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Abstract
Let X and Y be Banach spaces, L be a linear manifold in X × Y , or, equivalently, the
graph of a multi-valued linear operator from X to Y , and let S be a prescribed
hyperplane in X , i.e. S = g+N. A central problem in our general setting is to determine,
for a given y ∈ Y , a vector w ∈ S∩ D(L) such that, for some z ∈ L(w),
‖z – y‖ = dist(y, L(S∩D(L))), such a vector w is called the constrained extremal solution
of multi-valued linear inclusions y ∈ L(x) in Banach spaces. We establish three
equivalent characterizations of constrained extremal solution of linear inclusions in
Banach spaces by means of the algebraic operator parts, the metric generalized
inverse of multi-valued linear operator L, and the dual mapping of the spaces. As
follows from the main results in this paper, we may get the constrained extremal
solution of multi-valued linear inclusions, by using the extremal solution of some
interrelated multi-valued linear inclusions in the same spaces. The setting in this
paper includes large classes of constrained extremal problems and optimal control
problems subject to generalized boundary conditions.
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1 Introduction
For convenience, we first recall some related notations. Throughout this paper, X and Y
denote Banach spaces and A denotes a linear manifold in the product space X × Y . We
may view A as a multi-valued linear operator from X to Y by taking A(x) = {y : {x, y} ∈ A}.
The domain, range, and null space of A are defined, respectively, by

D(A) =
{

x ∈ X : {x, y} for some y ∈ Y
}

;

R(A) =
{

y ∈ Y : {x, y} for some x ∈ X
}

;

N(A) =
{

x ∈ D(A) : {x, θ} ∈ A
}

.

It is well known that the quadratic control problem subject to a certain class of bound-
ary conditions can be equivalently formulated as the problem of finding a least-squares
solutions (or extremal solutions) of an appropriate linear operator equations in Hilbert
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spaces (or Banach spaces). When the generalized quadratic cost function and the general-
ized boundary conditions are involved, the problem can be reformulated as a constrained
least-squares solution (or extremal solution) of multi-valued linear operators y ∈ A(x) be-
tween Hilbert spaces (or Banach spaces) X and Y (see []). If X and Y are Hilbert spaces,
the orthogonal operator parts, the orthogonal generalized inverse of a linear manifold A in
X × Y and the least-squares solutions or the constrained least-squares solutions of multi-
valued linear operators y ∈ A(x) were investigated by Lee and Nashed [–]. If X and Y
are Banach spaces, Lee and Nashed [] also introduced a concept of a generalized inverse
A# for the linear manifold A in X × Y by means of algebraic projection and topological
projection. In order to give the characterization of the set of all extremal solutions or least-
extremal solutions of a linear inclusion y ∈ A(x) in Banach space, in , Wang and Liu
[] introduced the concept of the metric generalized inverse A# by means of the metric
projection, which is nonlinear in general. In , Wang et al. [] also gave the criteria for
the metric generalized inverse of multi-valued linear operators in Banach space.

Let L be a linear manifold in X × Y , or, equivalently, the graph of a multi-valued lin-
ear operator from X to Y and let S be a prescribed hyperplane in X, i.e. S = g + N , we
denote A := L|N . The problem in our general setting is to determine, for a given y ∈ Y , a
vector ω ∈ S ∩ D(A) such that, for some z ∈ A|S(ω), ‖z – y‖ = dist(y, R(A|S)), such a vector
w is called the constrained extremal solution of multi-valued linear inclusions y ∈ A(x) in
Banach space. The main purpose of this paper is to investigate the constrained extremal
solution problem in Banach spaces in an abstract general setting. We first establish three
equivalent characterizations of a constrained extremal solution of linear inclusions in Ba-
nach spaces by means of the algebraic operator parts, the metric generalized inverse of
multi-valued linear operator, and the dual mapping of the spaces. It follows from the main
results in this paper that we may get the constrained extremal solution of multi-valued
linear inclusions, by using the extremal solution of some interrelated multi-valued linear
inclusions in the same spaces, which are well investigated by using the algebraic operator
parts, the metric generalized inverse of multi-valued linear operator in [] and []. The
setting in this paper includes large classes of constrained extremal problems and optimal
control problems subject to generalized boundary conditions [].

In this paper, X, Y , and Z denote Banach spaces. The following are standard notations
(see [–, ]), but for convenience, we recall them again. For A, B ⊂ X × Y , C ⊂ Z × X,

AC =
{{z, y} : {z, x} ∈ C, {x, y} ∈ A

}
;

αA =
{{x,αy} : {x, y} ∈ A

}
, α ∈ R;

A � B = {a + b : a ∈ A, b ∈ B};
A + B =

{{x, y + z} : {x, y}, {x, z}}.

The main mathematics tools in this investigation are the algebraic operator part and
metric generalized inverse of linear manifold in Banach spaces, we recall and describe
them in Section  (see [] and []). The other mathematics method is the generalized
orthogonal decomposition theorem in Banach space, which is given by one of the authors
in another paper (see Lemma . in Section ).
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2 Preliminaries and basic notions
Let X and Y be Banach spaces, and A be a linear manifold (or linear subspace) in the
product space X × Y . The inverse relation A–, which is the graph inverse of A, always
exists and is given by

A– =
{{y, x} : {x, y} ∈ A

}
.

If S is a set in X, then

A(S) =
{

y : {x, y} ∈ A, for some x ∈ S
}

.

It is possible that A(S) is empty. The restriction of A to S will be denoted by

A|S :=
{{x, y} : {x, y} ∈ A and x ∈ S

}
.

If T : X → Y is a single-valued operator from X to Y with domain D(T), then the gragh
of T , denote Gr(T), defined by

Gr(T) =
{(

x, T(x)
)

: x ∈ D(T)
}

.

For a multi-valued linear operator A from X into Y , we may introduce a single-valued
operator from D(A) into Y , denoted AS,P , which is defined as follows.

Definition . [] Let X and Y be Banach spaces, A be a linear manifold in the product
space X × Y and P be an algebraic projection from Y onto A(θ ). Then the composite
relation

AS,P := Gr(I – P)A,

where I is the identity operator on Y , is called an algebraic operator part of A.

In this case, for any x ∈ D(A), we may have A(x) = AS,P(x) + A(θ ) and express the varia-
tional set A(x) as a variable AS,P(x) plus the fixed set A(θ ). Since A(θ ) is a fixed subspace
of Y , then there forever is an algebraic operator part of A.

Next, we introduce the concept of a constrained extremal solution of multi-valued linear
inclusions in Banach spaces.

Definition . Let X, Y be Banach spaces, A be a linear manifold in the product space
X × Y , S be a set in X and y ∈ Y . Then u ∈ X is called a constrained extremal solution of
the linear inclusion y ∈ A(x) with respect to S if

(i) u ∈ D(A) ∩ S;
(ii) there exists z ∈ A|S(u) such that

‖y – z‖ = dist
(
y, R(A|S)

)
,

where dist(y, R(A|S)) = infz∈R(A|S) ‖y – z‖.

If S = X, the constrained extremal solution of the linear inclusion y ∈ A(x) with respect
to S is just the extremal solution or the extremal solution, which was defined in [].
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Now we recall some notions and results in [], which were used in this paper on many
occasions.

A subset G in a Banach space X is said to be proximal if every element x ∈ X has at least
one element of best approximation in G, i.e.

PG(x) =
{

x ∈ G : ‖x – x‖ = inf
y∈G

‖x – y‖} �= ∅.

G is said to be a semi-Chebyshev set, if every element x ∈ X has at most one element of best
approximation in G, i.e. x ∈ X, x, x ∈PG(x) implies x = x. G is said a Chebyshev set if it
is simultaneously a proximal and a semi-Chebyshev set (see []). When G is a Chebyshev
set, we denote PG(x) = {πG(x)}, where πG is called the metric projector from X onto G.

It is well known that if X is a reflexive Banach space and G ⊂ X is a convex closed set,
then G is a proximal set, while if X is a strictly convex Banach space and G is a convex
closed set, then G is a semi-Chebyshev set (see []).

We may use some properties of the metric projector, now we recall them.

Proposition . [] Let X be a Banach space and G a Chebyshev subspace of X. Then
(i) πG(x) = x if x ∈ G;

(ii) π
G(x) = πG(x) for any x ∈ X ;

(iii) πG(λx) = λπG(x) for any x ∈ X and λ ∈ R;
(iv) πG(x + y) = πG(x) + y for any x ∈ X , y ∈ G.

Proof See Theorem . in []. �

We also use the dual mapping of Banach space, let us recall it.
Let X be a Banach space, the set-valued mapping FX : X → X∗ , defined by

FX(x) =
{

x∗ ∈ X∗ :
〈
x∗, x

〉
=

∥∥x∗∥∥ = ‖x‖}

for x ∈ X, is called the dual mapping of X, where 〈x∗, x〉 denotes the value of the functional
x∗ ∈ X∗ on x ∈ X (see []).

In Banach space, there is no the concept of the orthogonal property just as in Hilbert
space. By using the dual mapping of the Banach space X and the Chebyshev property of
subspace G, we can extend the Riesz orthogonal decomposition theorem from Hilbert
space into Banach space.

Lemma . [] (Generalized orthogonal decomposition theorem) Let G be a Chebyshev
subspace. Then for any x ∈ X, we have a unique decomposition

x = πG(x) + x, x ∈ F–
X

(
G⊥)

,

where G⊥ = {x∗ ∈ X∗ : 〈x∗, x〉 = ,∀x ∈ G}, F–
X (G⊥) = {x : FX(x) ∩ G⊥ �= φ}, πG is the metric

projector. In other words, we have

X = G � F–
X

(
G⊥)

.

Proof See Lemma . in [], also see [] and []. �
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Remark . In the above lemma, if X = H is a Hilbert space, X∗ = X, for any closed sub-
space G, it must be a Chebyshev space, the metric projector πG is just the orthogonal
projector PG, and FX = IX , the identity of X, then X = G � F–

X (G⊥) become

H = G ⊕ G⊥.

which is just Riesz orthogonal decomposition theorem.

Next, we recall the concept of the metric generalized inverse A#, which is a single-valued
operator of a multi-valued linear operator A from X into Y . By means of the metric gener-
alized inverse A#, we can express the constrained extremal solution of multi-valued linear
inclusions y ∈ A(x) in Banach space.

Definition . [] Let X and Y be Banach spaces, A ⊂ X × Y be a linear manifold, N(A)
and R(A) be Chebyshev subspaces in X and Y , respectively, πN(A) : X → N(A) and πR(A) :
Y → R(A) be the metric projectors. The metric generalized inverse A# of A is defined by

A# =
{{

y, (ID(A) – πN(A))(g)
}

: y ∈ Y and
{

g,πR(A)(y)
} ∈ M

}
.

Remark . If both X and Y are Hilbert spaces, the metric generalized inverse A# of A is
just the orthogonal generalized inverse (see [–, ]).

Remark . If X and Y are Banach spaces, T : X → Y is a linear operator, and N(T),
R(T) are Chebyshev subspaces in X and Y , respectively, then T# is just the Moore-Penrose
metric generalized inverse of T , denoted by TM .

For convenience we list them as the following propositions the results in [].

Proposition . [] Let X and Y be Banach spaces, A ⊂ X ×Y be a linear manifold, N(A)
and R(A) be Chebyshev subspaces in X and Y , respectively. Then, for any y ∈ Y\R(A), the
following statements are equivalent:

(i) u ∈ D(A) is the extremal solution of linear inclusion y ∈ A(x);
(ii) u ∈ D(A) and πR(A)(y) ∈ A(u);

(iii) u ∈ D(A) and y ∈ A(u) � F–
Y (R(A)⊥).

Proof See Theorem . in []. �

Proposition . [] Let X and Y be Banach spaces, A ⊂ X ×Y be a linear manifold, N(A)
and R(A) be Chebyshev subspaces in X and Y , respectively. Then we have the following:

(i) Let K be any algebraic operator part of A–, then the coset

K
(
πR(A)(y)

)
+ N(A)

is the set of all extremal solutions of y ∈ A(x).
(ii) Let A# be the metric generalized inverse of A, then the coset

A#(y) + N(A)

is the set of all extremal solutions of y ∈ A(x).
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(iii) u = A#(y) is the unique least extremal solution of y ∈ A(x).

Proof See Theorem . in [], also see []. �

3 Main theorems
In this section, we consider the constrained extremal problems for a linear inclusions re-
stricted to a hyperplane in Banach space. By using Proposition ., we establish several
equivalent characterizations of the constrained extremal solution of linear inclusions in
Banach spaces by means of the algebraic operator parts, the metric generalized inverse
of multi-valued linear operator, and the dual mapping of the spaces. It follows from these
results that we may get the constrained extremal solution of multi-valued linear inclu-
sions by using the extremal solution of some interrelated multi-valued linear inclusions
in the same space, which are well investigated in [] and []. These characterizations in-
volve algebraic operator parts, the metric generalized inverse, and the dual mapping of the
spaces.

Theorem . Let X and Y be Banach spaces, L ⊂ X ×Y be a multi-valued linear operator
from X to Y , N ⊂ X be a subspace, P be an algebraic projector from Y onto the subspace
L(θ ), LS,P be any fixed algebraic operator part of L with respect to the projector P. Let

S = g + N and A := L|N ,

where g ∈ D(L). Suppose that N(A) and R(A) are Chebyshev subspaces in X and Y , respec-
tively. Then the following are equivalent:

() w ∈ D(L) ∩ S is a constrained extremal solution of the linear inclusion y ∈ L(x) with
respect to S;

() k := g – w ∈ D(L) ∩ N is an extremal solution of the linear inclusion LS,P(g) – y ∈ A(x);
() w ∈ D(L) ∩ S and

LS,P(w) – y ∈ L(θ ) + F–
Y

(
R(A)⊥

)
; (.)

() g ∈ D(L) such that

LS,P(g) – y ∈ R(A) � F–
Y

(
R(A)⊥

)
. (.)

Proof () ⇔ () From Definition ., w ∈ D(L) ∩ S is a constrained extremal solution of
the linear inclusion y ∈ L(x) if and only if there exists z ∈ Y such that

z ∈ L|S(w) (.)

and

‖y – z‖ = dist
(
y, R(L|S)

)
. (.)

We will characterize (.) and (.).
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Now, by definition, (.) holds if and only if

w ∈ D(L) ∩ S and {w, z} ∈ L.

Equivalently, we see that (.) holds if

w = g – k ∈ D(L) for some k ∈ N and z = LS,P(w) + s for some s ∈ L(θ ).

Since g ∈ D(L) and w ∈ D(L), k = g – w ∈ D(L) ∩ N . Hence, we see that (.) holds if and
only if w = g – k for some k ∈ D(L) ∩ N such that

z = LS,P(g) – LS,P(k) + s for some s ∈ L(θ ). (.)

Next, we characterize (.). Note first that

‖y – z‖ =
∥∥LS,P(g) – y – LS,P(k) + s

∥∥ (.)

and

dist
(
y, R(L|S)

)
= inf

{‖y – z‖ : z ∈ L(u), w ∈ D(L) ∩ S
}

= inf
{∥∥LS,P(g) – y – LS,P(k) + s

∥∥ : k ∈ D(A), s ∈ L(θ )
}

= dist
(
LS,P(g) – y, R(A)

)
. (.)

Note that, from s ∈ L(θ ) and k = g – w ∈ D(L) ∩ N , we have L(k) = L|N (k) = A(k) and

–s + LS,P(k) ∈ L(θ ) + LS,P(k) = L|N (k) = A(k). (.)

From (.) and (.), we see that (.) holds if and only if (.) holds and

∥∥LS,P(g) – y –
(
LS,P(k) – s

)∥∥ = dist
(
LS,P(g) – y, R(A)

)
. (.)

Hence, it follows that (.) holds if and only if k is an extremal solution,

LS,P(g) – y ∈ A(x).

Consequently, it follows from (.) and (.) that w ∈ D(L) ∩ S is a constrained extremal
solution of the linear inclusion y ∈ L(x) with respect to S if and only if w = g – k for some
k ∈ D(L) ∩ N such that k is an extremal solution of LS,P(g) – y ∈ A(x). This proves that
(i) and (ii) are equivalent.

() ⇒ (). Assume that k := g – w ∈ D(L) ∩ N is an extremal solution of the linear in-
clusion –y + LS,P(g) ∈ A(x). From (i) ⇔ (ii) in Proposition ., we have w = g – k for some
k ∈ D(L) ∩ N and

–y + LS,P(g) ∈ A(k) � F–
Y

(
R(A)⊥

)
. (.)
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Let us write

–y + LS,P(g) = x + z,

where x ∈ A(k), z ∈ F–
Y (R(A)⊥). Note that A = L|N , it follows that k ∈ D(L) ∩ N and

{k, x} ∈ L. Thus we obtain

x = LS,P(k) + s for some s ∈ L(θ ).

Consequently, we have w ∈ D(L) ∩ S and

–y + LS,P(w) = –y + LS,P(g) – LS,P(k)

= x + z – LS,P(k)

= s + z

∈ L(θ ) � F–
Y

(
R(A)⊥

)
.

It follows that () ⇒ ().
Next, we intend to prove that () ⇒ (). Assume () is true, we want to show that there

exists k ∈ D(L) ∩ N such that

LS,P(g) – y ∈ A(k) � F–
Y

(
R(A)⊥

)
.

From (i) ⇔ (iii) in Proposition ., we have showed that () holds. Indeed, from (), we
write

LS,P(w) – y = s + z where s ∈ L(θ ) and z ∈ F–
Y

(
R(A)⊥

)
.

Note that w ∈ D(L) ∩ S and w = g – k for some k ∈ D(L) ∩ N = D(A). Then

LS,P(g) – y = LS,P(w) + LS,P(k) – y

= s + LS,P(k) + z ∈ A(k) � F–
Y

(
R(A)⊥

)

since s + LS,P(k) ∈ L(θ ) + LS,P(k) = A(θ ) + AS,P(k) = A(k). Thus () ⇒ (). It follows that
() ⇔ ().

() ⇔ () Assume () is true, i.e. k := g –w ∈ D(L)∩N is an extremal solution of the linear
inclusion LS,P(g) – y ∈ A(x). By (i) ⇔ (iii) in Proposition ., we have LS,P(g) – y ∈ A(k) �
F–

Y (R(A)⊥) ⊂ R(A) � F–
Y (R(A)⊥). This proves that () ⇒ (). Conversely, we assume ()

is true, i.e. LS,P(g) – y ∈ R(A) � F–
Y (R(A)⊥), then there exist y ∈ R(A) and y ∈ F–

Y (R(A)⊥)
such that LS,P(g) – y = y + y. By the definition, from y ∈ R(A), we have a k ∈ D(A) =
D(L) ∩ N such that y ∈ A(k), hence

LS,P(g) – y = y + y ∈ A(k) � F–
Y

(
R(A)⊥

)
.

Again, by (i) ⇔ (iii) in Proposition ., k ∈ D(L) ∩ N is an extremal solution of the linear
inclusion LS,P(g) – y ∈ A(x). Thus () ⇒ (). �
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Theorem . Let the assumptions of Theorem . hold. Then, for any y ∈ Y , the set of all
constrained extremal solution of the linear inclusion y ∈ L(x) with respect to S, denoted
by �y, is not empty and is given by

�y =
{

g – A#
[
LS,P(g) – y

]}
� N(A), (.)

where A# is the metric generalized inverse of the multi-valued linear operator A, A = L|N ,
S = g + N .

Proof (i) Since R(A) is a Chebyshev subspace in Y , by Lemma ., we have

Y = R(A) � F–
Y

(
R(A)⊥

)
.

For any y ∈ Y , we must have LS,P(g)–y ∈ R(A)�F–
Y (R(A)⊥). From () ⇔ () in Theorem .,

we see that �y �= ∅.
(ii) For any y ∈ Y , we see that LS,P(g) – y ∈ R(A) � F–

Y (R(A)⊥), hence �y �= ∅ by (i).
For any w ∈ �y, i.e. w ∈ D(L)∩S is a constrained extremal solution of the linear inclusion

y ∈ L(x) with respect to S. By () ⇔ () in Theorem ., we have w ∈ �y if and only if
k := g – w ∈ D(L) ∩ N is an extremal solution of the linear inclusion LS,P(g) – y ∈ A(x).
By (ii) in Proposition ., we see that w ∈ �y ⇔

w ∈ {
g – k : k ∈ D(A) ∩ N is an extremal solution of LS,P(g) – y ∈ A(x)

}

=
{

g – k : k ∈ A#
[
LS,P(g) – y

]
+ N(A)

}

=
{

g – A#
[
LS,P(g) – y

]}
� N(A),

where A# is the metric generalized inverse of the multi-valued linear operator A. Hence,
it follows that

�y =
{

g – A#
[
LS,P(g) – y

]}
� N(A). �

Corollary . Let X, Y , and Z be reflexive strictly convex Banach spaces. Let A ⊂ X × Z
be a linear relation and L ⊂ X × Y be a single-valued linear operator. Assume that N(A) is
closed in X. Let z ∈ R(A) � F–

Z (R(A)⊥) and y ∈ Y be given. Define

S := A#(z) + N(A), T := L|N(A).

Assume that A#(z) ∈ D(L). Then we have the following:
(I) The following statements are equivalent:

(i) w ∈ D(L) ∩ S is a constrained extremal solution of the linear operator equation
L(x) = y with respect to S;

(ii) k := A#(z) – w ∈ D(L) ∩ N(A) is an extremal solution of the linear operator equation

L
(
A#(z)

)
– y = T(x);

(iii) w ∈ D(L) ∩ S and

L(w) – y ∈ F–
Y

(
R(T)⊥

)
.
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(II) L(x) = y has a constrained extremal solution with respect to S if and only if

L
(
A#(z)

)
– y ∈ R(T) � F–

Y
(
R(T)⊥

)
. (.)

In particular, if R(T) is closed in Y , then L(x) = y always has a constrained extremal
solution with respect to S.

(III) Assume that (.) and that N(T) = N(A) ∩ N(L) is closed in X. Then the set of all
constrained extremal solution of L(x) = y with respect to S is given by

�y =
{

A#(z) – TM[
L
(
A#(z)

)
– y

]}
� N(A) ∩ N(L).

The main results, (i)-(iii) in Theorem . and (i)-(ii) in Theorem . in [], will be especial
cases of Theorem . and Theorem .. We express them as the following corollary.

Corollary . [] Let H and H be Hilbert spaces. Let L ⊂ H × H and N ⊂ H be linear
manifolds. Let LS,P be an arbitrary, but fixed algebraic operator part of L corresponding to
an algebraic projector P of H onto L(θ ). Let

S := g � N and M := L|N ,

where g ∈ D(L). Then we have:
(I) for fixed h ∈ H, the following statements are equivalent:

(i) w is a restricted least-squares solution (LSS) of the linear inclusion y ∈ L(x) with
respect to S.

(ii) k := g – w is an LSS of

LS,P(g) – h ∈ M(x).

(iii) w ∈ S ∩ D(L) and

LS,P(g) – h ∈ L(θ ) + N
(
M∗),

where M∗ := {(x, y) : (–y, x) ∈ M⊥} is the adjoint subspace of the linear manifold
M ⊂ H × H, and M⊥ is the orthogonal complement of M in Hilbert space H × H.

(iv) g ∈ D(L) such that

LS,P(g) – h ∈ R(M) � N
(
M∗).

In particular, if R(M) is closed, then a restricted LSS exists for each h ∈ H.
(II) The set of all restricted LSS of the linear inclusion y ∈ L(x) with respect to S, denoted

by �y, is not empty and is given by

�y =
{

g – M#
[
LS,P(g) – y

]}
� N(M).

Proof In Theorem ., take X = H and Y = H, A = M = L|N , since H, H, and H ×
H are Hilbert spaces, FY = I the identity operator of H, and N(M∗) = R(M)⊥ = R(A)⊥

(see []). (I) in Corollary . follows from Theorem ., and (II) in Corollary . follows
from Theorem .. �
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Remark . In [], the authors gave an application of Theorem ., i.e. Corollary ., to
concrete cases of singular optimal control problems involving ordinary differential equa-
tions with general boundary conditions where both the control space and the state space
are Hilbert space Lm

 = L([a, b],Cm) and Ln
 = L([a, b],Cn), but for the same problem with

the control space Lm
p = Lp([a, b],Cm) and the state space Ln

p = Lp([a, b],Cn) ( < p < ∞), we
cannot apply Theorem . in [], while we can apply Theorem ., and Theorem ., in
this paper.

Remark . In Theorem ., the three equivalent characterizations of a constrained ex-
tremal solution of the linear inclusion y ∈ L(x) with respect to S are expressed in terms
of algebraic operator parts and the generalized orthogonal complement of R(A). In char-
acterization () of Theorem ., the constrained extremal solution is equivalent to an un-
constrained, but modified extremal solution. Characterization () is a generalized form of
the normal equation; we call

LS,P(w) – y ∈ L(θ ) + F–
Y

(
R(A)⊥

)

the ‘normal inclusion’ for the given inclusion y ∈ L(x). In the case of a single-valued oper-
ator with domain H (X = H, Y = H are Hilbert spaces with (H)∗ = H), g = θ , N = H,
A = L, R(L) is closed in H. Then F–

Y (R(A)⊥) = R(A)⊥ = N(A∗) by the Banach closed range
theorem (see the theorem in []), L(θ ) = θ , hence the ‘normal inclusion’ reduces to

A(w) – y ∈ N
(
A∗), i.e. A∗[A(w) – y

]
= θ ,

which gives the normal equation.
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