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PR. China reaction-diffusion equations under Neumann boundary conditions:

W)=V - (@wbk)Vu) +fx,u) inDx(0,T),

=0 ondD x (0,7),

ulx,0) = uplx) >0 in D,

where D ¢ R (N > 2) is a bounded domain with smooth boundary aD. By
constructing auxiliary functions and using maximum principles and a first-order
differential inequality technique, sufficient conditions for the existence of the
blow-up solution, an upper bound for the ‘blow-up time, an upper estimate of the
‘blow-up rate, sufficient conditions for the existence of global solution, and an upper
estimate of the global solution are specified under some appropriate assumptions on
the functions g, b, f, g, and initial value uq.
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1 Introduction
In this paper, we study the blow-up and global solutions for the following nonlinear
reaction-diffusion equations under Neumann boundary conditions:

(gw); =V - (a(u)b(x)Vu) + f(x,u) inD x (0,T),

du-0 on dD x (0,7T), (L1)
u(x,0) = up(x) >0 in D,

where D C RN (N > 2) is a bounded domain with smooth boundary 9D, 3/d# represents
the outward normal derivative on 9D, i is the initial value, T is the maximal existence
time of #, and D is the closure of D. In order to study the blow-up problem of (1.1) by using
maximum principles, we make the following assumptions about the functions 4, b, f, g,
and ug. Set R* := (0, +00). Throughout the paper, we assume that a(s) is a positive C>(R*)
function, b(x) is a positive C'(D) function, f(x,s) is a nonnegative C}(D x R*) function,
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g(s) is a C3(R*) function, g’(s) > 0 for any s € R*, and u(x) is a positive C2(D) function.
Under these assumptions, the classical parabolic equation theory ensures that there exists
a unique classical solution u(x, £) for problem (1.1) with some 7 > 0 and the solution is
positive over D x [0, T). Moreover, by regularity theorem [1], u € C3(D x (0, T)) N C*(D x
(0, 7).

During the past decades, the problems of the blow-up and global solutions for nonlinear
reaction-diffusion equations have received considerable attention. The contributions in
the filed can be found in [2—-8] and the references therein. Many authors discussed the
blow-up and global solutions for nonlinear reaction-diffusion equations under Neumann
boundary conditions and obtained a lot of interesting results; we refer the reader to [9-19].
Some particular cases of (1.1) have been investigated already. Lair and Oxley [20] studied
the following problem:

uy=V-(aw)Vu) + f(u) inD x (0,T),

du-0 on dD x (0,T), (1.2)
u(x,0) = ug(x) >0 in D,

where D is a bounded domain of RV (N > 2) with smooth boundary dD. Necessary and
sufficient conditions characterized by functions a and f were given for the existence of
blow-up and global solutions. Zhang [21] discussed the following problem:

(gw)=Au+f(u) inDx(0,T),
-0 on dD x (0,T), (1.3)

u(x,0) = up(x) >0 inD,

where D is a bounded domain of RN (N > 2) with smooth boundary dD. Sufficient con-
ditions were developed there for the existence of blow-up and global solutions. Ding and
Guo [22] considered the following problem:

(W) =V - -(au)Vu)Au+f(u) inDx(0,T),

=0 on 8D x (0,T), (1.4)
u(x,0) = up(x) >0 inD,

where D is a bounded domain of RN (N > 2) with smooth boundary dD. Sufficient con-
ditions were given there for the existence of blow-up and global solutions. Meanwhile,
an upper bound of the ‘blow-up time, an upper estimate of ‘blow-up rate, and an upper
estimate of the global solution were also obtained.

The object of this paper is the blow-up and global solutions for problem (1.1). Since
the reaction function f(x, %) contains not only the concentration variable # but also the
space variable x, it seems that the methods of [20—22] are not applicable to problem (1.1).
In this paper, we investigate problem (1.1) by constructing auxiliary functions completely
different from those in [20-22] and technically using maximum principles and a first-
order differential inequality technique. We obtain some existence theorems for a blow-up
solution, an upper bound of ‘blow-up time; an upper estimate of ‘blow-up rate, existence
theorems for a global solution, and an upper estimate of the global solution. Our results
can be considered as extensions and supplements of those obtained in [20-22].
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We proceed as follows. In Section 2 we study the blow-up solution of problem (1.1). Sec-
tion 3 is devoted to the global solution of (1.1). A few examples are presented in Section 4
to illustrate the applications of the abstract results.

2 Blow-up solution
Our main result for the blow-up solution is stated in the following theorem.

Theorem 2.1 Let u be a solution of problem (1.1). Assume that the following conditions
(i)-(iv) are satisfied:
(i) foranyse R,

a(s) \’ 1 fas) 17 1 (as)\ 1 )
(g’(s)> =0 [a(s) (g’(s)) +g’(s)] * [a(s) (g/(s)) + g/(s)} >0;  (21)

(i) for any (x,s) € D x R,

(f(x, s)g/(s)> _f(x9)g'(s) > 0; (2.2)
a(s) P a(s)
(iii)
/+OO ‘iss) ds<+00o,  Mjp:=maxup(x); (2:3)
My € D
(iv)
# = min (a(%)b(xiuwo) Hlom) (2.4)
D 0

Then the solution u to problem (1.1) must blow up in a finite T, and

Tl [TEY 25)
:3 Mo e’
ulx,t) <H(B(T -1t)), VY(xt)eDx[0,T), (2.6)
where
H(z):= / - g;(f) ds, z>0, (27)

and H™' is the inverse function of H.
Proof Consider the auxiliary function

U (x, ) := &' (u)u, — Be*. (2.8)
For brevity of notation, we write g in place of g(u), suppressing the symbol u. We find that

VV =g¢"u,Vu +g'Vu, — Be*Vu, (2.9)
AV =g"u|\Vul® +2¢"Vu - Vu;, + g'us Au + g Auy — Be*|Vul?* - Be*Au, (2.10)
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and

W, =g (up)” + g (ue): — Be"uy
b 'b
:g//(ut)z +g/<a—/Au + ﬂ_/|Vu|2 + E/Vb -Vu+ '1/) - Be’u;
g g g g/

/!

/bg//

b
_ g”(ut)z + (ﬂlb - dg? )MtAM +abAu; + (a”b - )Mt|VM|2

/1

ﬂj )ut(Vb -Vu) +a(Vb - Vuy)

+ ( 3 —ﬁi:l - ,Be”) Uy (2.11)
g

It follows from (2.10) and (2.11) that

b b " /b 1! b "
DAv-w, - (“g + gg ”b)zmvm +( a; —2a/b)(vu.vm)

g (2 - b o

< )ut (Vb-Vu)—a(Vb-Vu,) + (Jiﬁ—:/ —fu+/3e")ut. (2.12)

+2a'b(Vu - Vu,) + <a’ -

_ //(ut)Z

By (1.1) we have
Au:g—ut——|V |2——(Vb Vu )—L (2.13)
ab ab

Substituting (2.13) into (2.12), we get

b b " /b " /Zb b /"
ﬂ—,A\II—\IIt: (a % g—a"b+ @) )ut|Vu|2+ <2£—2a/b)(Vu-Vut)
g £ g a £

\2 !/ 1" / "
_9 G) (w)? - “j (Vb Vi) + <—f . u)ut

a

/h u b u u
+<ﬁ“ Ry )|W|2+ﬂi(v19-v”)
g g g

u

(2.14)
In view of (2.9), we have
1 1 u
Vi = =V -4, Vs v, (2.15)
g g g
Substitution of (2.15) into (2.14) results in

ab
—/A\D+|:2b( ) Vu+—Vb] V¥ -y,
g g g

a'b+ -2
g g a @)?

bo'" a'bo’ / Zb b(o" 2
(a Y4 g’ (a) ab(g") )utIVulz
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1 AU ' helt u /\2 /
+(2ﬁ“bge pT g )|Vu|2—@(f) ()’
g a \g&

(g/)Z g/ /
s (ﬂ _fg_/ _fu)uﬁﬁfi/' (2.16)
a g g
With (2.8), we have
1 u
W= =W+ (2.17)
g g

Substituting (2.17) into (2.16), we obtain

b v [2b<ﬁ/>,Vu+ flwy] VU
g g g
1/a\7 a (fg
Ao () oot o g () fo v
el 2] ) 2
a\g) ¢l la\g) ¢ a \g

ae" [ (fg V4
()]

By assumptions (2.1) and (2.2) the right-hand side of (2.18) is nonpositive, that is,

ab al a
g g g

+{ab|:l<ﬁ)]|Vu|2+ a <f§/> }\If—%go inD x (0, 7). (2.19)
a\g @?*\al,

Now by (2.4) we have

min W (x,0) = min{g'(u0)(uo); — B}
D

>

in{V - (a(uo)b(x)Vuo) + f (%, uo) — Be"°}

D

A\ b(x)V )
= min{e”o[ (alu0)b®)Vido) + /(% tho) - ﬂ:” =0. (2.20)
D eto
It follows from (1.1) that
ov , ou ,0u LOou  (0u
L L WL (i D x (0, T). 2.21
on & Mgy 18, TP, 28 G, ) S0 ondDx(0.D) @2.2)

The assumptions concerning the functions a, b, f, g, and 1 in Section 1 imply that we can
use maximum principles to (2.19)-(2.21). Combining (2.19)-(2.21) and applying maximum
principles [23], it follows that the minimum of W in D x [0, T) is zero. Thus, we have

U>0 inDx][0,7T),

that is, the differential inequality

u; > B. (2.22)
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Suppose that xo € D and ug(xo) = M. At the xo, integrate (2.22) over [0, ] to get

t u(xo,t) ,/
/ G f ‘if)ds > Bt, (2.23)
0 M

e’ o e

which implies that # must blow up in finite time. Actually, if u is a global solution of (1.1),
then for any ¢ > 0, it follows from (2.23) that

ds >

My e’ Mo e’

+00 / u(xo,t) ,/
/ £0) TE6) 4o Bt. (2.24)

Letting t — +00 in (2.24) yields

/ g (SS) ds = +00,

Mo €

which contradicts with assumption (2.3). This shows that z must blow up in a finite time
t = T. Furthermore, letting t — T in (2.23), we have

Tsl/ g(s)ds.

ﬁ My e’

Integrating inequality (2.22) over [¢,s] (0 <t < s < T) yields, for each fixed x, that

H(u(x,t)) > H(u(x, 1)) - H(u(x,5)) = /+<>0 ‘iss) ds - /+00 g’_(ss) ds

() © (xs) ©

u(x,s) ./ S 4
:/ <&ds:/ g(u)utdtZﬁ(S—t)~
( ’ ¢ €

u(x,t) € "

Passing to the limit as s — T~ gives
H(u(x, 1)) > B(T - ¢).
Since H is a decreasing function, we have
ulx,t) <H ' (B(T - 1)).
The proof is complete. d

3 Global solution

The following theorem is the main result for the global solution.

Theorem 3.1 Let u be a solution of problem (1.1). Assume that the following conditions
(i)-(iv) are satisfied:
(i) foranyse R,

a(s) / L a(s) /_ 1 /_ L(a(s)>/_ 1 ] '
(g/(s)) =0 [a(s)(g/(5)> g’(s):| [a(s) g'(s) g'(s) =0 (3.1)




Ding Journal of Inequalities and Applications (2016) 2016:86 Page 7 of 11

(ii) for any (x,s) € D x R,

(f (%, s)g’(s)) J@gs) (3.2)
af(s) s a(s)
(iif)
/HXJ (i_ss) ds = +00, mg = min u(x); (3.3)

V - (a(uo)b(x) Vo) + f (x, uo)
max >

a = 0. (3.4)

Then the solution u of (1.1) must be a global solution, and

ux,t) < Gt + G(uo(x, 1)),  V(x,t) €D x R, (3.5)
where
G(z):= /z g/i) ds, z=>my, (3.6)
mg €

and G\ is the inverse function of G.

Proof Construct the auxiliary function
D(x, t) := g ()u, —ae™. (3.7)

By using the same reasoning process with that of (2.9)-(2.18), we have

ab a\’ a
g g g

) e
o)) -2
1).4)

From assumptions (3.1) and (3.2) we see that the right-hand side of (3.8) is nonnegative,
that is,

ab a\’ a
g g g

+{ab|:l<z),]/|Vu|2— a (fg) }d)—d)tzo in D x (0, T). (3.9)
a\g @?*\a/,
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By (3.4) we have
max @ (x,0) = m_ax{g/(uo)(uo)t —ae ™ }
D D

=max{V - (a(uo)b(x) Vo) + f (%, u9) — e ™}
D

= rnax{e”0 |:V - (aluo)b@)Vio) + /(3 o) _ a:| } =0. (3.10)
D e
Repeating the arguments for (2.21), we have
0P
o 0 ondD x (0,7). (3.11)
n

Combining (3.9)-(3.11) and applying the maximum principles again, we get that the max-
imum of ® in D x [0, T) is zero. Hence, we have

®<0 inDx][0,T),

that is, the differential inequality

" <o (3.12)

e—u

For each fixed x € D, integrate (3.12) over [0, ¢] to produce

t ./ u(x,t) ./
f A / g0 4 <ar, (3.13)
0 u

e o) €7

which shows that # must be a global solution. In fact, suppose that u blows up at finite
time T, that is,

lim u(x,t) = +o0.
t—>T-

Passing to the limit as t — T~ in (3.13) gives
/ (i_ss) ds<aT
uo(x) ©

and

+00 ./ ug(x) 7 +00 ./ ug(x) /
/ <wds:/ wds+/ &ds</ g(s)ds+aT<+oo,

my €7 mo e o) €7 ~Jmo e

which is a contradiction. This shows that « is global. Moreover, (3.13) implies that

u(x,t) 7 u(xt) ./ ug(x) 7
/ g6 45 - / £ go [ €Y 4 - Glutw,) - Gluow) < a.

) e—S e—S mo e—S

Since G is an increasing function, we have
u(x,t) < G (at + G(uo(x))).

The proof is complete. d
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4 Applications
When g(u) = u, b(x) =1, and f(x, u) = f(u), problem (1.1) is problem (1.2) studied by Lair
and Oxley [20]. When a(u#) =1, b(x) = 1, and f(x,u) = f(u), problem (1.1) is problem
(1.3) discussed by Zhang [21]. When b(x) =1 and f(x, u) = f(u), problem (1.1) is prob-
lem (1.4) considered by Ding and Guo [22]. In these three cases, the conclusions of The-
orems 2.1 and 3.1 still hold. In this sense, our results extend and supplement the results of
[20-22].

In what follows, we present several examples to demonstrate applications of Theo-
rems 2.1 and 3.1.

Example 4.1 Let u be a solution of the following problem:

(2e2 +u); =V - ((L+e2)(1 + ||x|®)Vu) + 7e* — ||x||> in D x (0, T),

§—Z=0 on dD x (0, T),
u(x,0) =1+ (1 - [lx[*)? in D,

where D = {x = (x1,%2,%3) | [|x]|> = & + x5 + x5 < 1} is the unit ball of R*. Now we have

g(u):2e% +u, a(u)=1+e?, bx) =1+ |x|%,

2
S u) =7¢e" — x|, uo(x) =1+ (1-Jlx]?)".
In order to determine the constant 8, we assume that
s = |«

Then 0 <s<1and

6 = min V - (a(uo)b(x) Vo) + f (%, uo)
ero

ol

— min{ (e 1-0-1%1%? | o=3-30-1x1%2) (_12 4 28]lx!12
nlﬁln{(e +e 272 )( + ”xH )

+ 8 2 30T g 2 (1 1e]2) (1 = flw]2)” + 7 — [l 270117

= min {(e‘l‘(l‘s)2 + e‘%_%(l_s)z)(—u +285s)

0<s<1

+8e 22051 4 5)(1 —5)2 + 7 — se -5 }

It is easy to check that (2.1)-(2.3) hold. By Theorem 2.1, # must blow up in a finite time 7,

and

1 +00 o/ 1 +00 5 1
T <= ‘/. g (S) ds = / et ds = 1.4025,
ﬁ Mo e’ 0.9614 1 e’

1
(V1+0.9614(T — 1) -1)2"

ux,t) <H ' (B(T-1)) =In
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Example 4.2 Let u be a solution of the following problem:

(In(e* —1) —u); =V - (5= 1 + |x]12)Vu) + e (1 + ||x]|?) inD x (0,T),

1
S_Zz() ondD x (0,T),
u(x,0) =1+ @1 - ||x]|?)? inD,

where D = {x = (x1,%2,%3) | [|x]|> = 43 + %3 + x5 < 1} is the unit ball of R. Now we have

g(u) = ln(e” - 1) —u, a(u) = " , b(x) =1+ |x||%

feow =e ™1+ 1x1%),  uolx) =1+ (1-[xl?)".
By setting
5= %,

we have 0 <s <1 and

o V - (a(uo)b(x) Vo) + f (x, uo)

e o

DIE

1

—mind - T(_ 2\ 1+(1=llx)12)? ( 1+ (1= [x2)2
= mﬁm{ (eI RID7 Z1)2 [(-12+28]1x])e (e 1)

— 1602 (1+ [l02) (1 = )2) 222015 o (14 f)?) (et 012 1)2]}

- mi —[(-12 + 285)el 1= (0 1)

21{ (e1+(1—s)2 -1
—16s(1+s5)(1 - s)2e2+2(l’s)2 +(1+s) (e“(l’s)z - 1)2] }

= 27.3116.

Again, it is easy to check that (3.1)-(3.3) hold. By Theorem 3.1, # must be a global solution,
and

u(x,t) < G (at + G(uo(x))) = In[1 + e27‘3116t(e“(l_”"”2)2 -1)].
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