense, Theorem 1 partly improves the former results.

Theorem 2 shows that  $n^2(|a_n|^2 + |b_n|^2)$  is less than or equal to a positive number determined by K.

**Theorem 2** *Under the assumption of Theorem* 1, *the coefficients of* w(z) *satisfy the following inequality:* 

$$|a_n|^2 + |b_n|^2 \le \frac{16}{n^2 \pi^2} K^{6K} 2^{5(K-1/K)}, \quad n = 1, 2, \dots$$

*Proof* For every  $z = re^{i\theta} \in \mathbb{D}$ ,

$$w(re^{i\theta}) = \sum_{n=1}^{\infty} a_n r^n e^{in\theta} + \sum_{n=1}^{\infty} \bar{b}_n r^n e^{-in\theta},$$

hence

$$a_n r^n = \frac{1}{2\pi} \int_0^{2\pi} w(re^{i\theta}) e^{-in\theta} d\theta, \quad n = 1, 2, \dots,$$

$$\bar{b}_n r^n = \frac{1}{2\pi} \int_0^{2\pi} w(re^{i\theta}) e^{in\theta} d\theta, \quad n = 1, 2, \dots$$

For every n we set  $a_n = |a_n|e^{i\alpha_n}$ ,  $b_n = |b_n|e^{i\beta_n}$ , and  $\theta_n = \frac{\alpha_n + \beta_n}{2n}$ . Then

$$(|a_n| + |b_n|)r^n = \left| \frac{1}{2\pi} \int_0^{2\pi} w(re^{i\theta}) \left[ e^{-i\alpha_n} e^{-in\theta} + e^{i\beta_n} e^{in\theta} \right] d\theta \right|$$
$$= \left| \frac{1}{2\pi} \int_0^{2\pi} w(re^{i\theta}) \left[ e^{-in(\theta + \theta_n)} + e^{in(\theta + \theta_n)} \right] d\theta \right|$$
$$= \left| \frac{1}{\pi} \int_0^{2\pi} w(re^{i\theta}) \cos n(\theta + \theta_n) d\theta \right|.$$

Integrating by parts we have

$$\left(|a_n| + |b_n|\right)r^n = \left|\frac{1}{n\pi} \int_0^{2\pi} w_\theta(re^{i\theta}) \sin n(\theta + \theta_n) d\theta\right|. \tag{23}$$

In Theorem 2.8 of [10], Kalaj proved that the radial limits of  $w_{\theta}$  and  $w_r$  exist almost everywhere and

$$\lim_{r\to 1^{-}}\partial_{\theta}w(re^{i\theta})=\frac{df(e^{i\theta})}{d\theta}$$

for almost every  $z = e^{i\theta} \in \mathbf{T}$ . Here f is the boundary function of w. Hence, letting  $r \to 1^-$  and using (13), (23) we see that

$$|a_n| + |b_n| \le \frac{1}{n\pi} \int_0^{2\pi} |f'(e^{i\theta})| |\sin n(\theta + \theta_n)| d\theta = \frac{4K^{3K} 2^{5(K-1/K)/2}}{n\pi}.$$

It shows that 
$$|a_n|^2 + |b_n|^2 \le (|a_n| + |b_n|)^2 \le \frac{16K^{6K}2^{5(K-1/K)}}{n^2\pi^2} := A_n(K)$$
. The proof is completed.

### **Competing interests**

The author declares that she has no competing interests.

## Acknowledgements

The author of this work is supported by NNSF of China (Nos. 11301195, 11501220) and the China Scholarship Council and a research foundation of Huaqiao University (Project No. 2014KJTD14). The author would like to express her appreciation to Professor Jian-Feng Zhu and the referee for their helpful advice.

Received: 17 November 2015 Accepted: 24 February 2016 Published online: 02 March 2016

# References

- 1. Partyka, D, Sakan, K: On an asymptotically sharp variant of Heinz's inequality. Ann. Acad. Sci. Fenn., Math. **30**, 167-182
- 2. Zhu, JF, Zeng, X: Estimate for Heinz inequality in the small dilatation of harmonic mappings. J. Comput. Anal. Appl. 13, 1081-1087 (2011)
- 3. Lewy, H: On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. **42**, 689-692 (1932)
- 4. Heinz, E: Über die Lösungen der Minimalflächengleichung. Nachr. Akad. Wiss. Gött. Math.-Phys. Kl., 51-56 (1952)
- 5. Hall, PR: On an inequality of E. Heinz. J. Anal. Math. 42, 185-198 (1982)
- 6. Qiu, S, Ren, L: Sharp estimates for Hübner's upper bound function with applications. Appl. Math. J. Chin. Univ. Ser. B 25, 227-235 (2010)
- 7. Duren, P: Harmonic Mappings in the Plane. Cambridge University Press, New York (2004)
- 8. Pavlović, M: Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk. Ann. Acad. Sci. Fenn., Ser. A I Math. 27, 365-372 (2002)
- Partyka, D, Sakan, K: On bi-Lipschitz type inequalities for quasiconformal harmonic mappings. Ann. Acad. Sci. Fenn., Math. 32, 579-594 (2007)
- 10. Kalaj, D. Quasiconformal harmonic functions between convex domains. Publ. Inst. Math. 76(90), 3-20 (2004)