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Abstract
The Lebesgue constant is a valuable numerical instrument for linear interpolation
because it provides a measure of how close the interpolant of a function is to the best
polynomial approximant of the function. Moreover, if the interpolant is computed by
using the Lagrange basis, then the Lebesgue constant also expresses the
conditioning of the interpolation problem. In addition, many publications have been
devoted to the search for optimal interpolation points in the sense that these points
lead to a minimal Lebesgue constant for the interpolation problems on the interval
[–1, 1].
In Section 1 we introduce the univariate polynomial interpolation problem, for

which we give two useful error formulas. The conditioning of polynomial
interpolation is discussed in Section 2. A review of some results for the Lebesgue
constants and the behavior of the Lebesgue functions in view of the optimal
interpolation points is given in Section 3.
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1 Introduction
For n ∈N, let

X = {xj : j = , , . . . , n} ()

be a set of n +  distinct interpolation points (or nodes) on the real interval [–, ] such
that

– ≤ x < x < · · · < xn ≤ . ()

Let the function f belong to C([–, ]). When approximating f by an element from a
finite-dimensional Vn = span{φ, . . . ,φn} with φi ∈ C([–, ]) for  ≤ i ≤ n, we know that
there exists at least one element p∗

n ∈ Vn that is closest to f . When using the ‖ · ‖∞ norm,
this element is the unique closest one if the φ, . . . ,φn are a Chebyshev system. Since the
computation of this element is more complicated than that of the interpolant

n∑

i=

αiφi(xj) = f (xj), j = , . . . , n, – ≤ xj ≤ ,
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there is an interest in interpolation points xj that make the interpolation error

∥∥∥∥∥f (x) –
n∑

i=

αiφi(x)

∥∥∥∥∥∞
= max

x∈[–,]

∣∣∣∣∣f (x) –
n∑

i=

αiφi(x)

∣∣∣∣∣

as small as possible. In other words, there is an interest in using interpolating polynomials
that are near-best approximants.

When φi(x) = xi and f is sufficiently differentiable, then for the interpolant

pn(x) =
n∑

i=

αixi

satisfying pn(xj) = f (xj),  ≤ j ≤ n, the error ‖f – pn‖∞ is bounded by [], pp.-

‖f – pn‖∞ ≤ max
x∈[–,]

( |f (n+)(x)|
(n + )!

)
max

x∈[–,]

n∏

j=

|x – xj|. ()

In this study, we call this inequality the first error formula. It is well known that ‖(x –
x) · · · (x – xn)‖∞ is minimal on [–, ] if the xj are the zeroes of the (n + )th-degree Cheby-
shev polynomial Tn+(x) = cos((n + ) arccos x).

The operator that associates with f its interpolant pn is linear and given by

Pn[x, . . . , xn] : C
(
[–, ]

) → Vn : f (x) → pn(x) =
n∑

i=

f (xi)�i(x), ()

where the basic Lagrange polynomials

�i(x) =
n∏

j=,i�=j

x – xj

xi – xj
()

satisfy �i(xj) = δij. So another bound for the interpolation error is given by

‖f – pn‖∞ ≤ (
 + ‖Pn‖

)∥∥f – p∗
n
∥∥∞, ‖Pn‖ = max

x∈[–,]

n∑

i=

∣∣�i(x)
∣∣,

where Pn := Pn[x, . . . , xn] is the linear operator defined by (), and p∗
n is the best uniform

polynomial approximation to f .

2 Lebesgue function and constant
2.1 Definition and properties
Recall from () that

pn(x) =
n∑

i=

f (xi)�i(x),

where pn(x) is the Lagrange form for the polynomial that interpolates f in the interpolation
points x, x, . . . , xn defined by (), and the basic Lagrange polynomials �i(x) are defined by
().
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For a fixed n and given x, . . . , xn, the Lebesgue function is defined by

Ln(x) := Ln(x, . . . , xn; x) =
n∑

i=

∣∣�i(x)
∣∣,

and the Lebesgue constant is defined by

�n := �n(x, . . . , xn) = max
–≤x≤

n∑

i=

∣∣�i(x)
∣∣.

It is clear that both Ln(x) and �n depend on the location of the interpolation points xj (and
also on the degree n) but not on the function values f (xi). Note that the operator norm of
Pn defined by () is equal to the ∞-norm of its Lebesgue function:

‖Pn‖∞ = �n = max
–≤x≤

Ln(x).

Here and in the following, with the set X defined by (), we sometimes write Ln(X; x) :=
Ln(x, . . . , xn; x) and �n(X) := �n(x, . . . , xn) to simplify the notation.

The following present some basic properties of Lebesgue functions for Lagrange inter-
polation (see, e.g., [, ]):

(a) For any set X, with n ≥ , Ln(X; x) is a piecewise polynomial satisfying Ln(X; x) ≥ 
with equality only at the interpolation points xj, j = , . . . , n.

(b) On each subinterval (xj–, xj) for  ≤ j ≤ n, Ln(X; x) has precisely one local maximum,
which is denoted by λj(X). If the endpoints – and + are not interpolation points, that is,
– < x and xn < , then there are two other subintervals and, thus, two other local maxima
that are at –, and +. We denote the latter two local maxima by λ(X) and λn+(X).

(c) The greatest and the smallest local maxima of Ln(X; x) are denoted correspondingly
by Mn(X) and mn(X); we denote by δn(X) the maximum deviation among the local max-
ima δn(X) = Mn(X) – mn(X). We also denote the position of the Lebesgue constant (by
taking one of the greatest local maxima) by x∗(X) for the set of interpolation points X.

(d) The equality Ln(X; x) = Ln(X; –x), x ∈ [–, ], holds if and only if xn–j = –xj, j = , . . . , n.
(e) The Lebesgue constant is invariant under the linear transformation tj = âxj + b̂, j =

, . . . , n (â �= ). Interpolation sets that include the endpoints of the interval as interpolation
points are called canonical interpolation sets. Let X̂ denote a canonical interpolation set.
In particular, we may construct a set X̂ obtained from X by mapping [x, xn] onto [–, ]
by the unique linear transformation ti = âxi + b̂, i = , . . . , n, where â and b̂ are determined
by – = âx + b̂ and  = âxn + b̂. Here the set X̂ is also called the canonicalization of the
set X. We can see that the Lebesgue constant for X̂ is [, ], pp.-

�n(t, . . . , tn) = max
x≤x≤xn

Ln(x, . . . , xn; x) ≤ max
–≤x≤

Ln(x, . . . , xn; x).

We use these properties in the sequel.

2.2 Importance of Lebesgue constants
One motivation for investigating the Lebesgue constant is that another upper bound for
the interpolation error is given by

‖f – pn‖∞ ≤ ( + �n)
∥∥f – p∗

n
∥∥∞, ()
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where p∗
n is the best polynomial approximation to f on [–, ], and therefore �n quantifies

how much larger the interpolation error ‖f – pn‖∞ is compared to the smallest possible
error ‖f – p∗

n‖∞ in the worst case. In this study, we call this inequality the Lebesgue in-
equality or the second error formula.

It is easy to show how to obtain this inequality. From the uniqueness of the interpolat-
ing polynomial we have pn(x) =

∑n
i= f (xi)�i(x) and p∗

n(x) =
∑n

i= p∗
n(xi)�i(x). By subtracting

pn(x) from p∗
n(x) we get

∣∣p∗
n(x) – pn(x)

∣∣ =

∣∣∣∣∣

n∑

i=

p∗
n(xi)�i(x) –

n∑

i=

f (xi)�i(x)

∣∣∣∣∣

=

∣∣∣∣∣

n∑

i=

(
p∗

n(xi) – f (xi)
)
�i(x)

∣∣∣∣∣

≤
n∑

i=

∣∣�i(x)
∣∣ max

i=,...,n

∣∣p∗
n(xi) – f (xi)

∣∣.

From this it follows that (due to Ln(x) =
∑n

i= |�i(x)|)
∥∥p∗

n – pn
∥∥∞ ≤ �n

∥∥f – p∗
n
∥∥∞.

Finally, we have

‖f – pn‖∞ =
∥∥f – p∗

n + p∗
n – pn

∥∥∞

≤ ∥∥f – p∗
n
∥∥∞ +

∥∥p∗
n – pn

∥∥∞

≤ ∥∥f – p∗
n
∥∥∞ + �n

∥∥f – p∗
n
∥∥∞

= ( + �n)
∥∥f – p∗

n
∥∥∞.

As a simple consequence of this inequality, it is obvious that pn → f as the factor �n‖f –
p∗

n‖∞ → . Namely, the Lebesgue inequality indicates that for the interpolation of a fixed
function f on [–, ], convergence can be expected only if f is smooth enough such that
‖f – p∗

n‖∞ decreases, as n → ∞, faster than �n increases.
Another motivation for investigating the Lebesgue constant is that the Lebesgue con-

stant also expresses the conditioning of the polynomial interpolation problem in the La-
grange basis. Let p̃n(x) denote the polynomial interpolant of degree n for the perturbed
function f̃ in the same interpolation points:

p̃n(x) =
n∑

i=

f̃ (xi)�i(x).

Since ‖pn‖∞ ≥ maxi=,...,n |f (xi)|, we have

‖pn – p̃n‖∞
‖pn‖∞

≤ maxx∈[–,]
∑n

i= |f (xi) – f̃ (xi)||�i(x)|
maxi=,...,n |f (xi)|

≤ �n(x, . . . , xn)
maxi=,...,n |f (xi) – f̃ (xi)|

maxi=,...,n |f (xi)| . ()



Ibrahimoglu Journal of Inequalities and Applications  (2016) 2016:93 Page 5 of 15

This indicates that if we are able to choose interpolation points such that �n is small,
then we can find the Lagrange interpolant that is less sensitive to errors in the function
values. For this reason, numerical interpolation in floating-point arithmetic will generally
be useless, even for smooth functions f , whenever the Lebesgue constant �n is larger than
the inverse of the machine precision, which is typically about .

3 Some specific sets of interpolation points
This section gives a summary of some results for particular sets of interpolation points for
which the behavior of the Lebesgue function has been well investigated.

3.1 Equidistant nodes
There are many studies on the behavior of the Lebesgue function corresponding to the set
of equidistant points although this set is a bad choice for polynomial interpolation owing
to the Runge phenomenon.

For the set of equidistant points

E =
{

xj = – +
j
n

, j = , , . . . , n
}

, ()

the Lebesgue constant �n(E) grows exponentially with the asymptotic estimate [, ]

�n(E) 
 n+

en(log n + γ )
, n → ∞, ()

where

γ = lim
n→∞

( n∑

i=


i

– log n

)
= . . . .

is Euler’s constant (or the Euler-Mascheroni constant). Also, an asymptotic expansion that
improves () (with unknown explicit general formula for the series coefficients) is found
in [].

For �n(E), the upper and lower bounds

n–

n < �n(E) <
n+

n
, n ≥ , ()

have been suggested []. In [], an upper bound is given for the smallest local maxima
mn(E):

mn(E) <

π

(
log(n + ) + log  + γ

)
. ()

From () together with () it follows that �n(E) and mn(E) are of different orders of
magnitude, and hence the maximum deviation δn(E) of the local maxima tends to infinity
exponentially fast. As Figure  (left) illustrates, the Lebesgue function Ln(E; x) has wild
oscillations near the endpoints, like the Runge phenomenon in the error curve. The local
maxima of Ln(E; x) decrease strictly from the outside toward the midpoint of the interval
[–, ] []. This behavior suggests that the location of the Lebesgue constant is in the first
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Figure 1 Graphs of L5(E; x) (left), L5(T ; x) (center), L5(T̂ ; x) (right).

Figure 2 6 Chebyshev ( ) and extended
Chebyshev ( ) nodes.

subinterval (or due to symmetry in the last subinterval). Numerical observation shows
that the location of the Lebesgue constant occurs near the midpoint of the last (or first)
subinterval, that is, x∗(E) ≈ (n – )/n for the interval [–, ].

From the Lebesgue inequality () we know that equidistant points with this very fast
growth of the Lebesgue constant give very poor approximations as n increases. Indeed,
numerical experiments show that for degree n ≥ , the Lebesgue constant �n(E) reaches
the inverse of the machine precision.

3.2 Chebyshev nodes of the first kind
The literature describes numerous investigations for the behavior of the Lebesgue function
corresponding to the set of Chebyshev nodes. They are a very good choice of points for
polynomial interpolation, and as it was indicated in Section , they give the smallest upper
bound for the interpolation error of polynomial interpolation. As illustrated in Figure ,
they are obtained by projecting equally spaced points on a semicircle down to the unit
interval [–, ]; see the explicit formula ().

The set of Chebyshev points

T =
{

xj = – cos

(
π


(j + )
(n + )

)
, j = , , . . . , n

}
()

is distributed more densely toward the endpoints of the interval [–, ], as illustrated in
Figure  for n = .

The Lebesgue constant �n(T) for polynomial interpolation grows logarithmically with
the asymptotic expression []

�n(T) =

π

(
log(n + ) + γ + log


π

)
+ αn,  < αn <

π

(n + ) , n ≥ ,
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Figure 3 Graphs of sets of 33 nodes; (∗)T̆ , (�)Ū, (•)T̂ , (◦)T , (×)U, (�)E from top to bottom.

from which the upper and lower bounds


π

log(n + ) + . . . . < �n(T) <

π

log(n + ) + . . . . , n ≥  ()

can be deduced.
For �n(T), an asymptotic series expansion, which is valid for all finite n, is given by

[–]

�n(T) =

π

(
log(n + ) + γ + log


π

)
+

∞∑

v=

Av

(n + )v , n ≥ ,

where the coefficients Av have alternating signs and can be calculated as

Av = (–)v– 
π

 – –v

(π )v (v – )!ζ (v)

⎛

⎝ +
∞∑

j=v+

ζ (j)
()j–

(
j – 
v – 

)⎞

⎠ ,

where

ζ (s) =
∞∑

k=


ks

is the Riemann zeta function.
Using the little-o notation defined by ε(n) = o(e(n)) when ε(n)/e(n) → , n → ∞, Brut-

man showed [] that

mn(T) = �� n
 
(T) + o(), n ≥ ,

from which the lower bound


π

log(n + ) +

π

(
log


π

+ γ

)

︸ ︷︷ ︸
....

< mn(T)

is obtained. Later, this bound was improved [] as follows:


π

(
log(n + ) + log


π

+ γ

)
+

π

(n + ) –
π

,(n + ) < mn(T). ()
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A comparison of () and () shows that the deviation between any two local maxima of
the Lebesgue function Ln(T ; x) does not exceed .. This result was improved in []
to

δn(T) = Mn(T) – mn(T) ≤ 
π

log  = ..

As Figure  (center) suggests, the local maxima of Ln(T ; x) are decreasing strictly from
the outside toward the midpoint of the interval [–, ], which was proven in []. The figure
also shows that the location of the Lebesgue constant occurs at ±, that is, x∗(T) = ± [,
].

We know from the first error formula () that the Chebyshev points are a good choice
for polynomial interpolation. Now, this slow growth of the Lebesgue constant confirms
that they are also a good choice for the second error formula (), which becomes

‖f – pn‖∞ ≤
(


π

log(n + ) + 
)∥∥f – p∗

n
∥∥∞

for the Chebyshev nodes. For example, for n = , the interpolation error based on the
Chebyshev points is

‖f – pn‖∞ ≤ (
. × )∥∥f – p∗

n
∥∥∞,

that is, even in the worst case, the interpolation error ‖f – pn‖∞ is only . times larger
than the smallest possible error. For comparison, if we choose equidistant points for the
same degree, then the upper bound for the interpolation error is

‖f – pn‖∞ ≤ (
. × )∥∥f – p∗

n
∥∥∞.

3.3 Extended Chebyshev nodes
The extended Chebyshev nodes T̂ are defined by

T̂ =
{

xj = – cos

(
π


(j + )
(n + )

)/
cos

(
π

(n + )

)
, j = , , . . . , n

}
,

where the division by cos(π/(n + )) guarantees that x = – and xn = , and the set T̂
is obtained from the set T by the linear transformation that maps [x, xn] onto [–, ].
Therefore, the set T̂ is the canonicalization of the Chebyshev set T (see Figures  and ).

From the monotonicity result for the local maxima of Ln(T ; x) and property (e) given in
Section . [, ],

max
x<x<xn

Ln(x, . . . , xn; x) ≤ max
–≤x≤

Ln(x, . . . , xn; x),

it follows that the Lebesgue constant �n(T̂) is equal to the second local maximum λ(T)
(or λn(T)) [, , ]. By using this characterization, an asymptotic expression for the
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Lebesgue constant for the extended Chebyshev nodes is given by []

�n(T̂) =

π

(
log(n + ) + γ + log


π

)
–


π

+ βn,

 < βn <
.

log((n + )/)
, n ≥ . ()

Hence, we can derive the upper and lower bounds


π

log(n + ) + . . . . < �n(T̂) <

π

log(n + ) + . . . . , n ≥ .

Also, an asymptotic expansion of βn (with unknown explicit general formula for the series
coefficients, in contrast to the Chebysev nodes) can be found in [].

As for the maximum deviation Mn(T̂) – mn(T̂) of the extended Chebyshev nodes, the
following estimate is given []:

δn(T̂) = Mn(T̂) – mn(T̂) ≤ ., n ≥ .

From () together with () it follows that this maximum deviation converges to

lim
n→∞ δn(T̂) = . . . . .

3.4 Chebyshev extrema
The Chebyshev extrema Ū are the zeros of the polynomial ( – x)T ′

n(x) and are given in
explicit form as

Ū =
{

xj = – cos

(
jπ
n

)
, j = , , . . . , n

}
.

The Lebesgue constant �n(Ū) for polynomial interpolation is [, ]

�n(Ū) =

⎧
⎨

⎩
�n–(T), n odd,

�n–(T) – αn,  < αn < 
n , n even.

It is shown in [] that the smallest local maxima mn(Ū) are bounded (in contrast to the
case of the Chebyshev nodes T ) by

mn(Ū) < . . . . .

Thus, as in the case of the set E, �n(Ū) and mn(Ū) are of different orders of magnitude,
and the maximum deviation of the local maxima δn(Ū) tends to infinity logarithmically.

As was proven in [], the local maxima of Ln(Ū ; x) increase strictly monotonically from
the outside toward the midpoint of the interval [–, ]. This behavior suggests that the
Lebesgue function Ln(Ū ; x) achieves its maximum value on the subinterval (xn/, x(n+)/)
(or its mirror) for even degrees and on the subinterval (x(n–)/, x(n+)/) for odd degrees.

Numerical observation indicates that the location of the Lebesgue constant occurs at
x∗(Ū) ≈ π

n (or its mirror) for (large) even degrees and at x∗(Ū) =  for odd degrees.
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3.5 Chebyshev nodes of the second kind
The Chebyshev nodes of the second kind U are the zeros of the (n+)th-degree Chebyshev
polynomial of the second kind

Un+(x) =
sin((n + ) arccos(x))

sin(arccos(x))

and are given in closed form by

U =
{

xj = – cos

(
(j + )π

n + 

)
, j = , , . . . , n

}
.

For the Lebesgue constant, it is known that �n(U) = O(n) [], pp.-. In [], an
exact expression for �n(U) is given by

�n(U) = n + ,

and a lower bound for mn(U) is given by


π

log(n + ) + . . . . < mn(U).

Thus, as in the cases of the sets E and Ū , �n(U) and mn(U) are of different orders of
magnitude. In this case, the maximum deviation of the local maxima δn(U) has a linear
growth.

Note that these interpolation points can be obtained from the zeros of the polynomial
( – x)T ′

n+(x) by deleting the zeros ±. Thus, it follows that the Lebesgue constants are
sensitive to the deletion of the endpoints.

3.6 Fekete nodes
Since the basic Lagrange polynomials �i(x) can be expressed with the quotient of two Van-
dermonde determinants, namely

�i(x) =
|V (x, . . . , xi–, x, xi+, . . . , xn)|

|V (x, . . . , xn)| , V (x, . . . , xi, . . . , xn) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

 x . . . xn


...
...

 xi . . . xn
i

...
...

 xn . . . xn
n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we can expect that the interpolation points maximizing the Vandermonde determinant
|V (x, . . . , xn)| yield a small Lebesgue constant.

This node set is given by

(
 – x)dQn

dx
(x) = 

or, in other words, by x = –, xn = , and x, . . . , xn– the extrema of the nth-order Legendre
polynomial Qn(x) and is known as the Fekete node set. There is no explicit expression for
these nodes.
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For the Lebesgue constant �n(F), we have ‖�i(x)‖∞ ≤  for  ≤ i ≤ n, and thus the cor-
responding Lebesgue constant is bounded by (at most) the dimension of the interpolation
space:

�n(F) = max
–≤x≤

n∑

i=

∣∣�i(x)
∣∣ ≤ n + .

Moreover [], the Fekete points minimize max–≤x≤
∑n

i=(�i(x)), and for these points,
max–≤x≤

∑n
i=(�i(x)) = . From this, by applying the Cauchy-Schwartz inequality,

�n(F) ≤ √
n + .

This upper bound, however, is very pessimistic. In [], an improved upper bound for
�n(F) is given by

�n(F) ≤ c log(n + )

with undetermined positive constant c. In addition [], based on numerical experiments,
the estimate

�n(F) ≤ 
π

log(n + ) + .

was conjectured. Accordingly, this confirms the conjecture in [] that

�n(T̂) < �n(F) < �n(T), n ≥ .

3.7 Optimal nodes
The set of interpolation points is said to be optimal if it minimizes the Lebesgue constant.
We denote the set of optimal nodes by X∗ (or the Lebesgue-optimal point set in [–, ]):

�n
(
X∗) = min

X
�n(X).

Owing to the second error formula () and also formula () (for sensitivity to perturbations
in the function values), it is desirable to minimize the Lebesgue constant. However, the set
of optimal nodes on the interval [–, ] is known explicitly only for degrees less than four
[, ], although their characterization is known from the Bernstein-Erdös conjectures.

In , Bernstein [] conjectured that the greatest local maximum of the Lebesgue
function is minimal when Ln(x) equioscillates, that is,

λ
(
X∗) = λ

(
X∗) = · · · = λn

(
X∗).

Later, Erdös [, ] added to this conjecture that there is a unique canonical set X̂∗ for
which the smallest local maximum achieves its maximum. This is the case where the local
maximum values are equal or, in other words,

mn(X) ≤ mn
(
X∗) = �n

(
X∗) = Mn

(
X∗) ≤Mn(X) for every set X. ()
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These conjectures were proven by Kilgore [, ] and by de Boor and Pinkus []. They
showed that for degree n, the optimal canonical interpolation set is unique, symmetric,
and that its Lebesgue function must necessarily equioscillate. By using these basic prop-
erties of the optimal nodes a numerical procedure based on a nonlinear Remez search and
exchange algorithm is given to compute the optimal nodes for polynomial interpolation
on [–, ] []. Moreover, many authors (see, e.g., [, ]) have investigated (near) optimal
point sets (in different norms) defined by the solutions of certain optimization problems.

The first sharp estimate for the optimal Lebesgue constant is given by Vértesi []. By
constructing the following modification of the Chebyshev nodes asymptotically optimal
upper and lower bounds are given [–], pp.-. Let us denote this set by

T̆ =
{

xj = –
cos( π


(j+)
(n+) )

cos( π
(n+) ( + 

 log(n+) ))
, j = , . . . , n – , xn = –x = 

}
.

The Lebesgue constant �n(T̆) satisfies

c
(

log log(n + )
log(n + )

)

> �n(T̆) –

π

(
log(n + ) + γ + log


π

)

>

{
π

(n+) + O( 
(n+) ), n odd,

– 
π (n+) + O( 

( n + )), n even,

where c is an undetermined positive constant.
An application of the Erdös inequality (), combined with the lower bound for mn(T)

() and the upper bound for �n(T̆), gives

π

(n + ) + O
(


(n + )

)
< �n

(
X∗) –


π

(
log(n + ) + γ + log


π

)

< c
((

log log(n + )
log(n + )

))
.

From this we can deduce that the precise growth formulas for �n(X∗) and �n(T̆) are,
respectively,

�n
(
X∗) =


π

(
log(n + ) + γ + log


π

)
+ o()

and

�n(T̆) =

π

(
log(n + ) + γ + log


π

)
+ o().

Since �n(T̆) and �n(X∗) have the same asymptotic growth, we can conclude that the set
T̆ has asymptotically minimal Lebesgue constants.

At this point, some remarks are useful. From () we can derive a precise growth formula
for �n(T̂):

�n(T̂) =

π

log(n + ) + . + · · · + o().
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Table 1 The values of the maximum deviations and Lebesgue constants for sets T̆ , T̂ , and X∗

n set T̆ set T̂ set X∗

δn(T̆) �n(T̆) δn(T̂) �n(T̂) �n(X∗)

10 0.050 781 2.056 087 0.019 471 2.068 744 2.051 706
20 0.056 995 2.463 129 0.019 340 2.479 193 2.460 788
40 0.061 827 2.887 067 0.018 952 2.904 441 2.885 809

Figure 4 Graphs of L10(T̂ ; x), L10(T̆ ; x), L10(X∗; x) from left to right.

Comparing �n(T̂) and �n(T̆), we can see that the set T̆ is better than the set T̂ in min-
imizing Lebesgue constant. Indeed, numerical results confirm this (see Table  and also
Figure ). The maximum deviation of the nodal set T̆ converges to (see [], ())

lim
n→∞ δn(T̆) = . . . . .

Hence, we conclude that the nodal sets studied in this section can be ordered with re-
spect to their maximum deviation δn(X) = Mn –mn(X) and their Lebesgue constant �n(X)
in the following way:

δn(E) > δn(U) > δn(Ū) > δn(T) > δn(T̆) > δn(T̂) > δn
(
X∗) = 

and

�n(E) > �n(U) > �n(T) > �n(Ū) > �n(F) > �n(T̂) > �n(T̆) > �n
(
X∗).

4 Concluding remarks
In this paper we work with the interval [–, ] although all results on polynomial interpo-
lation may be applied to any finite interval by a linear change of variable.

In view of the optimal interpolation points for the univariate polynomial interpolation,
to our knowledge, both sets T̆ and T̂ , with the position of the points given in explicit form,
are the best nodal sets in the literature. Based on the Bernstein-Erdös conjecture, the nodal
set T̂ is superior than the nodal set T̆ because of its smaller maximum deviation. When
considering the optimality of a nodal set from its Lebesgue constant, the set T̆ is better.

In the multivariate case, the problem of optimal or near optimal interpolation is much
more difficult. The minimal growth of the Lebesgue constant is different for different bi-
variate domains. For instance, on the square, the minimal order of growth is O(ln(n + )),
and this order is achieved for the configurations of interpolation points given in [] and
[]. On the disk, the minimal order of growth is quite different, namely O(

√
n + ), as
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proved in []. No configurations of interpolation points obeying this order of growth are
known. On the simplex, the minimal order of growth is not even known.
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