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Abstract
We prove that a positive matrix with all permutation products equal is diagonally
equivalent to J, the all-1s matrix. Then we give a simple proof of the rank inequality for
diagonally magic matrices (J. Inequal. Appl. 2015:318, 2015).
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1 Introduction
We denote by C

n×n and R
n×n the sets of n × n complex matrices and n × n real matrices,

respectively. For a positive integer n, let Sn be the set of all n! permutations of {, , . . . , n}.
If A = (ai,j) ∈ C

n×n and σ ∈ Sn, then the sequence a,σ (), a,σ (), . . . , an,σ (n) is called the
transversal of A []. Let A ∈ C

n×n,  ≤ i ≤ i ≤ · · · ≤ ik ≤ n, and  ≤ j ≤ j ≤ · · · ≤ js ≤ n.
We denote by A[i, i, . . . , ik|j, j, . . . , js] the k × s submatrix of A that lies in the rows
i, i, . . . , ik and columns j, j, . . . , js. Denote by A(i, i, . . . , ik|j, j, . . . , js) the (n – k) × (n – s)
submatrix of A obtained by deleting the rows i, i, . . . , ik and columns j, j, . . . , js. A matrix
A = (ai,j) ∈C

n×n is called diagonally magic if

n∑

i=

ai,σ (i) =
n∑

i=

ai,π (i)

for all σ ,π ∈ Sn.
Obviously, the zero matrix n×n and J = []n×n, the matrix of all ones, are diagonally

magic matrices. In [], we prove that

Bn =

⎛

⎜⎜⎜⎜⎝

  · · · n
n +  n +  · · · n

...
...

. . .
...

(n – )n +  (n – )n +  · · · n

⎞

⎟⎟⎟⎟⎠
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and the Henkel matrix

Cn =

⎛

⎜⎜⎜⎜⎝

  · · · n
  · · · n + 
...

...
. . .

...
n n +  · · · n – 

⎞

⎟⎟⎟⎟⎠

are diagonally magic matrices. So, there are a lot of diagonally magic matrices. The non-
negative matrices Bn and Cn have been a hot research area [, ].

2 Main result
The rank inequality for diagonally magic matrices can be stated as follows.

Theorem . ([], Theorem .) Let A ∈ C
n×n be a diagonally magic matrix. Then

rank(A) ≤ .

There are diagonally magic matrices of ranks , , . Indeed, rank(n×n) = ,
rank([]n×n) = , and rank(Bn) = rank(Cn) = .

The purpose of this note is to give a simple proof of Theorem .. Our proof depends
only on the following fact.

Theorem . Let C = (ci,j) ∈ R
n×n be a positive matrix with

n∏

i=

ci,γ (i) =
n∏

j=

cj,τ (j)

for all γ , τ ∈ Sn. Then there exist positive diagonal matrices X = diag(x, x, . . . , xn) and
Y = diag(y, y, . . . , yn) such that

C = XJY .

Proof Let B be a k × k submatrix of C. Then there are row and column indices α =
(i, i, . . . , ik) and β = (j, j, . . . , jk) such that B = C[α|β]. Note that the union of a transver-
sal of B and a transversal of C(α|β) is a transversal of C. Choose an arbitrary but fixed
transversal T of the square matrix C(α|β). For any σ ,π ∈ Sk , ci,jσ () , . . . , cik ,jσ (k) and the en-
tries in T constitute a transversal of C, whereas ci,jπ () , . . . , cik ,jπ (k) and the entries in T also
constitute a transversal of C. Let b be the product of the entries in T . Obviously, b > .
Since

n∏

i=

ci,γ (i) =
n∏

j=

cj,τ (j)

for all γ , τ ∈ Sn, we have

b
k∏

t=

cit ,jσ (t) = b
k∏

t=

cit ,jπ (t) ,
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which yields

k∏

t=

cit ,jσ (t) =
k∏

t=

cit ,jπ (t) .

Particularly, this shows that any  ×  submatrix

B =

(
ci,j ci,j

ci,j ci,j

)

of C satisfies

ci,j ci,j = ci,j ci,j . ()

For any x > , let

yj =
c,j

x
()

for j = , , . . . , n and

xi =
ci,

c,
x ()

for i = , , . . . , n. According to (), (), and (), we have

ci,j =
ci,c,j

c,
= xiyj

for all i, j = , , . . . , n. Let X = diag(x, x, . . . , xn) and Y = diag(y, y, . . . , yn). Obviously, X
and Y are positive diagonal matrices, and we have

C = XJY .

This completes the proof. �

We are now ready to present our proof of Theorem ..

Proof of Theorem . First, let A be real. Let A be a diagonally magic matrix. Then the ele-
mentwise exponential C = exp(A) := (ci,j) ∈ R

n×n is a positive matrix with all permutation
products equal. Hence, by Theorem . it is diagonally equivalent to J , the all-s matrix,
that is,

ci,j = xiyj, i, j = , , . . . , n,

for suitable positive vectors x = (x, x, . . . , xn)T and y = (y, y, . . . , yn)T . Hence, if q =
(log(x), log(x), . . . , log(xn))T and r = (log(y), log(y), . . . , log(yn))T , then

ai,j = log(xi) + log(yj), i, j = , , . . . , n.
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Hence,

A = en · qT + r · eT
n ,

where en = (, , . . . , ︸ ︷︷ ︸
n

)T . Thus, A is the sum of two matrices of rank  and, hence, at most

of rank .
Now let A be complex, so that

A = B + iC (B, C real).

Since A is a diagonally magic matrix, so are B and C. Hence, both B and C are of the form

B = en · qT
 + r · eT

n with q, r real,

C = en · qT
 + r · eT

n with q, r real,

and hence

A = en · (q + iq)T + (r + ir) · eT
n . ()

The matrix A has rank at most . This completes the proof. �

According to (), we obtain that a diagonally magic matrix A can be presented in the
form

A = en · xT + y · eT
n =

⎛

⎜⎜⎜⎜⎝

x + y x + y · · · x + yn

x + y x + y · · · x + yn
...

...
. . .

...
xn + y xn + y · · · xn + yn

⎞

⎟⎟⎟⎟⎠
. ()

If A = (ai,j) ∈C
n×n is a diagonally magic matrix, for any x ∈C, let

yj = a,j – x

for j = , , . . . , n and

xi = ai, – a, + x

for i = , , . . . , n. By () we have

ai,j = xi + yj

for all i, j = , , . . . , n. For example,

Bn =

⎛

⎜⎜⎜⎜⎝

  · · · n
n +  n +  · · · n

...
...

. . .
...

(n – )n +  (n – )n +  · · · n

⎞

⎟⎟⎟⎟⎠
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=

⎛

⎜⎜⎜⎜⎝

 +   +  · · ·  + n
n +  n +  · · · n + n

...
...

. . .
...

(n – )n +  (n – )n +  · · · (n – )n + n

⎞

⎟⎟⎟⎟⎠

and

Cn =

⎛

⎜⎜⎜⎜⎝

  · · · n
  · · · n + 
...

...
. . .

...
n n +  · · · n – 

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

 +   +  · · ·  + (n – )
 +   +  · · ·  + (n – )

...
...

. . .
...

n +  n +  · · · n + (n – )

⎞

⎟⎟⎟⎟⎠
.

By () we can get the characteristic polynomial, the eigenvalues, and the eigenvectors
of A. In fact, the characteristic polynomial of A is

pA(λ) = λn–

(
λ – λ

( n∑

i=

(xi + yi)

)
+

n∑

i=

xi

n∑

j=

yj – n
n∑

i=

(xiyi)

)
. ()

From () we can see that the algebraic multiplicity of the eigenvalue  of the diagonally
magic matrix A is at least n – .
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