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Abstract
The Lp-geominimal surface area was introduced by Lutwak in 1996, which extended
the important concept of the geominimal surface area. Recently, Wang and Qi
defined the p-dual geominimal surface area, which belongs to the dual
Brunn-Minkowski theory. In this paper, based on the concept of the dual Orlicz mixed
volume, we extend the dual geominimal surface area to the Orlicz version and give its
properties. In addition, the isoperimetric inequality, a Blaschke-Santaló type
inequality, and the monotonicity inequality for the dual Orlicz geominimal surface
areas are established.
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1 Introduction
Let Kn denote the set of convex bodies (compact, convex subsets with non-empty inte-
riors) in Euclidean space R

n. For the set of convex bodies containing the origin in their
interiors, the set of convex bodies whose centroids lie at the origin, and the set of convex
bodies having their Santaló point at the origin in R

n, we write Kn
o , Kn

c , and Kn
s , respec-

tively. Sn
o denotes the set of star bodies (about the origin) in R

n. Let V (K) denote the
n-dimensional volume of a body K , and let B denote the standard Euclidean unit ball in
R

n and write ωn = V (B) for its volume, as well as let Sn– denote the unit sphere for B.
The notion of geominimal surface area was introduced by Petty []. For K ∈ Kn

o , the
geominimal surface area, G(K), of K is defined by

ω

n
n G(K) = inf

{
nV(K , Q)V

(
Q∗) 

n : Q ∈Kn}.

Here Q∗ denotes the polar of body Q, and V(K , Q) denotes the mixed volume of K , Q ∈Kn
o

(see []). This concept has already attracted considerable interest; see, for example, [–].
The extension of the classical Brunn-Minkowski theory is the Lp-Brunn-Minkowski the-

ory initialized by Lutwak [], which has had an enormous impact, providing stronger
affine isoperimetric inequalities than the classical counterparts (see, e.g., [, ]). In par-
ticular, Lutwak [] introduced the p-geominimal surface area: For K ∈ Kn

o , p ≥ , the p-
geominimal surface area, Gp(K), of K is defined by

ω
p
n
n Gp(K) = inf

{
nVp(K , Q)V

(
Q∗) p

n : Q ∈Kn
o
}

.

Here Vp(K , Q) denotes the p-mixed volume of K , Q ∈Kn
o (see []).
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Combining the homogeneousness of the volume with the p-mixed volume, the p-
geominimal surface area could also be defined by

Gp(K) = inf
{

nVp(K , Q) : Q ∈Kn
o and V

(
Q∗) = ωn

}
.

The recent extension of the Brunn-Minkowski theory is the Orlicz-Brunn-Minkowski
theory launched by Lutwak et al. [, ]. This theory is far more general than the Lp-
Brunn-Minkowski theory, and has already attracted considerable interest; see, for exam-
ple, [–]. In particular, Yuan et al. [] introduced the Orlicz geominimal surface area
Gφ(K) of K ∈Kn

o . Let � denote the set of convex functions φ : [,∞) → [,∞) that satisfy
φ() = , φ() = , and limt→∞ φ(t) = +∞. For K ∈Kn

o and φ ∈ �,

Gφ(K) = inf
{

nVφ(K , Q) : Q ∈Kn
o and V

(
Q∗) = ωn

}
,

where Vφ(K , Q) denotes Orlicz mixed volume of K and Q (see []).
A dual theory to the Lp-Brunn-Minkowski theory was also developed by Lutwak (see [,

]). More recently, Wang and Qi [] gave a definition of the p-dual geominimal surface
area which is a dual concept for Lp-geominimal surface area and belongs to the dual Lp-
Brunn-Minkowski theory: For K ∈ Sn

o , the p-dual geominimal surface area, G̃–p(K), of K
is defined by

ω
– p

n
n G̃–p(K) = inf

{
nṼ–p(K , Q)V

(
Q∗)– p

n : Q ∈Kn
o
}

.

Here Ṽ–p(M, N) denotes the p-dual mixed volume of M, N ∈ Sn
o (see []).

Further, they [] established the affine isoperimetric inequality, the Blaschke-Santaló
inequality and the monotone inequality for the p-dual geominimal surface area.

For K ∈ Sn
o and p ≥ ,

G̃–p(K) ≥ nω
– p

n
n V (K)

n+p
n , (.)

with equality if and only if K is an ellipsoid centered at the origin.
If K ∈Kn

c and p ≥ , then

G̃–p(K)G̃–p
(
K∗) ≤ (nωn), (.)

with equality if and only if K is an ellipsoid.
If K ∈ Sn

o ,  ≤ p < q, then

(
G̃–p(K)n

nnV (K)n+p

) 
p

≤
(

G̃–q(K)n

nnV (K)n+q

) 
q

. (.)

Combining the homogeneousness of the volume and the p-dual mixed volume, the p-
dual geominimal surface area could also be defined by

G̃–p(K) = inf
{

nṼ–p(K , Q) : Q ∈Kn
o and V

(
Q∗) = ωn

}
.
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A step toward a dual Orlicz-Brunn-Minkowski theory for star sets has already been
made by Gardner et al. [–] and Zhu et al. []. In some respects, the dual Orlicz-
Brunn-Minkowski theory is far more general than the Orlicz-Brunn-Minkowski theory
for convex bodies.

The purpose of this article is to define a new operator G̃–φ(K) of K ∈ Sn
o , called the dual

Orlicz geominimal surface area, by

G̃–φ(K) = inf
{

nṼ–φ(K , Q) : Q ∈Kn
o and V

(
Q∗) = ωn

}
,

where Ṽ–φ(K , Q) denotes the dual Orlicz mixed volume of K , Q (see Section ).
Our main results are as follows.

Theorem . If K ∈ Sn
o and φ ∈ �, then there exists a unique body K̃ ∈Kn

o such that

G̃–φ(K) = nṼ–φ(K , K̃) and V
(
K̃∗) = ωn. (.)

Theorem . Let K ∈ Sn
o and φ ∈ �, then

G̃–φ(K) ≥ nV (K)φ
((

V (K)
ωn

) 
n
)

, (.)

with equality if and only if K is an ellipsoid.

When φ(t) = tp, with p ≥ , the above affine isoperimetric inequality for the dual Or-
licz geominimal surface area reduces to affine isoperimetric inequality (.) for the p-dual
geominimal surface area.

Theorem . Let K ∈Kn
c and φ ∈ �, then

G̃–φ(K)G̃–φ

(
K∗) ≤ (nωn),

with equality if and only if K is an ellipsoid.

When φ(t) = tp, with p ≥ , the above Blaschke-Santaló type inequality for the dual Or-
licz geominimal surface area reduces to the Blaschke-Santaló type inequality (.) for the
p-dual geominimal surface area.

Theorem . Let φ,φ ∈ � and φ ≤ φ. If K ∈ Sn
o , then

φ–


(
(nV (K))n

G̃–φ (K)nφ(V (K)–)

)
≤ φ–



(
(nV (K))n

G̃–φ (K)nφ(V (K)–)

)
.

When φ(t) = tp, φ(t) = tq, with  ≤ p ≤ q < ∞, the above inequality reduces to Wang’s
monotonicity inequality (.) for the p-dual geominimal surface area ratio.
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2 Background material
The support function hK = h(K , ·) : Sn– → R of a compact convex set K ⊂ R

n is defined,
for u ∈ Sn–, by

hK (u) = max{u · x : x ∈ K},

and it uniquely determines the compact convex set. Here u · x denotes the standard inner
product of u and x in R

n.
For K , L ∈ Kn, and λ,μ ≥  (not both zero), the Minkowski linear combination λ · K +

μ · L ∈Kn is defined by

h(λ · K + μ · L, ·) = λh(K , ·) + μh(L, ·).

The classical Brunn-Minkowski inequality (see []) states that for convex bodies K , L ∈
Kn and real λ,μ ≥  (not both zero), the volume of the bodies and of their Minkowski
linear combination λ · K + μ · L ∈Kn are related by

V (λ · K + μ · L)

n ≥ λV (K)


n + μV (L)


n , (.)

with equality if and only if K and L are homothetic.
For real p ≥ , K , L ∈ Kn

o , and λ,μ ≥  (not both zero), the Firey linear combination
λ · K +p μ · L, is defined by (see [])

h(λ · K +p μ · L, ·)p = λh(K , ·)p + μh(L, ·)p.

Firey [] also established the following Lp Brunn-Minkowski inequality. If p > , λ,μ ≥
 (not both zero), and K , L ∈Kn

o , then

V (λ · K +p μ · L)
p
n ≥ λV (K)

p
n + μV (L)

p
n ,

with equality if and only if K and L are dilates.
The radial function of K ,ρK : Sn– → [,∞), is defined by

ρK (u) = max{λ : λu ∈ K}.

A set K ⊂ R
n is said to be a star body about the origin, if the line segment from the origin

to any point x ∈ K is contained in K and K has continuous and positive radial function
ρK (·).

Note that K ∈ Sn
o can be uniquely determined by its radial function ρK (·) and vice versa.

If λ > , we have

ρK (λx) = λ–ρK (x) and ρλK (x) = λρK (x).

More generally, from the definition of the radial function it follows immediately that for
� ∈ GL(n) the radial function of the image �K = {�y : y ∈ K} of K ∈ Sn

o is given by (see
[])

ρ(�K , x) = ρ
(
K ,�–x

)
, for all x ∈R

n. (.)
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Two star bodies K , L ∈ Sn
o are said to be dilates of each other if there is a constant λ > 

such that L = λK , and the equation ρL(u) = λρK (u) for all u ∈ Sn–. Clearly, for K , L ∈ Sn
o ,

K ⊆ L if and only if ρK (u) ≤ ρL(u), for all u ∈ Sn–.

The natural metric on Sn
o is the radial metric δ̃(·, ·) : Sn

o × Sn
o →R defined as

δ̃(K , L) = ‖ρK – ρL‖∞ = sup
u∈Sn–

∣∣ρK (u) – ρL(u)
∣∣, for K , L ∈ Sn

o .

A sequence of star bodies {Kj} ⊂ Sn
o is said to be convergent to K ∈ Sn

o in δ̃ if δ̃(Kj, K) → 
as j → ∞, and equivalently, ρKj is uniformly convergent to ρK on Sn–.

If K ∈Kn
o , the polar body, K∗, of K is defined by

K∗ =
{

x ∈R
n : x · y ≤ , for all y ∈ K

}
.

Obviously, we have (K∗)∗ = K .
The Blaschke-Santaló inequality [] is one of the fundamental affine isoperimetric in-

equalities. It states that if Q ∈Kn
c then

V (Q)V
(
Q∗) ≤ ω

n, (.)

with equality if and only if Q is an ellipsoid.
For φ ∈ � and λ,μ ≥  (not both zero), we define the Orlicz radial sum λ ◦ K +̃–φμ ◦ L

of two star bodies K , L ∈ Sn
o , by

ρ(λ ◦ K +̃–φμ ◦ L, u) = sup

{
t >  : λφ

(
t

ρK (u)

)
+ μφ

(
t

ρL(u)

)
≤ 

}
, (.)

for all u ∈ Sn–.
When φ(t) = tp, with p ≥ , it is easy to show that the Orlicz radial sum reduces to Lut-

wak’s p-harmonic radial combination (see []):

ρ(μ ◦ K +̃–pμ ◦ L, ·)–p = λρ(K , ·)–p + μρ(L, ·)–p.

If K , L ∈Kn
o , then

λ ◦ K +̃–pμ ◦ L =
(
λ · K∗ +p μ · L∗)∗.

We denote the right derivative of a real-valued function f by f ′
r . For φ ∈ �, there is φ′

r() >
 because φ is convex and strictly increasing.

Let φ ∈ �. By the Orlicz radial sum (.), we define the dual Orlicz mixed volume
Ṽ–φ(K , L) of convex bodies K , L ∈ Sn

o by

n
–φ′

r()
Ṽ–φ(K , L) = lim

ε→+

V (K +̃–φε ◦ L) – V (K)
ε

. (.)
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From (.) we easily obtain the following integral formula of the dual Orlicz mixed volume:

Ṽ–φ(K , L) =

n

∫

Sn–
φ

(
ρK (u)
ρL(u)

)
ρn

K (u) dS(u). (.)

Apparently, we have

Ṽ–φ(K , K) = V (K). (.)

For φ(t) = tp with p ≥ , the dual Orlicz mixed volume Ṽφ(K , L) reduces to Lutwak’s
p-dual mixed volume formula (see []):

Ṽ–p(K , L) =

n

∫

Sn–
ρ

n+p
K (u)ρ–p

L (u) dS(u),

for all K , L ∈ Sn
o .

Using the same argument as in [] we establish the following dual Orlicz-Minkowski
inequality: Suppose φ ∈ �. If K , L ∈ Sn

o , then

Ṽ–φ(K , L) ≥ V (K)φ
((

V (K)
V (L)

) 
n
)

, (.)

with equality if and only if K and L are dilates of each other.
When φ(t) = tp, with p ≥ . Then (.) reduces to the following Lp-dual Minkowski in-

equality (see []):

Ṽ–p(K , L)n ≥ V (K)n+pV (L)–p,

with equality if and only if K and L are dilates of each other.
We also establish the dual Orlicz-Brunn-Minkowski inequality as follows: Suppose

K , L ∈ Sn
o , and λ,μ > . If φ ∈ �, then

λφ

((
V (λ ◦ K +̃φμ ◦ L)

V (K)

) 
n
)

+ μφ

((
V (λ ◦ K +̃φμ ◦ L)

V (L)

) 
n
)

≤ ,

with equality if and only if K and L are dilates of each other.
When φ(t) = tp, with p ≥ , the above inequality reduces to Lutwak’s Lp-dual Brunn-

Minkowski inequality (see []):

V (λ ◦ K +̃–pμ ◦ L)– p
n ≥ λV (K)– p

n + μV (L)– p
n ,

with equality if and only if K and L are dilates of each other.
The following results are required in the proofs of our main results.

Lemma . If φ ∈ �, and K , L ∈ Sn
o , then for � ∈ SL(n),

Ṽ–φ(�K ,�L) = Ṽφ(K , L).
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Proof For x ∈R
n\{}, let 〈x〉 = x/|x|. By (.) and (.), we have

Ṽ–φ(�K , L) =

n

∫

Sn–
φ

(
ρ�K (u)
ρL(u)

)
ρn

�K (u) dS(u)

=

n

∫

Sn–
φ

(
ρK (�–u)
ρL(��–u)

)
ρn

K
(
�–u

)
dS

(
��–u

)

=

n

∫

Sn–
φ

(
ρK (〈�–u〉)

ρ�–L(〈�–u〉)
)

ρn
K
(〈
�–u

〉)|det�|dS
(〈
�–u

〉)

= Ṽ–φ

(
K ,�–L

)
,

where �– denotes the inverse of �. �

It is easy to check that Ṽ–φ(λK ,λL) = λnṼ–φ(K , L), for λ > . Therefore, we have the
following.

Proposition . Suppose K , L ∈ Sn
o . If φ ∈ � and � ∈ GL(n), then

Ṽ–φ(�K ,�L) = |det�|Ṽ–φ(K , L).

Lemma . Suppose fi, f are strictly positive and continuous functions on Sn–; φj,φ ∈
�; μk , μ are Borel probability measures on Sn–; i, j, k ∈ N. If fi → f pointwise, φj → φ

uniformly, and μk → μ weakly, then

∫

Sn–
φj(fi) dμk →

∫

Sn–
φ(f ) dμ, as i, j, k → ∞. (.)

Proof The continuity of fi and f , and fi → f pointwise guarantee that fi → f uniformly.
Thus, there exists an N ∈N, such that




min
u∈Sn–

f (u) ≤ fi(u) ≤  max
u∈Sn–

f (u), for i > N.

Let

cm = min

{



min
u∈Sn–

f (u), min
u∈Sn–

fi(u), with i ≤ N

}

and

cM = min
{

 max
u∈Sn–

f (u), max
u∈Sn–

fi(u), with i ≤ N

}
.

The strict positivity and the continuity of fi and f imply that  < cm ≤ cM < ∞. Thus,

cm ≤ f (u) ≤ cM and cm ≤ fi(u) ≤ cM, for u ∈ Sn– and i ∈N. (.)

Since φj → φ uniformly on [cm, cM], by (.) and fi → f uniformly, it follows that as
i, j → ∞, φj(fi) → φ(f ), uniformly on Sn–. Combined with μk → μ weakly, one concludes
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that, as i, j, k → ∞,

∫

Sn–
φj(fi) dμk →

∫

Sn–
φ(f ) dμ,

as for (.) as desired. �

Using Lemma ., we immediately obtain the following result.

Lemma . Suppose K , Ki, L, Lj ∈ Sn
o and φ,φk ∈ �. If Ki → K , Lj → L and φk → φ, then

limi,j,k→∞ Ṽ–φk (Ki, Lj) = Ṽ–φ(K , L).

3 Dual Orlicz geominimal surface areas
In this section we first propose the following problem.

Problem . For K ∈ Sn
o , find a convex body Q, amongst all convex bodies containing the

origin in their interiors, which solves the constrained infimum problem

G̃–φ(K) := inf
(
nṼ–φ(K , Q)

)
subject to V

(
Q∗) = ωn.

In order to demonstrate the existence and uniqueness of Problem ., the following sim-
ple fact will be needed.

Lemma . ([]) Let Cn denote the set of compact convex subsets of Euclidean n-space Rn,
and suppose Ki ∈Kn

o such that Ki → L ∈ Cn. If the sequence V (K∗
i ) is bounded, then L ∈Kn

o .

Now we answer Problem ., namely, the proof of Theorem . is given.

Proof of Theorem . Problem . can be equivalently restated as: For a fixed star body K ∈
Sn

o , there exists a sequence Mi ∈ Kn
o such that V (M∗

i ) = ωn, with Ṽ–φ(K , B) ≥ Ṽ–φ(K , Mi),
for all i, and nṼ–φ(K , Mi) → G̃–φ(K). To see that the Mi ∈Kn

o are uniformly bounded, let

Ri = R(Mi) = ρ(Mi, ui) = max
{
ρ(Mi, u) : u ∈ Sn–},

where ui is any of the points in Sn– at which this maximum is attained.
Let rK = minSn– ρK . Then rK B ⊆ K . From the definition (.) of the dual Orlicz mixed

volume and the Jensen inequality, it follows that

Ṽ–φ(K , B)
V (K)

≥ Ṽ–φ(K , Mi)
V (K)

=
∫

Sn–
φ

(
ρK (u)
ρMi (u)

)
dṼ ∗

K

≥ φ

(∫

Sn–

ρK (u)
ρMi (u)

dṼ ∗
K

)

≥ φ

(∫

Sn–

ρK (u)
Ri

dṼ ∗
K

)

= φ

(


nV (K)Ri

∫

Sn–
ρK (u)n+ dS(u)

)
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≥ φ

(
rK

nV (K)Ri

∫

Sn–
ρK (u)n dS(u)

)

= φ

(
rK

Ri

)
.

Namely,

ωnrn
Kφ

(
rK

Ri

)
≤ Ṽ–φ(K , Mi) ≤ Ṽ–φ(K , B) < ∞.

Since the Mi are uniformly bounded, the Blaschke selection theorem guarantees the
existence of a subsequence of the Mi, which will also be denoted by Mi, and a compact
convex L ∈ Cn, such that Mi → L. Since V (M∗

i ) = ωn, Lemma . gives L ∈Kn
o . Now, Mi →

L implies that M∗
i → L∗, and since V (M∗

i ) = ωn, it follows that V (L∗) = ωn. Lemma . can
now be used to conclude that L will serve as the desired body K̃ .

The uniqueness of the minimizing body is easily demonstrated as follows. Suppose
L, L ∈Kn

o and L �= L, such that V (L∗
 ) = ωn = V (L∗

), and

Ṽ–φ(K , L) = Ṽ–φ(K , L).

Define L ∈Kn
o , by

L =



◦ L+̃–



◦ L.

Since obviously

L∗ =



· L∗
 +




· L∗
,

and V (L∗
 ) = ωn = V (L∗

), it follows from the Brunn-Minkowski inequality (.) that

V
(
L∗) ≥ ωn,

with equality if and only if L = L.
By the definition (.) of the dual Orlicz mixed volume, together with the convexity of φ,

we have

Ṽ–φ(K , L) =

n

∫

Sn–
φ

(
ρK (u)

ρ 
 ◦L+̃–


 ◦L

(u)

)
ρK (u)n dS(u)

=

n

∫

Sn–
φ

(
ρK (u)

( 
ρL (u) + 

ρL (u) )–

)
ρK (u)n dS(u)

=

n

∫

Sn–
φ

(
ρK (u)

ρL (u)
+

ρK (u)
ρL (u)

)
ρK (u)n dS(u)

≤ 
n

∫

Sn–
φ

(
ρK (u)
ρL (u)

)
ρK (u)n dS(u) +


n

∫

Sn–
φ

(
ρK (u)
ρL (u)

)
ρK (u)n dS(u)

=



Ṽ–φ(K , L) +



Ṽ–φ(K , L)
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= Ṽ–φ(K , L)

= Ṽ–φ(K , L),

with equality if and only if L = L. Thus,

Ṽ–φ(K , L) < Ṽ–φ(K , L) = Ṽ–φ(K , L),

is the contradiction that would arise if it were the case that L �= L. This completes the
proof. �

In view of Theorem ., naturally, we introduce the following definition.

Definition . For K ∈ Sn
o , and φ ∈ �, we define the dual Orlicz geominimal surface area,

G̃–φ(K), of K by

G̃–φ(K) = inf
{

nṼ–φ(K , Q) : Q ∈Kn
o and V

(
Q∗) = ωn

}
.

When φ(t) = tp, with p ≥ , the dual Orlicz geominimal surface area reduces to Wang’s
p-geominimal surface area.

We will show that the dual Orlicz geominimal surface area of a stat body is invariant
under unimodular centro-transformations of the body.

Proposition . Suppose K ∈ Sn
o . If φ ∈ � and � ∈ SL(n), then

G̃–φ(�K) = G̃–φ(K).

Proof From Definition . of the dual Orlicz geominimal surface area, and Lemma ., we
have for � ∈ SL(n)

G̃–φ(�K) = inf
{

nṼ–φ(�K , Q) : Q ∈Kn
o and V

(
Q∗) = ωn

}

= inf
{

nṼ–φ

(
K ,�–Q

)
: �–Q ∈Kn

o and V
((

�–Q
)∗) = V

(
�tQ∗) = ωn

}

= G̃–φ(K). �

The unique body whose existence is guaranteed by Theorem . will be denoted by T̃φK ,
and it is called the dual Orlicz-Petty body of K . The polar body of T̃φK will be denoted by
T̃∗

φK , rather than (T̃φK)∗. Thus, for K ∈ Sn
o , the body T̃φK is defined by

G̃–φ(K) = nṼ–φ(K , T̃φK) and V
(
T̃∗

φK
)

= ωn.

The next proposition shows that the mapping T̃φ : Sn
o → Kn

o is a unimodular centro-
affine invariant mapping.

Proposition . If K ∈ Sn
o , then for � ∈ SL(n),

T̃φ�K = �T̃φK .
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Proof From the definition of T̃φ and Proposition .,

nṼ–φ(K , T̃φK) = G̃–φ(K) = G̃–φ(�K) = nṼ–φ(�K , T̃φ�K).

By Lemma .,

Ṽ–φ(K , T̃φK) = Ṽ–φ(�K , T̃φ�K) = Ṽ–φ

(
K ,�–T̃φ�K

)
.

The uniqueness part of Theorem . shows that T̃φK = �–T̃φ�K , which is the desired
result. �

An immediate consequence of the definition of G̃–φ and Lemma . is the following.

Proposition . If φ ∈ �, then the functional G̃–φ : Sn
o → (,∞), is continuous.

For Q ∈ Kn, let Cen(Q) ∈ int Q denote the centroid of Q. Associated with each Q ∈ Kn

is a point s = San(Q) ∈ int K , called the Santaló point of Q, the Santaló point also may be
defined as the unique s ∈ Q, such that

V
(
(–s + Q)∗

)
= min

{
V

(
(–x + Q)∗

)
: x ∈ int Q

}
,

or equivalently, as the unique s ∈ Q, such that

∫

Sn–
uh(–s + Q, u)–(n+)dS(u) = .

We recall that Kn
s denotes the set of convex bodies having their Santaló point at the origin.

Thus (see []),

Q ∈Kn
s if and only if Q∗ ∈Kn

c .

Now we give the proof of Theorem ..

Proof of Theorem . Suppose Q ∈ Kn
o , and s is the Santaló point of Q. Let Q = –s + Q ∈

Kn
s . Since V (Q∗

) ≤ V (Q∗) (see [], p.), then by the definition of the dual Orlicz geo-
minimal surface area, the dual Orlicz-Minkowski inequality (.) and the Blaschke-Santaló
inequality (.), it follows that

G̃–φ(K) = inf
{

nṼ–φ(K , Q) : Q ∈Kn
o and V

(
Q∗) = ωn

}

≥ inf

{
nV (K)φ

((
V (K)
V (Q)

) 
n
)

: Q ∈Kn
o and V

(
Q∗) = ωn

}

= inf

{
nV (K)φ

((
V (K)

V (s + Q)

) 
n
)

: Q ∈Kn
s and V

(
Q∗


) ≤ ωn

}

= inf

{
nV (K)φ

((
V (K)
V (Q)

) 
n
)

: Q ∈Kn
s and V

(
Q∗


) ≤ ωn

}

≥ nV (K)φ
((

V (K)
ωn

) 
n
)

.
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By the equality conditions of the dual Orlicz-Minkowski inequality (.) and the Blaschke-
Santaló inequality (.), we see that equality holds in (.) if and only if K is an ellipsoid
centered at the origin. �

Proof of Theorem . By the dual Orlicz-Minkowski inequality (.), we get

ωnG̃–φ(K)φ
((

V (Q∗)
V (K∗)

) 
n
)

= inf

{
nṼ–φ(K , Q)φ

((
V (Q∗)
V (K∗)

) 
n
)

V
(
Q∗) : Q ∈Kn

o and V
(
Q∗) = ωn

}

≤ inf
{

nṼ–φ(K , Q)Ṽφ

(
Q∗, K∗) : Q ∈Kn

o and V
(
Q∗) = ωn

}
. (.)

Since K ∈ Kn
c , taking Q = K in (.), and combining equation (.) with inequality (.),

we get

ωnG̃–φ(K) ≤ nV (K)V
(
K∗) ≤ nω

n,

i.e.,

G̃–φ(K) ≤ nωn. (.)

Similarly,

G̃–φ

(
K∗) ≤ nωn. (.)

Combining (.) and (.), we get

G̃–φ(K)G̃–φ

(
K∗) ≤ (nωn). (.)

By the equality conditions of the dual Orlicz-Minkowski inequality (.) and the Blaschke-
Santaló inequality (.), we see that equality in (.) holds if and only if K is an ellipsoid
centered at the origin. �

Proof of Theorem . By the definition of the dual Orlicz geominimal surface area and φi

(i = , ) being strictly increasing on (,∞), we have

φ

(
nnV (K)n

G̃–φ (K)nφ(V (K)–)

)

= φ

(
nnV (K)n

inf{nnṼ–φ (K , Q)n : Q ∈Kn
o and V (Q∗) = ωn}φ(V (K)–)

)

≤ φ

(
nnV (K)n

inf{nnṼ–φ (K , Q)n : Q ∈Kn
o and V (Q∗) = ωn}φ(V (K)–)

)

≤ φ

(
nnV (K)n

inf{nnṼ–φ (K , Q)n : Q ∈Kn
o and V (Q∗) = ωn}φ(V (K)–)

)

= φ

(
nnV (K)n

G̃–φ (K)nφ(V (K)–)

)
.
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According to the inverse φ–
i (i = , ) of φi (i = , ) being strictly increasing and having

continuity on (,∞), it follows that

φ–


(
nnV (K)n

G̃–φ (K)nφ(V (K)–)

)
≤ φ–



(
nnV (K)n

G̃–φ (K)nφ(V (K)–)

)
.

This completes the proof. �
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