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Abstract
In this study, a high accuracy numerical method based on the spectral theory of
compact operator for biharmonic eigenvalue equations on a spherical domain is
developed. By employing the orthogonal spherical polynomials approximation and
the spectral theory of compact operator, the error estimates of approximate
eigenvalues and eigenfunctions are provided. By adopting orthogonal spherical base
functions, the discrete model with sparse mass and stiff matrices is established so that
it is very efficient for finding the numerical solutions of biharmonic eigenvalue
equations on the spherical domain. Some numerical examples are provided to
validate the theoretical results.
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1 Introduction
In this article, we consider the following biharmonic eigenvalue equations:

�u = λu, in �, ()

u =
∂u
∂n

= , on ∂�, ()

where � ⊂ Rd (d = , ) is an open disk or a ball, ∂u
∂n denotes the outer normal derivative

of u on ∂�.
The biharmonic eigenvalue equations are used to describe the vibration and buckling

of plates in mechanics (see, e.g., [–]) and transmission eigenvalue problem in inverse
scattering theory (see, e.g., [, ]). Therefore, the biharmonic eigenvalue equations have
very wide extensive applications.

However, most of the existing work were concerned with the second-order elliptic eigen-
value problems and there are relatively few articles treating the biharmonic eigenvalue
problems. In recent years, the numerical methods for the biharmonic eigenvalue problems
adopted mainly the conforming finite element method (see [–]), the nonconforming fi-
nite element method (see [, –]), and the mixed finite element method (see [–]).
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For the conforming finite elements method, it requires globally continuously differentiable
finite element spaces, therefore, they are difficult to construct and implement (in partic-
ular for three-dimensional problems). For the nonconforming finite element method, a
disadvantage is that such elements do not come in a natural hierarchy and existing non-
conforming elements only involve low-order polynomials so that they are not efficient for
capturing smooth solutions. For the mixed finite element method, it can result in spuri-
ous solutions on non-convex domains for the boundary conditions of simply supported
plates. In the last decade, the C interior penalty Galerkin (C IPG) method had been de-
veloped for second-order elliptic eigenvalue problems (see [–]). Recently, Brenner et
al. in [] extended the C IPG method to biharmonic eigenvalue problems and provided
the method converges for all three types of boundary conditions (see []).

However, all methods mentioned above are low-order finite element methods so that
it is very difficultly and expensively to obtain high accuracy numerical solutions, espe-
cially for the three-dimensional spherical domain. To the best of our knowledge, there
is not any article on a high accuracy numerical method based on the spectral theory of
compact operator for biharmonic eigenvalue equations on the spherical domain. There-
fore, the task of this paper is to develop a high precision numerical method based on the
spectral theory of compact operator for biharmonic eigenvalue equations in the spherical
domain.

The rest of this paper is organized as follows. Section  provides some preliminaries.
In Section , by employing the orthogonal spherical polynomials approximation and the
spectral theory of compact operator, we derive the error estimates of approximate eigen-
values and eigenfunctions. In Section , by adopting orthogonal spherical base functions,
we establish the discrete model with sparse mass and stiff matrices which is very efficient
for finding the numerical solutions of biharmonic eigenvalue equations on the spherical
domain. In Section , we provide some numerical examples to validate that the theoretical
results are correct. Finally, we provide some conclusions in Section .

2 Some preliminaries
The Sobolev spaces and norms used in this paper are standard ([]). For example, Hs(�)
denotes the usual Sobolev space on � with real order s, equipped with the norm ‖ · ‖s, and
H(�) = L(�), H

(�) = {u ∈ H(�) : u = ∂u
∂n =  on ∂�}.

The unit circle and the unit sphere in Rd are denoted, respectively, by

Bd :=
{

x ∈ Rd : ‖x‖ ≤ 
}

and S
d– :=

{
ξ ∈ Rd : ‖ξ‖ = 

}
.

Moreover, we denote the sets of all nonnegative integers and all real numbers by N and
R, respectively. Further, for n ∈ N, we denote the collection of all polynomials in d variables
with a total degree ≤ n by �d

n .
Let Hd

n denote the space of (solid) spherical harmonics of degree n with d variables,
i.e.,

Hd
n =

{
q ∈ �d

n : �q =  and q(ρx) = ρnq(x) for any ρ ∈ R and x ∈ Rd}.
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It is easily known that

ad
n := dimHd

n =
(

n + d – 
n

)
–

(
n + d – 

n – 

)
=

⎧
⎨

⎩
 – δn,, d = ,

n + , d = ,

where δn, is the Kronecker delta.
Let {Y n

	 :  ≤ 	 ≤ ad
n} be an orthonormal basis of Hd

n such that

∫

Sd–
Y n

	 (ξ )Y n′
	′ (ξ ) dω = ωdδn,n′δ	,	′ ,  ≤ 	 ≤ ad

n,  ≤ 	′ ≤ ad
n′ , n, n′ ≥ ,

where dω is the surface measure and ωd = π
d
 /�( d

 ) is the surface area.
Let P(μ,ν)

j (ζ ) denote the usual Jacobi polynomial of degree j with respect to the weight
function ( – ζ )μ( + ζ )ν on [–, ]. Let (a)n := a(a + ) · · · (a + n – ) be the Pochhammer
symbol. Define

Pμ,n
j,	 (x) :=

(n – j + d
 )j

(n – j + d
 + μ)j

P(μ,n–j+ d–
 )

j
(
‖x‖ – 

)
Y n–j

	 (x). ()

Then the set {Pμ,n
j,	 (x) :  ≤ j ≤ n

 ,  ≤ 	 ≤ ad
n–j} is mutually orthogonal with respect to the

weight function �μ(x) = ( – ‖x‖)μ whenever μ > – (see []). More precisely,

∫

Bd
Pμ,n

j,	 (x)Pμ,n′
j′ ,	′ (x)�μ(x) dx = bμ

d hμ
j,nδn,n′δj,j′δ	,	′ ,

where bd
μ and hμ

j,n are given by

bμ

d :=
π

d
 �(μ + )

�(μ + d
 + )

, hμ
j,n :=

(μ + )j( – n – d
 )j( d

 )n

j!( – n – d
 – μ)j( d

 + μ + )n
. ()

For f ∈ Hs
(Bd) with s ∈ N, let S–s

N f denote its best polynomial approximation of degree
at most N by

〈∇s(S–s
N f – f

)
,∇sv

〉
= , v ∈ �d

N ∩ Hs

(
Bd),

where ∇m = �m and ∇m– = ∇�m– for any m ∈ N. We have the following error estimate
for S–s

N (see Theorem . in []).

Theorem . Let r, s ∈ N and k ∈ N. If f ∈ Hs
(Bd) ∩ Hr(Bd) with r ≥ s, then, for N ≥ s,

∣∣f – S–s
N f

∣∣
Hk (Bd) ≤ CN–r+k‖f ‖Hr (Bd),

where C used next is a positive constant which is possibly different at different occurrences,
being independent of the degree N of polynomials.
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3 The operator formulations and error estimates
3.1 Operator formulations
Put V = H

(�). Then the weak form of ()-() is given as follows.
Find λ ∈ R,  
= u ∈ V , such that

a(u, v) = λb(u, v), ∀v ∈ V , ()

where a(u, v) =
∫
�

�u�v dx, b(u, v) =
∫
�

uv dx.
The source problem associated with () is written as follows.
Find u ∈ V such that

a(u, v) = b(f , v), ∀v ∈ V . ()

It is obvious that a(·, ·) is a continuous, symmetric, and V -elliptic bilinear form on V ×V
and b(f , ·) is a continuous and linear functional on V . Thus, we can use ‖ · ‖a =

√
a(·, ·) as

a norm in V which is equivalent to the norm ‖ · ‖ induced by H(�) and we know from
the Lax-Milgram theorem that () has a unique solution. Thus, according to the source
problem (), we define the operator T : V → V by

a(Tf , v) = b(f , v), ∀v ∈ V . ()

Thanks to [], we know that () has the equivalent operator form

Tu =

λ

u. ()

For the above operator T , we have the following result.

Lemma . The operator T : V �→ V is a self-adjoint compact one.

Proof For ∀u, v ∈ V , we have

a(Tu, v) = b(u, v) = b(v, u) = a(Tv, u) = a(u, Tv),

Thus, T : V �→ V is self-adjoint. By taking f = u, v = Tu in (), we can obtain

a(Tu, Tu) = b(u, Tu).

From the Poincaré inequality, we can derive

γ ‖Tu‖
 ≤ a(Tu, Tu) = b(u, Tu) ≤ ‖u‖‖Tu‖ ≤ ‖u‖‖Tu‖.

Thus, we have

‖Tu‖ ≤ 
γ

‖u‖, ()

where γ is a positive constant.
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Let E be the bounded set in V . Since V is compactly embedded in L(�), so E is the
sequentially compact set in L(�). From (), we know that TE is the sequentially compact
set in V . Thus, T : V → V is a compact operator. �

From the classical theory of abstract elliptic eigenvalue problem (see, e.g., [, ]), we
know that all eigenvalues of T are real and have finite algebraic multiplicity. We arrange
the eigenvalues of T by increasing order:

 < λ ≤ λ ≤ λ ≤ · · · ↗ +∞.

Since the eigenfunctions corresponding to two arbitrary different eigenvalues of T must
be orthogonal, there must exist a standard orthogonal basis in eigenspace corresponding
to the same eigenvalue. Thus, by using the eigenfunctions of T corresponding to {λj}, we
can construct a complete orthonormal system of V as follows:

u, u, . . . , uj, . . . .

Let XN = �d
N ∩ H

(�), then the spectral-Galerkin approximation of () is given as fol-
lows.

Find λN ∈ R,  
= uN ∈ XN such that

a(uN , vN ) = λN b(uN , vN ), ∀vN ∈ XN . ()

The source problem associated with () is written as follows.
Find uN ∈ XN , such that

a(uN , v) = b(f , v), ∀v ∈ XN . ()

Likewise, we know from the Lax-Milgram theorem that () has a unique solution. Thus,
we can define the operator TN : V → XN by

a(TN f , v) = b(f , v), ∀v ∈ XN . ()

From [], we know that () has the equivalent operator form

TN uN =


λN
uN . ()

It is obvious that TN : V → XN is a finite rank operator.
Define the projection operator �

,
N : V → XN by

a
(
u – �

,
N u, v

)
= , for all u ∈ V , v ∈ XN . ()

We have the following result.

Lemma . Let T and TN be linear bounded operator defined by () and (), respectively.
Then we have the following equality:

TN = �
,
N T .
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Proof For ∀u ∈ V , v ∈ XN , we have

a
(
�

,
N Tu – TN u, v

)
= a

(
�

,
N Tu – Tu, v

)
+ a(Tu – TN u, v) = . ()

By taking v = �
,
N Tu – TN u in (), we can obtain

a
(
�

,
N Tu – TN u,�,

N Tu – TN u
)

= .

Since a(·, ·) is V-elliptic, we can obtain

TN = �
,
N T ,

which completes the proof of Lemma .. �

It is obvious that

TN |XN : XN → XN

is a self-adjoint finite rank operator and the eigenvalues of () can be arranged as

 < λN ≤ λN ≤ λN ≤ · · ·λKN , K = dim(XN ).

3.2 Error estimates
In the following, we provide the error estimates. We first provide the following lemma.

Lemma . Let (λ, u) and (λN , uN ) be the eigenpair of () and (), respectively. Then we
have

λN – λ =
‖uN – u‖

a
‖uN‖

L(�)
– λ

‖uN – u‖
L(�)

‖uN‖
L(�)

. ()

Proof From (), we can derive

a(uN – u, uN – u) – λb(uN – u, uN – u)

= a(uN , uN ) – a(uN , u) + a(u, u) – λb(uN , uN ) + λb(uN , u) – λb(u, u)

= a(uN , uN ) – λb(uN , u) + λb(u, u) – λb(uN , uN ) + λb(uN , u) – λb(u, u)

= a(uN , uN ) – λb(uN , uN ).

By dividing b(uN , uN ) and applying () to both sides of the above equation, we obtain

λN – λ =
‖uN – u‖

a
‖uN‖

L(�)
– λ

‖uN – u‖
L(�)

‖uN‖
L(�)

, ()

which completes the proof of Lemma .. �
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Put ηN = supu∈V ,‖u‖a= infv∈XN ‖Tu – v‖a. It is clear that we have

ηN = sup
u∈V ,‖u‖a=

inf
v∈XN

‖Tu – v‖a →  (N → ∞). ()

Thus, we have the following convergence on operators (also see the proof in []).

Theorem . We have

lim
N→∞‖T – TN‖a = . ()

Proof By the definition of the operator norm, we have

‖T – TN‖a = sup
u∈V ,‖u‖a=

∥∥(T – TN )u
∥∥

a = sup
u∈V ,‖u‖a=

∥∥Tu – �
,
N Tu

∥∥
a

= sup
u∈V ,‖u‖a=

inf
v∈XN

‖Tu – v‖a = ηN .

Then, from (), we obtain the desired result. �

Let M(λ) denote the eigenfunctions space of () corresponding to the eigenvalue λ. We
have the following results (also see the proof in []).

Theorem . Let (λ, u) and (λN , uN ) be the eigenpair of () and (), respectively. Then we
have

‖u – uN‖a ≤ sup
u∈M(λ),‖u‖a=

C
λ

∥∥u – �
,
N u

∥∥
a, ()

λN – λ ≤ sup
u∈M(λ),‖u‖a=

C
λ

‖u – �
,
N u‖

a
‖uN‖

L(�)
. ()

Proof From Theorem ., we know that ‖T – TN‖a →  (N → ∞). Thus, according to
Theorem . in [], we have

‖u – uN‖a ≤ C
∥∥(T – TN )|M(λ)

∥∥
a. ()

Therefore, for any u ∈ M(λ) satisfying ‖u‖a = , we have

∥∥(T – TN )u
∥∥

a =
∥∥Tu – �

,
N Tu

∥∥
a =


λ

∥∥u – �
,
N u

∥∥
a, ()

∥∥(T – TN )|M(λ)
∥∥

a = sup
u∈M(λ),‖u‖a=

∥∥(T – TN )u
∥∥

a. ()

By combining () and () with (), we get the desired result (). By Lemma ., we
obtain

λN – λ ≤ ‖uN – u‖
a

‖uN‖
L(�)

, ()

which together with () yields (). �
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Theorem . Let (λ, u) and (λN , uN ) be the eigenpair of () and (), respectively. If u ∈
H

(�) ∩ Hr(�) with r ≥ , then, for N ≥ ,

‖u – uN‖a ≤ C
λ

N (–r) sup
u∈M(λ),‖u‖a=

‖u‖r ,

λN – λ ≤ C
λ N(–r) sup

u∈M(λ),‖u‖a=

‖u‖
r

‖uN‖
L(�)

.

Proof From () and the continuity of a(u, v), we have

∥∥u – �
,
N u

∥∥
a = a

(
u – �

,
N u, u – �

,
N u

)

= inf
φN ∈XN

a(u – φN , u – φN )

≤ C inf
φN ∈XN

|u – φN |

≤ C
∣∣u – S–

N u
∣∣
.

Thus, from Theorem ., we can obtain

∥∥u – �
,
N u

∥∥
a ≤ C

∣∣u – S–
N u

∣∣
 ≤ CN(–r)‖u‖

r . ()

By combing () with Theorem ., we can get the desired result. �

4 Matrix formulation of the spectral-Galerkin approximation
For n ∈ N,  ≤ j ≤ n

 , and  ≤ 	 ≤ ad
n–j, put

P–,m
j,	 (x) :=

( – m – j – d
 )j

j(j – )( – m – j – d
 )j–

(‖x‖ – 
)P,m

j–,	(x).

The following formulas are very useful for the numerical analysis (see []):

P–,n
j,	 (x) = P,n

j,	 (x) –
(n + d – )

n + d – 
P,n–

j–,	 (x) +
n + d – 
n + d – 

P,n–
j–,	 (x), j ≥ , ()

�P–,n
j,	 (x) = (n + d – )(n + d – )P,n–

j–,	 (x), j ≥ . ()

Thus, XN can be denoted by

XN =
{

P–,n
j,	 :  ≤ n ≤ N ,  ≤ j ≤ n


,  ≤ 	 ≤ ad

n–j

}
.

Therefore, from (), (), and the property of orthogonal polynomials in the unit sphere,
we have the following result (see [, ]).

Lemma . We have the following formulas:

〈
�P–,n

j,	 ,�P–,n′
j′ ,	′

〉
= d(n + d – )(n + d – )b

dδn,n′δj,j′δ	,	′ ,
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〈
P–,n

j,	 , P–,n′
j′ ,	′

〉

= b
dδ	,	′ ×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
n+d + d(n+d–)

(n+d–) + d(n+d–)

(n+d–)(n+d–) , j = j′, n = n′,

– d
n+d– – d(n+d+)

(n+d–)(n+d–) , j = j′ – , n = n′ – ,
d(n+d+)

(n+d+)(n+d) , j = j′ – , n = n′ – , ,

– d
n+d– – d(n+d–)

(n+d–)(n+d–) , j = j′ + , n = n′ + ,
d(n+d–)

(n+d–)(n+d–) , j = j′ + , n = n′ + ,

, otherwise.

Thus, the unknown functions can be rewritten as follows:

uN =
N∑

n=

�(n)/�∑

j=

ad
n–j∑

	=

ûn
j,	P–,n

j,	 ()

with the coefficients {̂un
j,	} to be determined. Then the Legendre-Galerkin approximation

scheme () is simplified into a system of algebraic eigenvalue equations:

An
j,	ûn

j,	 = λN Bn
j,	ûn

j,	. ()

It is easily known from Lemma . that the stiff matrix An
j,	 is essentially diagonal and the

mass matrix Bn
j,	 is hepta-diagonal such that equation () can be efficiently solved.

5 Numerical experiments
In the following, two numerical tests are provided for computing eigenvalues of ()-()
on disk and ball, respectively, which is operated in MATLAB. Their numerical results are
shown in Table  and Table .

It is easily seen from Table  that the results have at least ten-digit accuracy with N ≥ .
From numerical results, it is shown that λ is a simple eigenvalue, but λ and λ are all
eigenvalues with multiplicity .

It is easily seen from Table  that the results have at least ten-digit accuracy with N ≥ .
From numerical results, we know that λ also is a simple eigenvalue, but λ and λ are
eigenvalues with multiplicity  and , respectively.

Table 1 The approximate eigenvalues on the unit disk B2 in R2

N λ1 λ2 λ4

10 104.3631056 452.0074329 1216.451916
15 104.3631056 452.0045101 1216.407600
20 104.3631056 452.0045101 1216.407600

Table 2 The approximate eigenvalues on unit ball B3 in R3

N λ1 λ2 λ4

10 237.7210683 769.9765197 1818.29231
15 237.7210675 769.9634832 1818.167926
20 237.7210675 769.9634832 1818.167924
25 237.7210675 769.9634832 1818.167924
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By comparing the relative errors of numerical solutions, we found that the convergence
rates of numerical solutions approximate O(–) when N ≥ , which is consistent with
those obtained for the theoretical case. It is also shown that finding the approximate solu-
tions for the biharmonic eigenvalue equations with spectral-Galerkin method is compu-
tationally very effective.

6 Conclusions
In this study, we have developed a high accuracy numerical method by means of the spec-
tral theory of compact operator for biharmonic eigenvalue equations on a spherical do-
main. By employing the orthogonal spherical polynomials approximation and the spectral
theory of compact operator, we have derived the error estimates of approximate eigenval-
ues and eigenfunctions. We also, respectively, provided two numerical experiments in the
two-dimensional case and three-dimensional cases to verify that our method is very ef-
fective. While we have restricted our attention in this study to the cases of biharmonic
eigenvalue problems with constant coefficient. Whereas the approach presented in this
article can be extended to biharmonic eigenvalue problems with variable coefficients.
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