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Abstract
By using weight coefficients, technique of real analysis, and Hermite-Hadamard’s
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1 Introduction
Assuming that p > , 

p + 
q = , am, bn ≥ , a = {am}∞m= ∈ lp, b = {bn}∞n= ∈ lq, ‖a‖p =

(
∑∞

m= ap
m)


p > , and ‖b‖q > , we have the following Hardy-Hilbert inequality with the

best possible constant factor π
sin(π/p) (see [], Theorem ):

∞∑

m=

∞∑

n=

ambn

m + n
<

π

sin(π/p)
‖a‖p‖b‖q. ()

The more accurate and extended inequality of () is given as follows (see [], Theorem 
and []):

∞∑

m=

∞∑

n=

ambn

m + n – α
<

π

sin(π/p)
‖a‖p‖b‖q ( ≤ α ≤ ), ()

where the constant factor π
sin(π/p) is the best possible. Also, we have the following Mulhol-

land inequality similar to () with the same best possible constant factor π
sin(π/p) (see [] or

[], Theorem , replacing am
n , bn

n by am, bn):

∞∑

m=

∞∑

n=

ambn

ln mn
<

π

sin(π/p)

( ∞∑

m=

ap
m

m–p

) 
p
( ∞∑

n=

bq
n

n–q

) 
q

. ()

Inequalities ()-() are important in analysis and its applications (see [, , –]).
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Suppose that μi,υj >  (i, j ∈ N = {, , . . .}) and

Um :=
m∑

i=

μi, Vn :=
n∑

j=

υj (m, n ∈ N). ()

Then we have the following Hardy-Hilbert-type inequality ([], Theorem ):

∞∑

m=

∞∑

n=

μ
/q
m υ

/p
n ambn

Um + Vn
<

π

sin(π/p)
‖a‖p‖b‖q. ()

For μi = υj =  (i, j ∈ N), inequality () reduces to (). Replacing μ
/q
m am and υ

/p
n bn by am

and bn in (), respectively, we obtain the equivalent form of () as follows:

∞∑

m=

∞∑

n=

ambn

Um + Vn
<

π

sin( π
p )

( ∞∑

m=

ap
m

μ
p–
m

) 
p
( ∞∑

n=

bq
n

υ
q–
n

) 
q

. ()

In , Yang [] gave the following extension of (). For  < λ,λ ≤ , λ + λ = λ,
decreasing sequences {μm}∞m= and {υn}∞n=, and U∞ = V∞ = ∞, we have the following in-
equality with the best possible constant factor B(λ,λ):

∞∑

m=

∞∑

n=

ambn

(Um + Vn)λ

< B(λ,λ)

[ ∞∑

m=

Up(–λ)–
m ap

m

μ
p–
m

] 
p
[ ∞∑

n=

V q(–λ–)
n bq

n

υ
q–
n

] 
q

, ()

where B(u, v) is the beta function (see []):

B(u, v) :=
∫ ∞



tu–

( + t)u+v dt (u, v > ). ()

In this paper, by using weight coefficients, technique of real analysis, and the Hermite-
Hadamard inequality, we give a Hardy-Mulholland-type inequality with a best possible
constant factor π

sin(π/p) as follows.
For μ = υ =, decreasing sequences {μm}∞m= and {υn}∞n=, and U∞ = V∞ = ∞, we have

∞∑

m=

∞∑

n=

ambn

ln(UmVn)

<
π

sin(π/p)

[ ∞∑

m=

(
Um

μm+

)p–

ap
m

] 
p
[ ∞∑

n=

(
Vn

υn+

)q–

bq
n

] 
q

, ()

which is an extension of (). So, we have obtained a more accurate and extended inequal-
ity of () with multiparameters and a best possible constant factor B(λ,λ). We also con-
sider the equivalent forms, the reverses, the operator expressions, and some particular
cases.
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2 Some lemmas and an example
In the following, we make appointment that p �= , , 

p + 
q = ,  < λ,λ ≤ , λ + λ = λ,

μi,υj >  (i, j ∈ N), with μ = υ = , Um and Vn are defined by (), 
+ μ


≤ α ≤ , 

+ υ


≤
β ≤ , am, bn ≥ , ‖a‖p,�λ

:= (
∑∞

m= �λ(m)ap
m)


p , and ‖b‖q,�λ

:= (
∑∞

n= �λ(n)bq
n)


q , where

�λ(m) :=
(

Um

μm+

)p–

(lnαUm)p(–λ)– (
m ∈ N\{}),

�λ(n) :=
(

Vn

υn+

)q–

(lnβVn)q(–λ)– (
n ∈ N\{}).

()

Lemma  If a ∈ R, f (x) is continuous in [a – 
 , a + 

 ], and f ′(x) is strictly increasing in the
intervals (a – 

 , a) and (a, a + 
 ) and satisfying

lim
x→a–

f ′(x) = f ′(a – ) ≤ f ′(a + ) = lim
x→a+

f ′(x),

then we have the following Hermite-Hadamard inequality (cf. []):

f (a) <
∫ a+ 



a– 


f (x) dx. ()

Proof Since f ′(a – ) (≤ f ′(a + )) is finite, we define the linear function g(x) as follows:

g(x) := f ′(a – )(x – a) + f (a), x ∈
[

a –



, a +



]

.

Since f ′(x) is strictly increasing in (a – 
 , a), we have that, for x ∈ (a – 

 , a),

(
f (x) – g(x)

)′ = f ′(x) – f ′(a – ) < .

Since f (a) – g(a) = , it follows that f (x) – g(x) > , x ∈ (a – 
 , a). In the same way, we obtain

f (x) – g(x) > , x ∈ (a, a + 
 ). Hence, we find

∫ a+ 


a– 


f (x) dx >
∫ a+ 



a– 


g(x) dx = f (a),

that is, () follows. �

Example  If {μm}∞m= and {υn}∞n= are decreasing, then we define the functions μ(t) := μm,
t ∈ (m – , m] (m ∈ N); υ(t) := υn, t ∈ (n – , n] (n ∈ N), and

U(x) :=
∫ x


μ(t) dt (x ≥ ), V (y) :=

∫ y


υ(t) dt (y ≥ ). ()

Then it follows that U(m) = Um, V (n) = Vn, U(∞) = U∞, V (∞) = V∞, and

U ′(x) = μ(x) = μm, x ∈ (m – , m),

V ′(y) = υ(y) = υn, y ∈ (n – , n) (m, n ∈ N).



Yang and Chen Journal of Inequalities and Applications  (2016) 2016:82 Page 4 of 16

For fixed m, n ∈ N\{}, we also define the function

f (x) :=
lnλ– βV (x)

V (x)(lnαUm + lnβV (x))λ
, x ∈

[

n –



, n +



]

.

Then f (x) is continuous in [n – 
 , n + 

 ]. For x ∈ (n – 
 , n) (n ∈ N\{}), we find

f ′(x) = –
[

lnλ– βV (x)
V (x)

+
λ lnλ– βV (x)

lnαUm + lnβV (x)
+

 – λ

V –λ (x)

]

× υn

V (x)(lnαUm + lnβV (x))λ
.

Since  – λ ≥ , it follows that f ′(x) (< ) is strictly increasing in (n – 
 , n) and

lim
x→n–

f ′(x) = f ′(n – )

= –
[

lnλ– βVn

Vn
+

λ lnλ– βVn

lnαUm + lnβVn
+

 – λ

V –λ
n

]

× υn

Vn(lnαUm + lnβVn)λ
.

In the same way, for x ∈ (n, n + 
 ) (n ∈ N\{}), we find

f ′(x) = –
[

lnλ– βV (x)
V (x)

+
λ lnλ– βV (x)

lnαUm + lnβV (x)
+

 – λ

V –λ (x)

]

× υn+

V (x)(lnαUm + lnβV (x))λ
,

so that f ′(x) (< ) is strict increasing in (n, n + 
 ). In view of υn+ ≤ υn, it follows that

lim
x→n+

f ′(x) = f ′(n + ) ≥ f ′(n – ).

Then by (), for m, n ∈ N\{}, we have

f (n) <
∫ n+ 



n– 


f (x) dx =
∫ n+ 



n– 


lnλ– βV (x)
V (x)(lnαUm + lnβV (x))λ

dx. ()

Definition  Define the following weight coefficients:

ω(λ, m) :=
∞∑

n=


lnλ(αβUmVn)

υn+ lnλ αUm

Vn ln–λ βVn
, m ∈ N\{}, ()


 (λ, n) :=
∞∑

m=


lnλ(αβUmVn)

μm+ lnλ βVn

Um ln–λ αUm
, n ∈ N\{}. ()

Lemma  If {μm}∞m= and {υn}∞n= are decreasing and U∞ = V∞ = ∞, then for m, n ∈ N\{},
we have the following inequalities:

ω(λ, m) < B(λ,λ) ( < λ ≤ ,λ > ), ()


 (λ, n) < B(λ,λ) ( < λ ≤ ,λ > ). ()
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Proof For x ∈ (n – 
 , n + 

 )\{n}, υn+ ≤ V ′(x), by () we find

ω(λ, m) <
∞∑

n=

υn+

∫ n+ 


n– 


lnλ αUm lnλ– βV (x)
V (x)(lnαUm + lnβV (x))λ

dx

≤
∞∑

n=

∫ n+ 


n– 


lnλ αUm lnλ– βV (x)
(lnαUm + lnβV (x))λ

V ′(x)
V (x)

dx

=
∫ ∞




lnλ αUm lnλ– βV (x)
(lnαUm + lnβV (x))λ

V ′(x)
V (x)

dx.

Setting t = lnβV (x)
lnαUm

, since βV ( 
 ) = β( + υ

 ) ≥  and V ′(x)
V (x) dx = (lnαUm) dt, we find

ω(λ, m) <
∫ ∞




( + t)λ

tλ– dt = B(λ,λ).

Hence, we obtain (). In the same way, we obtain (). �

Note For example, μn,υn = 
nσ ( ≤ σ ≤ ) satisfy the conditions of Lemma .

Lemma  With the assumptions of Lemma , (i) for m, n ∈ N\{}, we have

B(λ,λ)
(
 – θ (λ, m)

)
< ω(λ, m) ( < λ ≤ ,λ > ), ()

B(λ,λ)
(
 – ϑ(λ, n)

)
< 
 (λ, n) ( < λ ≤ ,λ > ), ()

where

θ (λ, m) =


B(λ,λ)
lnλ β( + υ)

λ[ + lnβ(+θ (m)υ)
lnαUm

]λ


lnλ αUm

= O
(


lnλ αUm

)

∈ (, )
(

θ (m) ∈
(

 – β

βυ
, 

))

, ()

ϑ(λ, n) =


B(λ,λ)
lnλ α( + μ)

λ[ + lnα(+ϑ(n)μ)
lnβVn

]λ


lnλ βVn

= O
(


lnλ βVn

)

∈ (, )
(

ϑ(n) ∈
(

 – α

αμ
, 

))

; ()

(ii) for any c > , we have

∞∑

m=

μm+

Um ln+c αUm
=


c

(


lnc α( + μ)
+ cO()

)

, ()

∞∑

n=

υn+

Vn ln+c βVn
=


c

(


lnc β( + υ)
+ cÕ()

)

. ()
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Proof In view of β ≤  and β ≥ 
+υ/ > 

+υ
, it follows that  ≤ –β

βυ
+  < . Since, by

Example , f (x) is strictly decreasing in [n, n + ], for m ∈ N\{}, we find

ω(λ, m) >
∞∑

n=

∫ n+

n
υn+

lnλ αUm lnλ– βV (x)
V (x)(lnαUm + lnβV (x))λ

dx

=
∫ ∞



lnλ αUm lnλ– βV (x)
(lnαUm + lnβV (x))λ

V ′(x)
V (x)

dx

=
∫ ∞

–β
βυ

+

lnλ αUm lnλ– βV (x)
(lnαUm + lnβV (x))λ

V ′(x)
V (x)

dx

–
∫ 

–β
βυ

+

lnλ αUm lnλ– βV (x)
(lnαUm + lnβV (x))λ

V ′(x)
V (x)

dx.

Setting t = lnβV (x)
lnαUm

, we have lnβV ( –β

βυ
+ ) = lnβ( + –β

βυ
υ) =  and

ω(λ, m) >
∫ ∞




( + t)λ

tλ– dt

–
∫ 

–β
βυ

+

lnλ αUm lnλ– βV (x)
(lnαUm + lnβV (x))λ

V ′(x)
V (x)

dx

= B(λ,λ)
(
 – θ (λ, m)

)
,

where

θ (λ, m) :=


B(λ,λ)

∫ 

–β
βυ

+

lnλ αUm lnλ– βV (x)
(lnαUm + lnβV (x))λ

V ′(x)
V (x)

dx

∈ (, ).

There exists θ (m) ∈ ( –β

βυ
, ) such that

θ (λ, m) =


B(λ,λ)
lnλ αUm

(lnαUm + lnβV ( + θ (m)))λ

×
∫ 

–β
βυ

+
lnλ– βV (x)

V ′(x)
V (x)

dx

=


B(λ,λ)
lnλ αUm lnλ β( + υ)

λ(lnαUm + lnβV ( + θ (m)))λ

=


B(λ,λ)
lnλ β( + υ)

λ[ + lnβ(+θ (m)υ)
lnαUm

]λ


lnλ αUm
.

Since we find

 < θ (λ, m) ≤ lnλ β( + υ)
λB(λ,λ)


lnλ αUm

,

namely, θ (λ, m) = O( 
lnλ αUm

), we obtain () and (). In the same way, we obtain ()
and ().
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For any c > , we find

∞∑

m=

μm+

Um ln+c αUm
≤

∞∑

m=

μm

Um ln+c αUm

=
μ

U ln+c αU
+

∞∑

m=

μm

Um ln+c αUm

=
μ

U ln+c αU
+

∞∑

m=

∫ m

m–

U ′(x)
Um ln+c αUm

dx

<
μ

U ln+c αU
+

∞∑

m=

∫ m

m–

U ′(x)
U(x) ln+c αU(x)

dx

=
μ

U ln+c αU
+

∫ ∞



U ′(x)
U(x) ln+c αU(x)

dx

=
μ

U ln+c αU
+


c lnc α( + μ)

=

c

[


lnc α( + μ)
+ c

μ

U ln+c αU

]

,

∞∑

m=

μm+

Um ln+c αUm
=

∞∑

m=

∫ m+

m

U ′(x) dx
Um ln+c αUm

>
∞∑

m=

∫ m+

m

U ′(x)
U(x) ln+c αU(x)

dx

=
∫ ∞



U ′(x) dx
U(x) ln+c αU(x)

=

c


lnc α( + μ)

.

Hence, we obtain (). In the same way, we obtain (). �

3 Main results and operator expressions
In the following, we also set

�̃λ(m) := ω(λ, m)
(

Um

μm+

)p–

(lnαUm)p(–λ)–,

�̃λ(n) := 
 (λ, n)
(

Vn

υn+

)q–

(lnβVn)q(–λ)– (
m, n ∈ N\{}).

()

Theorem  (i) For p > , we have the following equivalent inequalities:

I :=
∞∑

n=

∞∑

m=

ambn

lnλ(αβUmVn)
≤ ‖a‖p,�̃λ

‖b‖q,�̃λ
, ()

J :=

{ ∞∑

n=

υn+ lnpλ– βVn

(
 (λ, n))p–Vn

[ ∞∑

m=

am

lnλ(αβUmVn)

]p} 
p

≤ ‖a‖p,�̃λ
; ()

(ii) for  < p <  (or p < ), we have the equivalent reverses of () and ().
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Proof (i) By Hölder’s inequality with weight (see []) and () we have
[ ∞∑

m=

am

lnλ(αβUmVn)

]p

=

[ ∞∑

m=


lnλ(αβUmVn)

(
U/q

m (lnαUm)(–λ)/qυ
/p
n+

(lnβVn)(–λ)/pμ
/q
m+

am

)(
(lnβVn)(–λ)/pμ

/q
m+

U/q
m (lnαUm)(–λ)/qυ

/p
n+

)]p

≤
∞∑

m=


lnλ(αβUmVn)

Up–
m (lnαUm)(–λ)p/qυn+

(lnβVn)–λμ
p/q
m+

ap
m

×
[ ∞∑

m=


lnλ(αβUmVn)

(lnβVn)(–λ)(q–)μm

Um(lnαUm)–λυ
q–
n+

]p–

=
(
 (λ, n))p–Vn

(lnβVn)pλ–υn+

∞∑

m=

υn+Up–
m (lnαUm)(–λ)(p–)ap

m

Vn lnλ(αβUmVn)(lnβVn)–λμ
p–
m+

. ()

Then by () we find

J ≤
[ ∞∑

n=

∞∑

m=

υn+

lnλ(αβUmVn)
Up–

m (lnαUm)(–λ)(p–)

Vn(lnβVn)–λμ
p–
m+

ap
m

] 
p

=

[ ∞∑

m=

∞∑

n=

υn+(lnαUm)λ

lnλ(αβUmVn)
Up–

m (lnαUm)p(–λ)–

Vn(lnβVn)–λμ
p–
m+

ap
m

] 
p

=

[ ∞∑

m=

ω(λ, m)
(

Um

μm+

)p–

(lnαUm)p(–λ)–ap
m

] 
p

, ()

and then () follows.
By Hölder’s inequality we have

I =
∞∑

n=

[
(lnβVn)λ– 

p υ
/p
n+

(
 (λ, n))

q V /p

n

∞∑

m=

am

lnλ(αβUmVn)

]

×
[
(

 (λ, n)

) 
q (lnβVn)


p –λ

V –/p
n υ

/p
n+

bn

]

≤ J‖b‖q,�̃λ
. ()

Then by () we have ().
On the other hand, assuming that () is valid, we set

bn :=
(lnβVn)pλ–υn+

(
 (λ, n))p–Vn

[ ∞∑

m=

am

lnλ(αβUmVn)

]p–

, n ∈ N\{}. ()

Then we find Jp = ‖b‖q
q,�̃λ

. If J = , then () is trivially valid; if J = ∞, then by (), ()
takes the form of equality. Suppose that  < J < ∞. By () it follows that

‖b‖q
q,�̃λ

= Jp = I ≤ ‖a‖p,�̃λ
‖b‖q,�̃λ

, ()

‖b‖q–
q,�̃λ

= J ≤ ‖a‖p,�̃λ
, ()

and then () follows, which is equivalent to ().
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(ii) For  < p <  (or p < ), by the reverse Hölder inequality with weight and (), we
obtain the reverse of () (or ()), then we have the reverse of (), and then the reverse
of () follows. By Hölder’s inequality we have the reverse of (), and then by the reverse
of () the reverse of () follows.

On the other hand, assuming that the reverse of () is valid, we set bn as in (). Then
we find Jp = ‖b‖q

q,�̃λ
. If J = ∞, then the reverse of () is trivially valid; if J = , then by

the reverse of (), () takes the form of equality (= ). Suppose that  < J < ∞. By the
reverse of () it follows that the reverses of () and () are valid, and then the reverse
of () follows, which is equivalent to the reverse of (). �

Theorem  If p > , {μm}∞m= and {υn}∞n= are decreasing, U∞ = V∞ = ∞, ‖a‖p,�λ
∈ R+, and

‖b‖q,�λ
∈ R+, then we have the following equivalent inequalities:

∞∑

n=

∞∑

m=

ambn

lnλ(αβUmVn)
< B(λ,λ)‖a‖p,�λ

‖b‖q,�λ
, ()

J :=

{ ∞∑

n=

υn+

Vn
lnpλ– βVn

[ ∞∑

m=

am

lnλ(αβUmVn)

]p} 
p

< B(λ,λ)‖a‖p,�λ
, ()

where the constant factor B(λ,λ) is the best possible.

Proof Using () and () in () and (), we obtain equivalent inequalities () and ().
For ε ∈ (, pλ), we set λ̃ = λ – ε

p (∈ (, )), λ̃ = λ + ε
p (> ), and

ãm :=
μm+

Um
lnλ̃– αUm =

μm+

Um
lnλ– ε

p –
αUm,

b̃n =
υn+

Vn
lnλ̃–ε– βVn =

υn+

Vn
lnλ– ε

q –
βVn.

()

Then by (), (), and () we have

‖ã‖p,�λ
‖b̃‖q,�λ

=

( ∞∑

m=

μm+

Um ln+ε αUm

) 
p
( ∞∑

n=

υn+

Vn ln+ε βVn

) 
q

=

ε

[


lnε α( + μ)
+ εO()

] 
p
[


lnε β( + υ)

+ εÕ()
] 

q
,

Ĩ :=
∞∑

n=

∞∑

m=

ãmb̃n

lnλ(αβUmVn)
=

∞∑

n=

[ ∞∑

m=


lnλ(αβUmVn)

μm+ lnλ̃ βVn

Um ln–λ̃ αUm

]
υn+

Vn lnε+ βVn

=
∞∑

n=


 (λ̃, n)
υn+

Vn lnε+ βVn
≥ B(λ̃, λ̃)

∞∑

n=

(

 – O
(


lnλ̃ βVn

))
υn+

Vn lnε+ βVn

= B(λ̃, λ̃)

[ ∞∑

n=

υn+

Vn lnε+ βVn
–

∞∑

n=

O
(

υn+

Vn(lnβVn)( ε
q +λ)+

)]

=

ε

B(λ̃, λ̃)
[


lnε β( + υ)

+ ε
(
Õ() – O()

)
]

.
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If there exists a positive constant K ≤ B(λ,λ) such that () is valid when replacing
B(λ,λ) by K , then, in particular, we have εĨ < εK‖ã‖p,�λ

‖b̃‖q,�λ
, namely

B
(

λ –
ε

p
,λ +

ε

p

)[


lnε β( + υ)
+ ε

(
Õ() – O()

)
]

< K
[


lnε α( + μ)

+ εO()
] 

p
[


lnε β( + υ)

+ εÕ()
] 

q
.

It follows that B(λ,λ) ≤ K (ε → +). Hence, K = B(λ,λ) is the best possible constant
factor of ().

Similarly to (), we still can find the following inequality:

I ≤ J‖b‖q,�λ
. ()

Hence, we can prove that the constant factor B(λ,λ) in () is the best possible. Other-
wise, we would reach a contradiction by () that the constant factor in () is not the best
possible. �

Remark  (i) For α = β =  in () and (), setting

ϕλ(m) :=
(

Um

μm+

)p–

(ln Um)p(–λ)–,

ψλ(n) :=
(

Vn

υn+

)q–

(ln Vn)q(–λ)– (
m, n ∈ N\{}),

we have the following equivalent Mulholland-type inequalities:

∞∑

n=

∞∑

m=

ambn

lnλ(UmVn)
< B(λ,λ)‖a‖p,ϕλ

‖b‖q,ψλ
, ()

{ ∞∑

n=

υn+

Vn
lnpλ– Vn

[ ∞∑

m=

am

lnλ(UmVn)

]p} 
p

< B(λ,λ)‖a‖p,ϕλ
, ()

which are extensions of (), and the following inequality:

{ ∞∑

n=

υn+

Vn

[ ∞∑

m=

am

ln(UmVn)

]p} 
p

<
π

sin( π
p )

[ ∞∑

m=

(
Um

μm+

)p–

ap
m

] 
p

. ()

(ii) For μi = υj =  (i, j ∈ N), λ = , λ = 
q , λ = 

p , () reduces to the following more
accurate and extended Mulholland’s inequality:

∞∑

m=

∞∑

n=

ambn

ln(αβmn)
<

π

sin(π/p)

( ∞∑

m=

ap
m

m–p

) 
p
( ∞∑

n=

bq
n

n–q

) 
q

, ()

where 
 ≤ α,β ≤ .
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For p > , �–p
λ (n) = υn+

Vn
(lnβVn)pλ–, we define the following normed spaces:

lp,�λ
:=

{
a = {am}∞m=;‖a‖p,�λ

< ∞}
,

lq,�λ
:=

{
b = {bn}∞n=;‖b‖q,�λ

< ∞}
,

lp,�–p
λ

:=
{

c = {cn}∞n=;‖c‖p,�–p
λ

< ∞}
.

Assuming that a = {am}∞m= ∈ lp,�λ
and setting

c = {cn}∞n=, cn :=
∞∑

m=

am

lnλ(αβUmVn)
, n ∈ N\{},

we can rewrite () as follows:

‖c‖p,�–p
λ

< B(λ,λ)‖a‖p,�λ
< ∞,

that is, c ∈ lp,�–p
λ

.

Definition  Define the Mulholland-type operator T : lp,�λ
→ lp,�–p

λ

as follows: For any
a = {am}∞m= ∈ lp,�λ

, there exists a unique representation Ta = c ∈ lp,�–p
λ

. Define the formal
inner product of Ta and b = {bn}∞n= ∈ lq,�λ

as follows:

(Ta, b) :=
∞∑

n=

[ ∞∑

m=

am

lnλ(αβUmVn)

]

bn. ()

Then we can rewrite () and () as follows:

(Ta, b) < B(λ,λ)‖a‖p,�λ
‖b‖q,�λ

, ()

‖Ta‖p,�–p
λ

< B(λ,λ)‖a‖p,�λ
. ()

Define the norm of the operator T as follows:

‖T‖ := sup
a ( �=θ )∈lp,�λ

‖Ta‖p,�–p
λ

‖a‖p,�λ

.

Then by () we find ‖T‖ ≤ B(λ,λ). Since the constant factor in () is the best possible,
we have

‖T‖ = B(λ,λ). ()

4 Some reverses
In the following, we also set

�̃λ(m) :=
(
 – θ (λ, m)

)
(

Um

μm+

)p–

(lnαUm)p(–λ)–,

�̃λ(n) :=
(
 – ϑ(λ, n)

)
(

Vn

υn+

)q–

(lnβVn)q(–λ)– (
m, n ∈ N\{}).

()



Yang and Chen Journal of Inequalities and Applications  (2016) 2016:82 Page 12 of 16

For  < p <  or p < , we still use the formal symbols ‖a‖p,�λ
, ‖b‖q,�λ

, ‖a‖p,�̃λ
, and ‖b‖q,�̃λ

,
and so on.

Theorem  If  < p < , {μm}∞m= and {υn}∞n= are decreasing, U∞ = V∞ = ∞, ‖a‖p,�λ
∈ R+,

and ‖b‖q,�λ
∈ R+, then we have the following equivalent inequalities with the best possible

constant factor B(λ,λ):

∞∑

n=

∞∑

m=

ambn

lnλ(αβUmVn)
> B(λ,λ)‖a‖p,�̃λ

‖b‖q,�λ
, ()

{ ∞∑

n=

υn+

Vn
lnpλ– βVn

[ ∞∑

m=

am

lnλ(αβUmVn)

]p} 
p

> B(λ,λ)‖a‖p,�̃λ
. ()

Proof Using () and () in the reverses of () and (), since

(
ω(λ, m)

) 
p >

(
B(λ,λ)

) 
p
(
 – θ (λ, m)

) 
p ( < p < ),

(

 (λ, n)

) 
q >

(
B(λ,λ)

) 
q (q < ),

and


(B(λ,λ))p– >


(
 (λ, n))p– ( < p < ),

we obtain equivalent inequalities () and ().
For ε ∈ (, pλ), we set λ̃, λ̃, ãm, and b̃n as in (). Then by (), (), and () we find

‖a‖p,�̃λ
‖b‖q,�λ

=

[ ∞∑

m=

( – θ (λ, m))μm+

Um ln+ε αUm

] 
p
( ∞∑

n=

υn+

Vn ln+ε βVn

) 
q

=

( ∞∑

m=

μm+

Um ln+ε αUm
–

∞∑

m=

O
(

μm+

Um ln+λ+ε αUm

)) 
p

×
( ∞∑

n=

υn+

Vn ln+ε βVn

) 
q

=

ε

[


lnε α( + μ)
+ ε

(
O() – O()

)
] 

p
[


lnε β( + υ)

+ εÕ()
] 

q
,

Ĩ :=
∞∑

n=

∞∑

m=

ãmb̃n

lnλ(αβUmVn)

=
∞∑

n=

[ ∞∑

m=


lnλ(αβUmVn)

μm+ lnλ̃ βVn

Um ln–λ̃ αUm

]
υn+

Vn lnε+ βVn

=
∞∑

n=


 (λ̃, n)
υn+

Vn lnε+ βVn
≤ B(λ̃, λ̃)

∞∑

n=

υn+

Vn lnε+ βVn

=

ε

B(λ̃, λ̃)
[


lnε β( + υ)

+ εÕ()
]

.
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If there exists a positive constant K ≥ B(λ,λ) such that () is valid when replacing
B(λ,λ) by K , then, in particular, we have εĨ > εK‖ã‖p,�̃λ

‖b̃‖q,�λ
, namely

B
(

λ –
ε

p
,λ +

ε

p

)[


lnε β( + υ)
+ εÕ()

]

> K
[


lnε α( + μ)

+ ε
(
O() – O()

)
] 

p

×
[


lnε β( + υ)

+ εÕ()
] 

q
.

It follows that B(λ,λ) ≥ K (ε → +). Hence, K = B(λ,λ) is the best possible constant
factor of ().

The constant factor B(λ,λ) in () is still the best possible. Otherwise, we would reach
a contradiction by the reverse of () that the constant factor in () is not the best pos-
sible. �

Remark  For α = β = , setting

θ̃ (λ, m) =


B(λ,λ)
lnλ ( + υ)

λ[ + ln(+θ (m)υ)
ln Um

]λ


lnλ Um

= O
(


lnλ Um

)

∈ (, )
(
θ (m) ∈ (, )

)
,

ϕ̃λ(m) :=
(
 – θ̃ (λ, m)

)
(

Um

μm+

)p–

(ln Um)p(–λ)–,

it is evident that () and () are extensions of the following equivalent inequalities:

∞∑

n=

∞∑

m=

ambn

lnλ(UmVn)
> B(λ,λ)‖a‖p,ϕ̃λ

‖b‖q,ψλ
, ()

{ ∞∑

n=

υn+

Vn
lnpλ– Vn

[ ∞∑

m=

am

lnλ(UmVn)

]p} 
p

> B(λ,λ)‖a‖p,ϕ̃λ
, ()

where the constant factor B(λ,λ) is still the best possible.

Theorem  If p < , {μm}∞m= and {υn}∞n= are decreasing, U∞ = V∞ = ∞, ‖a‖p,�λ
∈ R+,

and ‖b‖q,�λ
∈ R+, then we have the following equivalent inequalities with the best possible

constant factor B(λ,λ):

∞∑

n=

∞∑

m=

ambn

lnλ(αβUmVn)
> B(λ,λ)‖a‖p,�λ

‖b‖q,�̃λ
, ()

J :=

{ ∞∑

n=

υn+ lnpλ– βVn

( – ϑ(λ, n))p–Vn

[ ∞∑

m=

am

lnλ(αβUmVn)

]p} 
p

> B(λ,λ)‖a‖p,�λ
. ()
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Proof Using () and () in the reverses of () and (), since

(
ω(λ, m)

) 
p >

(
B(λ,λ)

) 
p (p < ),

(

 (λ, n)

) 
q >

(
B(λ,λ)

) 
q
(
 – ϑ(λ, n)

) 
q ( < q < ),

and

[


(B(λ,λ))p–( – ϑ(λ, n))p–

] 
p

>
[


(
 (λ, n))p–

] 
p

(p < ),

we obtain equivalent inequalities () and ().
For ε ∈ (, qλ), we set λ̃ = λ + ε

q (> ), λ̃ = λ – ε
q (∈ (, )), and

ãm :=
μm+

Um
lnλ̃–ε– αUm =

μm+

Um
lnλ– ε

p –
αUm,

b̃n =
υn+

Vn
lnλ̃– βVn =

υn+

Vn
lnλ– ε

q –
βVn.

Then by (), (), and () we have

‖ã‖p,�λ
‖b̃‖q,�̃λ

=

( ∞∑

m=

μm+

Um lnε+ αUm

) 
p
[ ∞∑

n=

( – ϑ(λ, n))υn+

Vn lnε+ βVn

] 
q

=

( ∞∑

m=

μm+

Um lnε+ αUm

) 
p

×
[ ∞∑

n=

υn+

Vn lnε+ βVn
–

∞∑

n=

O
(

υn+

Vn ln+(λ+ε) βVn

)] 
q

=

ε

[


lnε α( + μ)
+ εO()

] 
p

×
[


lnε β( + υ)

+ ε
(
Õ() – O()

)
] 

q
,

Ĩ =
∞∑

m=

∞∑

n=

ãmb̃n

lnλ(αβUmVn)

=
∞∑

m=

[ ∞∑

n=

lnλ̃ αUm

lnλ(αβUmVn)
υn+

Vn
lnλ̃– βVn

]
μm+

Um lnε+ αUm

=
∞∑

m=

ω(λ̃, m)
μm+

Um lnε+ αUm

≤ B(λ̃, λ̃)
∞∑

n=

μm+

Um lnε+ αUm

=

ε

B(λ̃, λ̃)
[


lnε α( + μ)

+ εO()
]

.
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If there exists a positive constant K ≥ B(λ,λ) such that () is valid when replacing
B(λ,λ) by K , then, in particular, we have εĨ > εK‖ã‖p,�λ

‖b̃‖q,�̃λ
, namely

B
(

λ +
ε

q
,λ –

ε

q

)[


lnε α( + μ)
+ εO()

]

> K
[


lnε α( + μ)

+ εO()
] 

p

×
[


lnε β( + υ)

+ ε
(
Õ() – O()

)
] 

q
.

It follows that B(λ,λ) ≥ K (ε → +). Hence, K = B(λ,λ) is the best possible constant
factor of ().

Similarly to the reverse of (), we still can find that

I ≥ J‖b‖q,�̃λ
. ()

Hence, the constant factor B(λ,λ) in () is still the best possible. Otherwise, we would
reach a contradiction by () that the constant factor in () is not the best possible. �

Remark  For α = β = , setting

ϑ̃(λ, n) =


B(λ,λ)
lnλ ( + μ)

λ[ + ln(+ϑ(n)μ)
ln Vn

]λ


lnλ Vn

= O
(


lnλ Vn

)

∈ (, )
(
ϑ(n) ∈ (, )

)
,

ψ̃λ(n) :=
(
 – ϑ̃(λ, n)

)
(

Vn

υn+

)q–

(ln Vn)q(–λ)–,

it is evident that () and () are extensions of the following equivalent inequalities:

∞∑

n=

∞∑

m=

ambn

lnλ(UmVn)
> B(λ,λ)‖a‖p,ϕλ

‖b‖q,ψ̃λ
, ()

{ ∞∑

n=

υn+ lnpλ– Vn

( – ϑ̃(λ, n))p–Vn

[ ∞∑

m=

am

lnλ(UmVn)

]p} 
p

> B(λ,λ)‖a‖p,ϕλ
, ()

where the constant factor B(λ,λ) is still the best possible.
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