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Abstract

In this paper we prove several fractional quantum integral inequalities for the new
g-shifting operator ,®4(m) = gm + (1 - g)a introduced in Tariboon et al. (Adv. Differ.
Equ. 2015:18, 2015), such as: the g-Holder inequality, the g-Hermite-Hadamard
inequality, the g-Cauchy-Bunyakovsky-Schawrz integral inequality, the g-Griss
integral inequality, the g-Griiss-Cebysev integral inequality, and the g-Pélya-Szegd
integral inequality.
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1 Introduction

The quantum calculus is known as the calculus without limits. It substitutes the classi-
cal derivative by a difference operator, which allows one to deal with sets of nondiffer-
entiable functions. Quantum difference operators have an interesting role due to their
applications in several mathematical areas, such as orthogonal polynomials, basic hyper-
geometric functions, combinatorics, the calculus of variations, mechanics, and the theory
of relativity. The book by Kac and Cheung [2] covers many of the fundamental aspects of
quantum calculus.

In recent years, the topic of g-calculus has attracted the attention of several researchers
and a variety of new results can be found in the papers [3-15] and the references cited
therein.

In [16] the notions of gi-derivative and gi-integral of a continuous function f :
[t tk+1] — R, have been introduced and their basic properties were proved. As appli-
cations existence and uniqueness results for initial value problems of first and second or-
der impulsive g,-difference equations were investigated. The g-calculus analogs of some
classical integral inequalities, such as Holder, Hermite-Hadamard, Trapezoid, Ostrowski,
Cauchy-Bunyakovsky-Schwarz, Griiss and Griiss-Cebysev were established in [17]. For
recent results on quantum inequalities, see [18—20].

In [1] new concepts of fractional quantum calculus were defined, by defining a new
g-shifting operator ,®,(m) = gm + (1 — gq)a. After giving the basic properties the g-
derivative and g-integral were defined. New definitions of the Riemann-Liouville frac-
tional g-integral and the g-difference on an interval [, b] were given and their basic prop-
erties were discussed. As applications of the new concepts, one proved existence and
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uniqueness results for first and second order initial value problems for impulsive frac-
tional g-difference equations.

In this paper we prove several integral inequalities for the new g-shifting operator
a®q(m) = gm + (1 - q)a, such as: the g-Hoélder inequality, the g-Hermite-Hadamard in-
equality, the g-Korkine integral equality, the g-Cauchy-Bunyakovsky-Schwarz integral in-
equality, the g-Griiss integral inequality, the g-Griiss-Cebysev integral inequality, and the
q-Polya-Szego integral inequality.

2 Preliminaries
To make this paper self-contained, below we recall some well-known facts on fractional
g-calculus. The presentation here can be found, for example, in [7, 8].

Let us define a g-shifting operator as

a®q(m) =gm+(1-q)a, (2.1)
where 0 < g <1, m,a € R. For any positive integer k, we have

a®5(m) = ;@57 (o, Py(m)) and D) (m) = m. (2.2)
The following results can be found in [1].

Property 2.1 For any m,n € R and for all positive integer k, j, the following properties
hold:
(i) «®g(m) = a®p(m); '

(ii) & @ PE(m)) = (@K (D) (m)) = . ) (m);

(ili) +Pyla) =a;

(iv) «®f(m) —a=q"(m-a);

V) m = Ph(m) = (1 - g")(m - a);

(vi) ,lCDI;(m) =ma <I>’;(1), for m # 0;

(Vi) o®g(m) = DK (1) = g(m — ;@57 (n)).

The g-analog of the Pochhammer symbol is defined by
k-1
mqo=1,  (mqk=][]1-4m), keNU{oco). (2.3)

i=0

We also define the power of the g-shifting operator as

k-1
dn=mV =1, (n-m)P =] ](n-o®(m), keNU/oo). (2.4)
i=0

More generally, if y € R, then

© 1 -4 (m/n)
= m)EIV) =) 1_[ n_ 4

———— n#0. (2.5)
iz 1= a @y (min)

From the above definitions, the following results were proved in [1].
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Property 2.2 For any y,m,n € R with n #a and k € N U {c0}, the following properties

hold:

(i) ol —m) = (n-a) (2295

. 1-2-4 i (584

(i) aln=m)]" = (11— a) TI%, fpbir = (1 - a) el

k (y) _ ("9
(111) a(” - acbq(”))q = (Vl - a)}/ (qgﬁzq)oo .
The g-number is defined by

1=g"
ml, = —L meR. (2.6)

If a =0and m = n =1, then (2.5) is reduced to

0 i+1

1-
o(1-0®,m),” =] 1_,;%' @7)
i=0

The g-gamma function is defined by

o(1— @, ()Y

Fa=""4" 9!

. teR\{0,-1,-2,...}. (2.8)

Obviously, I'y(¢ + 1) = [¢],I",4(¢). For any s, ¢ > 0, the g-beta function is defined by

1
By(s,t) = /0 WD (1= 0@y () dyu. (2.9)

The g-beta function in terms of the g-gamma function can be written as

Tg(s)T4(2)

Byls,) = T s+8)

(2.10)

Let us give the definitions of Riemann-Liouville fractional g-integral and the g-derivative
on the dense interval [a, b].

Definition 2.3 Let o > 0 and f be a continuous function defined on [a, b]. The fractional
g-integral of Riemann-Liouville type is given by (algf )(£) = f(¢) and

(alsf) (t) =

q

0 / ot = 2 ®,(5) “ " F(S)a dys

_(-qt-a)
Fq(‘x)

> dalt - @) (@)

i=0

Definition 2.4 The fractional g-derivative of Riemann-Liouville type of order « > 0 of a
continuous function f on the interval [a, b] is defined by (aDgf)(t) =f(¢) and

(«D2f) (&) = (DLl f)(®), >0,

where v is the smallest integer greater than or equal to o.
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Lemma 2.5 [1] Let o, > 0, and f be a continuous function on [a,b]. The Riemann-

Liouville fractional q-integral has the following semi-group properties:

A8 (S)0) = T2 (IEF) (@) = (oI PF) ). (2.11)

Throughout this paper, in some places, the variable s will be shown inside the fractional

integral notation as (alg‘ 'f(s))(¢), which means

1 t o
(D)0 s f (=0 ®0(6) 7 O s

Lemma 2.6 Ifa, > 0, then, for t € [a, b], the following relation holds:

(B+1)
(s _ )P _LgB+D) o \pra
(uly (s —a)P)(t) = (B +a )( a) (2.12)

Proof From Definition 2.3 and applying Property 2.1(iv), Property 2.2(iii), it follows that

(f2(5 - a") (1) = Fid) 0,06) s - P adys
_-at-a F‘f)((;)‘ DS Gt - a®10) 7 (@i 0) - )
q i=0

_(I_Q)(t_a) i a1(q ,61) iy \\B
ST T ey, (@-0)

_A-9-a)f & y Cagt) 7
Ty() (@5 9)oc

i=0

(1 Q)(t ﬂﬂmi ﬁ 1-4"'q") Bi
pn o 1 qz+lqoz l+l

(1 - Q)(t - a)ﬁ+a = i i+ (a-1) g
= TN (10l ) g

L 2
= %(1 -4) gqio (1-0®; ), ()"
) % /01 V(1= "(Dq(s))(ail)o dgs
- %Bq(ﬁ +1,a)
- %(t —a)’*,
which leads to (2.12) as required. O

Corollary 2.7 Letf(t) = tand g(t) =t for t € [a,b], and a > 0. Then we have
(i) (aLgf(s))(@) = a+2 A (¢ + (o + 1], - Da);
(ii) ( g2(s))(¢) = =4 ((1 +q)t-a)? +2a(t—a)la + 2], +a 2l + 14le +2],).

a+3
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3 Main results
Let us start with the fractional g-Holder inequality on the interval [a, b].

Theorem 3.1 Let 0 < g <1, a >0, p1,ps > 1, such that pil + piz = 1. Then for t € [a, D] we
have

(L2 |26))® = (L) )P ((o2|2(5)]?)®) 72 (3.1)

Proof From Definition 2.3 and the discrete Holder inequality, we have

(L2 )6)][g)]) @

1 ¢ -
ﬂuwﬁﬂ“”%@ﬁ”mmwmﬂﬁ
A-q(t-a) & e i |
S (a0 (20) e )]

i=0
) S a0 ) @) e 0)] @) 040
q i=0

L

- (ﬂ‘lfi)ﬂ > dalt - @i 0) ) (@) |’”>

¢(@) i=0

1- - ad . R — ) , )
X (% quu (t - aq);ﬂ(t)); 1) |g(a‘1>;(t)) |P >

i=0

1 ¢ a— § Pl1
zQumﬁ““”%@ﬂ”V|pqg

X( ) ) 6= «®a)g e e q3>p_2
q
«ﬂvwwxm%mﬁwwwxm%

Therefore, inequality (3.1) holds. O

Remark 3.2 If @ =1and a = 0, then (3.1) is reduced to the g-Holder inequality in [21].

The fractional g-Hermite-Hadamard integral inequality on the interval [a,b] will be

proved as follows.

Theorem 3.3 Letf : [a,b] — R be a convex continuous function, 0 < g <1and o > 0. Then
we have

2 a+b 1 "
Iyl +1)f< 2 ) " poap i@ b=9)®)

1
(b—)(

1
< m(([a +1], - l)f(u) +f(b)) (3.2)

algf(5))(b)
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Proof The convexity of f on [a, b] means that

f((l —S)a+ sb) <1 -s)f(a)+sf(b), se][0,1]. (3.3)

Multiplying both sides of (3.3) by ¢(1 — OCIDq(s)),(Ia_l)/Fq(a), s€(0,1), we get

1 .
mo(l - oq>q(S)); 1)f((l —s)a + sb)
@ - " )
= l_f,qzx)o(l—ocbq( )) 1)(1_ $) + ]‘j';(a)o(l_oq)q(s)); 1)5‘ 3.4)

Taking g-integration of order « > 0 for (3.4) with respect to s on [0, 1], we have

a) f (o= 1)f((l —$)a + sb)o dys
fla) (@-1) f) ! (@-1)
< ) /0 o(1- OCDq(s))q (1 - 58)o dys + ) /0 o(1- OCIDq(s))q Sodys, (3.5)
which means that
(oL f (1 =s)a +sb)) (1) < f(a) (oL (1 —5)) (1) + f(B) (o1]'s) (1). (3.6)
From Corollary 2.7(i), we have
1 1

(oLgs)(1) = and (ol (1-5))(1) =

T (a+2) T a+1) Ty la+2)

Using the definition of fractional g-integration on [a, b], we have

(olgf((l —S)a + sb))(l)

_ r@ ), o1 (o= 1)f((l—s)a+sb) dys

(a) Zq o(1- 0@ () f (1~ q')a + 4'b)

e 1_— qql+1 ;
b
521 H1 A

) 1(ql+1$6])oo (b
qHa;q)oof(a q( ))

q(a

(b a)all“ )Zq (b-a

1 o—
" (b-ay (Fq(a) (b= a®4(9); " F(5)e dqs)

1
= m (algf)(b);

which gives the second part of (3.2) by using (3.6).
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To prove the first part of (3.2), we use the convex property of f as follows:

%[f((l—s)a+sb) +f(sa+(1-s)b)] >f<(1—s)a+sb;sa+(1—s)b)

=f<“;b>. (3.7)

Multiplying both sides of (3.7) by ¢(1 - 0d>q(s));a_l)/l’q(a), s€(0,1), we get

b\ 1 o
155 ) mpeti-oa”

q
2r1(a) o(1=0@4())f (1 = )a + sb)
q

1 o
+ mo(l - 0d>q(s)); 1)f(soz +(1- s)b).

Again on fractional g-integration of order o > 0 to the above inequality with respect to

¢t on [0,1] and changing variables, we get

b (@+1) ( .
f(“; )sz(qb“ (u2f ) (b) + 2{’%(1f(a+b—s))(b) (3.8)

By a direct computation, we have

(oLof (A= 9)b + sa) ) (1)
1

mi’) Z< 7 (1= o o')

(a) qo g™ f (a+ b 2L (D)

(0[) Z Dt+l ﬂ +b- q)l (b))
q

b a)“ ( @ ) q(s )f(a +b-3s), dqs>

" (b-ay
1 o
= G lif@+b-9)),

together with (3.8), we derive the first part of inequality (3.2) as requested. The proof is
completed. d

Remark 3.4 If « =1 and g — 1, then inequality (3.2) is reduced to the classical Hermite-
Hadamard integral inequality as

a+b 1 b fla)+f(b)
f( 2 )SE/af(S)dSST'

See also [22, 23].
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Let us prove the fractional g-Korkine equality on the interval [, b].

Lemma 3.5 Let f,g : [a,b] — R be continuous functions, 0 < q <1, and o > 0. Then we
have

l(aﬂ" (F(s) = £ (") (g(s) - g(r)) (b)

(b-a)*
" Tyla+1)

(al5f (5)2(5)) (B) = (L3 f () (D) (a2 (5)) (D). (3.9)
Proof From Definition 2.3, we have

(3% (F(5) =f (1) (g(s) - () (B)

1 b b . -
“t | [ a2 o)

X (f s)—f(r )( (s)—g(r)) dgsadgr

[ [ st

x (f(s)g(s) —f (5)g(r) —f (r)g(s) +f (g(r))a dysadyr

(b-a) (A-q)b-a) - i+ - ; i
= rq(ail)( qu(a) a an(b—mql(b)); 1)f(a(1)q(b))g(acl>q(b)))

<% XO: qa(b- a¢2+l(b))f,al7(a®;(b))>
) <(1-qu)#2 o(b = @ (5) Vg (ol (b)) )
- (% oz (b= 0); e (@ 0) )
((1 _r‘f& ° > ol =) S e (b))
* lfj(;i)l)<(1 qq)éz) ﬂ); 'a(b—m;”(b));"_nf(a<I>;(b))g(ac1>;(b))>

_200-a) (L-g)b-a) RPN P ;
‘rq<a+1)< r,(@) ;q“(b_”q)q ), f(“qbq(b))g(“(bq(b)))

_2((1 —g)(b—a) Z (b— (I)Hl(b))(a lf(acbé(b)))

q(a) i=0

(1-q)(b-a) N Y
X(WZ o(b =@ D)), (d)(b)))

i=0

_2(b-a) 1 b (@-1)
= Fq(a " 1) <Fq(a) L a(b - acbq(s))q f(s)g(s)ﬂ qu)
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1 (a—
(rq(a) 45, S0 qs)

1 )
x (Fq(a) f (b= 1 ®(9) g(s)adqs)

2(b o
F((—d)( L5fe) (0) = 2(uLf) (0 (L g) (),

from which one deduces (3.9). O
Remark 3.6 If ¢ =1, then Lemma 3.5 is reduced to Lemma 3.1 in [17].

Next, we will prove the fractional g-Cauchy-Bunyakovsky-Schwarz integral inequality
on the interval [a, b].

Theorem 3.7 Let f,g : [a,b] — R be continuous functions, 0 < q <1, and o, 8 > 0. Then

we have
G 5, ) B)] = uIf P65, B (oI 205, B (3.10)
Proof From Definition 2.3, we have
(oI f s, r))(b)
q<a>r ®) / / Db = o ))) " f si)a dysadyr

b-a)* S~ « ; )
oy ?afr ) Y N A O
q q

i=0 n=0
X (oD (5), D2 (B).

Using the classical discrete Cauchy-Schwarz inequality, we have

((I2*f(s,1)g(s, 7)) (B))*

(1 q)Z(b d)z o i+n i+ a- i+ -
—( SN (b - @ B) T a (b - 0@ (1)

i=0 n=0

2
xf(acbg(b»ad>;<b))g(aq>;(b>,a<1>;(b)))
(1 q)z(b a)2 o o z+n i+1 (a-1) i+1 (B-1)
Db alb= P (b
5( Ty ) 22y a(b o 0) b - ),

n=0
i n (1 q)z(b a)2 o t+n i+ (a-1)
xfz(acbq(b),ﬂ@q(b)))( F @) Zozoq — D (B)),

X o(b— o ®}(0) ) g? (ad>;(b),ad>;<b)))

= (I (5,7) ) (g (5,)) ).

Therefore, inequality (3.10) holds. O
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Remark 3.8 If o = 1, then inequality (3.10) is reduced to the g-Cauchy-Bunyakovsky-

Schwarz integral inequality in [17].
Now, we will prove the fractional g-Griiss integral inequality on the interval [a, b].
Theorem 3.9 Let f,g: [a,b] — R be continuous functions satisfying

O <f(s)<, Y <gls) <V, forallsela,bl,¢,®,¢¥,¥eR. (3.11)

For0<g<1landa >0, we have the inequality

LD azrog)o - (LD o))
x(r("b(f‘;)?(algg<s>)(b))‘ i(@ P - ). (3.12)

Proof Applying Theorem 3.7, we have

(2% (f(s) = £ () (g(s) - g(r)) (b))
< (2 (F6) £ )Y 0))? (L2 (2(6) — gr) ) B)) 2 (313)

From Lemma 3.5, it follows that

2

(b-a)*

3 L2 () -1 0))0) - o OO - (W )0 (314)
By a simple computation, we have
(Z(cx+1)( 126) 6) - ((b(a +)i)( 7t ))(b))2
(o~ s azro) >)(F(b(“+)“(1“f )o)-0)
(Z(Ml)(la(f() $)(®~/(5))() (3.15)

and an analogous identity for g.
By assumption (3.11) we have (f(s) — ¢)(P — f(s)) > 0 for all s € [a, b], which implies

(o5 (£5) = 9) (® =) (B) = ©.
From (3.15) and using the fact that (42)? > AB, A, B € R, we have

Cylae+1), T a+1), 2
L o) - (D 0)o)

(@+1), (+1)
5(<D (Z‘“ (If (s )(b))((z‘“ (LF(9)(B) - ¢>)
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IA

[(cb (b(Ol + 1)( 1f(s ))(b)) < (b(ot + 1)( ) - ¢)T

1
4
1
< J(@-9) (3.16)

A similar argument gives

1
(3" (¢~ ¢(r)) () = Z(¥ = p)*. (317)
Using inequality (3.13) via (3.14) and the estimations (3.16) and (3.17), we get

1

L0 - 0) () -g)B)| = 2

4

(P -)(V-9).

Therefore, inequality (3.12) holds, as desired. d

Remark 3.10 If ¢ =1 and g — 1, then inequality (3.12) is reduced to the classical Griiss
integral inequality as

| bf(s)g(s)ds—( .| f(s)ds)< / g(s)ds)

(®-@) (W —9).

1
4-
See also [22, 23].

Next, we are going to prove the fractional g-Griiss-Cebysev integral inequality on the
interval [a, b].

Theorem 3.11 Letf,g: [a,b] — R be Li-, Ly-Lipschitzian continuous functions, so that
[f&)=f()| <Lils—rl,  |g(s)—g(r)] <Lals—rl, (3.18)

foralls,rea,b],0<q<1,L,Ly >0, and o > 0. Then we have the inequality

(b- a)‘”

I« ( L (5)g(9))(B) = (alyf(5)) (b) (al g()) (B)
q

Lle(b _d)20[+2
T Tyla +2)Ty(a +3)

(A +@lo +1]y - [ +2],). (3.19)

Proof Recall the fractional g-Korkine equality as

(b-a)
Lylo +1)

= (6 /) (&) () B). (3.20)

(l5f (5)2()) (B) = (L3 f () (D) (L5 2(5)) (B)

It follows from (3.18) that

|(F(s) = £ () (g(s) — g(r))| < LiLa(s - 1)?, (3.21)
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for all s,r € [a,b]. Taking the double fractional g-integration of order « with respect to
s,r € [a,b], we get

(| (F() = £ (1) (g(s) — g (1) [) (&)

1 b b Y o
- ré(a)fu [ oo=e0, @) o= 0y

x [(F(s) = £ (1) (g(s) — g(r)) |« dygsa dygr

srLifj) / / 0®y(8))y " a(b =@y () s~ dysadyr
e [ e
‘éij / f 0 04) (b= o0y 1) st dysadyr
B [ [ e sn il o
=201, (% (al25?)(b) ((algs)(b)f). (322)

From Corollary 2.7(ii), with ¢ = b, we have

b _ o
(ﬂlg‘sz)(b) = %((1 +q)(b-a)? +2a(b-a)a + 2], + o+ 1], + Z]q).

By direct computation, we have

b-a) «
e 1) )0 - (7))

b— 2a
T (ot(+ l)Iﬁf) (a+3) (1+ b -a) +2ab - a)la + 2], +a*[a + 14l +2],)
q q

(b - a)™
_ W(h + (e +1],-1)a)’

— (b- 61)201+2 . : . [ ) .
Fq(a+2)rq(a+3)(( +61)0l+ q— o+ q). |

Thus, from (3.22) and (3.23), we have

(| () = £ () (g(s) — g (1) [) (&)

2L1L2 (b - 61)20”2
= T+ DTyla w3 L+ e+ Lo =l 2l) (3:24)

By applying (3.24) to (3.20), we get the desired inequality in (3.19). (I
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Remark 3.12 If @ =1 and g — 1, then inequality (3.19) is reduced to the classical Griiss-
Cebysev integral inequality as

1 b 1 b 1 b
— / f(s)g(s)ds—(m / f(s)ds) (m / g(s)ds)

See also [22, 23].

For the final result, we establish the fractional g-Pélya-Szego integral inequality on the

interval [, b].
Theorem 3.13 Letf,g: [a,b] — R be two positive integrable functions satisfying
0<p<f(s) <, O0<y <g(s) <V, forallsela,bl,¢,®, ¢, ¥eR". (3.25)
Then for 0 < q <1 and o > 0, we have the inequality
(L2 (F2()))(B) (L2 &% (5))) (b) 1 ( \/@ . \/@ )2' (326)
((alg (f (5)g())(B))? 4\V oV | oy

Proof From (3.25), for s € [a, D], we have

v gls) T Y

’

which yields

@ f(s)
(7-50)=° 2

and

£ ¢
((@ _ E) >0, (3.28)

Multiplying (3.27) and (3.28), we obtain
(E_&)(&_ﬁ) >0
voogs))\gls) W)=

O 9\ L) v
(E i E)@ =26 e 429

or

Inequality (3.29) can be written as

(@Y + OU)f(s)g(s) > Y Uf2(s) + pDg(s). (3.30)
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Multiplying both sides of (3.30) by (b —¢ qu(s))gX*l)/ I'y(r) and integrating with respect to
s from a to b, we get

(@Y + D) (L2 (F(5)g(9))) (B) = YW (L2 (F7(5))) (B) + pP (I (€°(5))) ().

Applying the AM-GM inequality, A + B> 2+/AB, A, B € R*, we have

@ + ) (2 (F(92(65)))(B) = 2,/ Sy @ (oI (£(6))) ) (ul2 (62(6))) (B),
which leads to
YW (IS (9)) ) (oI (€6)B) = 1 (99 + PV (F96) ()’
Therefore, inequality (3.26) is proved. 0

Remark 3.14 If @ =1 and g — 1, then inequality (3.26) is reduced to the classical Pélya-
Szeg6 integral inequality as

ffzs)dsf s)ds l( /ﬂ+ ﬁ>2
ff ds)2 4 oy oY

See also [24].

4 Conclusion

In this work, some important integral inequalities involving the new g-shifting opera-
tor ,&,(m) = gm + (1 — g)a, introduced in [1], are established in the context of fractional
quantum calculus. The derived results constitute contributions to the theory of integral
inequalities and fractional calculus and can be specialized to yield numerous interesting
fractional integral inequalities including some known results. Furthermore, they are ex-
pected to lead to some applications in fractional boundary value problems.
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