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1 Introduction
Let D = {z: |z| < 1} denote the unit disk, w(z) be a harmonic mapping defined in D. Then

w(z) can be presented as w(z) = k(z) + g(z), where

h(z) = Zanz” and g(z) = Z b,7" 1)
n=0 n=1

are both analytic in D. By Lewy’s theorem [3], we know that w(z) is locally univalent and
sense-preserving in D if and only if its Jacobian satisfies the following inequality:

i@ = w.@ - w:@|* = [H@)|* - ¢@]" >0

for all z € D. One of the basic properties for harmonic self-mappings of D is the Heinz
inequality [4].

Lemma A Let w map the unit disk harmonically onto itself with w(0) = 0. Then
2 2
w20 + [wz(0)| 2 ¢ @)

for some absolute constant c > 0.
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Subsequently, in 1982, Hall [5] obtained the sharp lower bound of c.

Theorem B Let w(z) = h(z) +@ =Y o an?" + Y ooy byz" be a univalent harmonic map-
ping of the unit disk onto itself, then its coefficients satisfy the inequality

27
jar* + |bn]* = Z (3)

The lower bound 42% is the best possible.

Let

1-r2

27 (1 —2rcos(x — @) +r2)

plrx—¢) =

denote the Poisson kernel, then every bounded harmonic mapping w defined in D has the
following representation:

27
w(z) = P[f](z) = /0 plr,x - @)f (€7) dx, (4)

where z = re’? € D and f is a bounded integrable function defined on the unit circle T :=
oD.

Suppose that w(z) is a sense-preserving univalent harmonic mapping of D onto a domain
2 C C. Then w(z) is a harmonic K-quasiconformal mapping if and only if

lwz(2)] + [wz(2)
ze]D) |Wz(z) |WE(Z)| -

K(w) :=

Under the additional assumption that w(z) is a K-quasiconformal mapping, in 2005
Partyka and Sakan [1] obtained an asymptotically sharp variant of Heinz’s inequality as

follows (see also [2]).

Theorem C Let w(z) be a harmonic K-quasiconformal mapping of D onto itself satisfying
w(0) = 0. Then the inequality

2
s o o )

holds for every z € D, where

/' 7 d(q)1/1<(5)2 ©)

sv/1-s2

is a strictly decreasing function of K. For L > 0, ®(s) is the Hersch-Pfluger distortion func-
tion defined by the equalities ®r(s) := u (u(s)/L), 0 <s < 1; ®7(0) := 0, ®7(1) := 1, where
1(s) stands for the module of Grotzsch’s extremal domain D\[0, s].

In 2010, Qiu and Ren [6] improved the Hiibner inequalities as follows.
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Theorem D Forall s € (0,1) and K € (1,00), we have
41Kk < ®yx(s) < 4PEI-K) K (7)
and
3
SI/K < CDK( )<4 1-s2 )4 (1- l/K) l/K (8)

where D(s) = (1 — s)(1 + s)// "%,

A sense-preserving harmonic mapping of D onto itself can be represented as the
Poisson extension of the boundary function f(e) = ¢”®, where y (t) is a continuous non-
decreasing function with y(27) — y(0) = 2z and y(¢ + 27) = y(t) + 27 (¢f [7, 8]). The
coefficients a, and b, have an alternative interpretation as Fourier coefficients of the pe-
riodic function ¢, and so Heinz’s lemma can be viewed as a statement about Fourier
series.

In this paper, assuming that w(z) is a harmonic K-quasiconformal mapping of D onto
itself satisfying w(0) = 0, by using Theorem D we obtain a sharp lower bound for its coef-
ficients as follows:

2K’T'(2)

a1 + |by|? > By(K) 1= 2 — 220-E0@s2%h 22 K )

(K+DIr2(3)

which satisfies limg_.1+ By (K) = 1, where T is the gamma function.
For n > 2 we have

|au)? + |by|* > B,(K), (10)

where

2 2(1- 1/1()(2+25/4 F(1+ )(Vl 1-— _)|

B,(K):= x(K) + Fz(%)(n+}<)1<(n 1+ D) (11)
(=15 (=1 (-2 ) - (%)
n-1-=\|l=\n-1-=|){n-2- l1I-=),

K K K K
(1=t i) (i) (=20 (1)
n-1+—=|l=(n-1+=){n-2+— 1+—=),

K K K K

and
2(1-1/K)(2+25/%) 2

x(K):=2- P+ ) (12)

21+ +

is a decreasing function of K with x (1) = 0.

Assume that w(z) = P[f](2) is a harmonic K-quasiconformal mapping of D onto itself
with the boundary function f(e) = 9, satisfying w(0) = 0. In Theorem 3.2 of [9], Par-
tyka and Sakan proved that the following inequalities:

25(1_1<2)/2

/ 3K 51(—7
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hold for a.e. z = e € T. Applying the above inequalities we obtain an upper bound for the
coefficients of a harmonic K-quasiconformal self-mapping w(z) of D satisfying w(0) = 0

as follows:
2 2 16 6K o5-1/K)
|ﬂn| + |bn| SA,,(I() = ﬁ1< 2 . (14)
n’n
Furthermore we show that (9) and (10) are sharp as K — 1.

2 Auxiliary results
Lemmal Let K >1 be a constant. Then the equality

n -1)"'T(1+ 2
/ sin (£) cos(2nt) dt = — (1 yras 1<)1 (15)
0 4% F(1+E—n)I‘(1+E+n)

holds for all nonnegative integer numbers n=0,1,2,....

Lemma 2 Let ¢(t) := | cos %|% + |sin§|%,for any t € [0,27]. Then

max ¢(t) = ga(z) = V2. (16)

0<t<2m 2

Lemma 3 Let w = P[f](z) be a harmonic K-quasiconformal self-mapping of D with the
boundary function f (") = e ®). For every z; = €9, zy = e € T, let 0 = y (s + ) -y (s— ).
Then f(z1) = €°f(z,) and the inequalities

10-10K (312K (4) < i (%) < 92(1-1/K)(1+2°/%) sin?X (¢) (17)

hold for every 0 <s<2m,0<t<m.

Proof According to the quasi-invariance of the harmonic measure (see (1.9) in [1]), we
have

t 0 t
®yxc| cos 5 ) Scos = &g | cos 5 (18)

forevery0 <s<2m,0<t<m,and 0 = y(s+¢t)— y(s—1¢). Since <I>%<(x) + de/K(«/l —x2)=1
holds for every 0 < x <1, this shows that

.t .0 .t
Dk smi §st§CI>K s1n§ . (19)

Using the Hiibner inequalities, (7) and (8), we see that 41"XsX < &k (s) < 4P©1-KgK and

3
UK < Ppe(s) < 403 A-UK) QUK Applying (18), (19), and the above two inequalities, we
have

0 t t
sin’ (§> > 407 (sin 5) Ok <cos 5) > 21000 5jn2K ¢
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and
3 3
sin2(§> < 4(1)%( (siné)d)é (cos %) < 92(1-1/K){2[] cos(§)I2 +] sin(§)|2 ]+1) sin%(t).

By using Lemma 2 we see that

3
tl2
CoSs =

2

.t
sin —

3
2

< V2.
5| =

+

This implies that
10-10K : 2K o0 2(1-1/K)(1+25/%) . 2/K
2 sin“ (¢) < sin 3 <2 sin“'* ()

hold for every 0 <s<2m,0<t<m,and 0 =y (s+¢t)— y(s—?).
This completes the proof. O

3 Main results

Theorem 1 Given K > 1, let w(z) = P[f1(z) = h(z) + g(z) be a harmonic K-quasiconformal
self-mapping of D satisfying w(0) = O with the boundary function f(e") = e”®), where

h(@)=) a2 and gz)= b,Z" (20)
n=1

n=1

are both analytic in D. Then
jar? + b1 = Bi(K),

where B1(K) is given by (9) and satisfies limg_,1+ B1(K) =1. For n > 2,
|l + bal* = Bu(K),

where B, (K) is given by (11) and satisfies lim,,_, o limg_,1+ B,(K) = 0.

Proof Since w(z) = P[f1(2) = Y o) anz" + Yoy buz", using Parseval’s relation (cf. [7]) we
have

1 2 ) o0 ) )
o el +)-r(s=0) go Z(|ﬂn|2€2mt + |bn|2e—2mt)
0 n=1

for arbitrary ¢ € R. Taking real parts, we arrive at the formula
o
1-2J(t) = Xj(lanl2 + |bu|?) cos(2nt), (21)

n=1

where

1 (v —y(s—1)
](t)—ﬁ/o sin <f>ds.
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Since w(z) is a harmonic K-quasiconformal mapping, by Lemma 3 we have
10-10K Gin2K 4y < J(£) < 92(1-1/K)(1+2%/%) sin?X (¢). (22)

Hence (|a,|* +1b,|?) [, cos(2nt)(1+cos(2nt))dt = [, (1-2](£))(1 + cos(2nt)) dt. Using (15)
we also obtain

2 2
|an|” + 1Dyl

2 (n -2 /n](t)(l + cos(2nt)) dt>
0

T

v

2 g
z <7, _ 9. 920-VK)1+25/%) / sint (t)(l + cos(Znt)) dt)
T 0

F(l + 1%) 22(1—1/K)(2+25/4)(_1)nF(l + %)

r2l+L) TA+L-mra+L+n

= 9 _ 920-VK)2+25%)

22(1-1/1<)(2+25/4)(_1)n+11~(1 +2)
K

= x(K) +
x(K) F1l+%-mlA+ % +n)

For n =1, using the formula I'(z + 1) = zI'(z) and simplifying the above result we obtain
the following inequality:

2K°T'(2)

(K +1)r2(2)’

|a1|2 n |b1|2 > Bi(K):=2— 22(1_1/1<)(2+25/4)

By computation we know that B;(K) is a decreasing function of K and satisfies
lim B(K) =1
K—1*

The above estimate is sharp. Consider the conformal mapping w(z) = ez, where x € R is
a real number. Then we have |a;| + |b1| = 1.
For n > 2, we have

F( 1 )_ I'(%) )T (R)

A+ E-m2+t-n)(2-1) (m-1-%)°

g () R e

2(1-1/K)(2+25/%) 2 1
2 * F(1+K)(n—1—1<)! _

PO Dln-1s o

|anl? + |bal* > x (K) +

By calculating we see that x(K) is a decreasing function of K with x(1) = 0. The func-

tion B,,(K) is a continuous function of K with limg_, 1+ B,(K) = mnim This implies that
B,,(K) > 0 holds for all n > 2 and some K > 1.
The proof is completed. d

Remark 1 By computation we obtain

B1(K) 27
s 2
! 42
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for all 1 < K < 1.05174. This shows that under the additional assumption that w is a
K-quasiconformal mapping, the lower bound of the inequality (3) can be improved.

By the definition of the Gamma function we see that I'(-#) = co holds for all nonnega-
tive integer numbers n. According to the proof of Theorem 1 we know that for all n > 2,
limg_ 1+ T (1 + % —n) = 00. Therefore

lim B,(K) =0
K—1*

holds for all # > 2.

Let ¢ = 0 in equation (21). Then we have Y - (|a,|*> + |b,|*) = 1. The sharp coefficient
estimate of 4; and b; shows that if K — 1* then |a;| + |b1|> > B, (K) — 1. This shows that
under the assumptions of Theorem 1 if additionally w(z) is a conformal self-mapping of
D satisfying w(0) = 0, then all the coefficients b, for n > 1 and a, for n > 2 are zeros and
lay| = 1, that is, w(z) = ez for some 6 € R.

Remark 2 In [1] the authors showed that an asymptotically sharp inequality holds for all
zin D. Our Theorem 1, however, gives an estimate at z = 0 only. In this sense, Theorem 1
partly improves the former results.

Theorem 2 shows that #2(|a,|? + |b,|?) is less than or equal to a positive number deter-
mined by K.

Theorem 2 Under the assumption of Theorem 1, the coefficients of w(z) satisfy the follow-
ing inequality:

16
|au)? + |by|> < ——KOKPKVK) 1.0,
nm?

Proof For every z =re? e D,

o0 oo
w(re”) = E a,r"e"™ + E br'e™,
n=1 n=1
hence

1 2 ) )
a,r” = 2—/ w(re’e)e“"e do, n=12,...,
T Jo

1 2

b,r" = o w(reie)eme do, n=12,....
7T Jo

For every n we set a,, = |a,|e", b, = |b,|e’", and 6, = @ntbn Then

2n
2
(|ﬂn| + |bn|)r” = % w(reig)[e_i“”e_i"e + eiﬁ”eing] de‘
0
— i o W(reie)[e—in((%é)n) + ein(9+9y,)] d@‘
2 0
1 21 )
= |- / w(re”) cos n(6 + Qn)de‘.
0
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Integrating by parts we have

2
(Ianl + 1bal)r" = ‘%f wy (re”) sinn(6 + 6,,) do |. (23)
0

In Theorem 2.8 of [10], Kalaj proved that the radial limits of wy and w, exist almost every-

where and
lim w(re‘p) = ()
r—1- 0 B d@

for almost every z = e € T. Here f is the boundary function of w. Hence, letting r — 1~
and using (13), (23) we see that

4](31(25(1(—1/1()/2

1 2 B ] B
|ﬂn|+|bn|§E/(; If'(€”)||sinn(6 +6,)| d6 = —

6K 55(K-1/K)
It shows that |a,|? + |by|* < (|au| + |bal)* < T 5— = A4,(K).

The proof is completed. O
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