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1 Introduction
Let (M, g) be an n-dimensional compact Riemannian manifold. In [3], Perelman intro-
duced the functional

f(g,f)=/M(|Vf|2+R)e‘fdv (1.1)

and proved that the F-functional is nondecreasing under the Ricci flow coupled to a back-
ward heat-type equation

%gll = _2le’ (1.2)
fi==Af +|Vf]? =R,

where R is the scalar curvature depending on the metric g. More precisely, they proved
that under the system (1.2),

4r. 2/ R; + f*e” dv > 0. (1.3)
dt M

If we define
rMg) = i?f]-"(g,f), (1.4)
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where the infimum is taken over all smooth functions f which satisfy

/ el dv=1, (1.5)
M

then the nondecreasing of the F-functional implies the nondecreasing of A(g). In partic-
ular, A(g) defined in (1.4) is the lowest eigenvalue of the operator

—4A +R. (1.6)

In [4], Cao considered the eigenvalues of the operator —A + g on manifolds with non-
negative curvature operator and showed that the eigenvalues are nondecreasing along the
Ricci flow. Using the same technique, Li [2] also obtained the same monotonicity of the
first eigenvalue of the operator —A + § by removing the assumption on a nonnegative
curvature operator.

Later, Cao [1] proved the first eigenvalues of the operator —A + bR with the constant
b > 1/4 are nondecreasing along the Ricci flow. That is, they assume u = u(x, £) is the cor-

responding positive eigenfunction of A(t):
(-A +bRu = 1"u (L.7)

with [} u*dv =1, then

d 1 B 1 _
Exb = EfM IRy +fi|*e” dv + (2b— 5) fM |Rj|*e¢” dv>0 (1.8)

by letting f = —2 log . Multiplying both sides of (1.7) with # and integrating on M, we see
that the first eigenvalue given in (1.7) satisfies

A(t) = inf F?(g, u), 1.9)
where
Fbg,u) = / (IVul* + bRu?) dv. (1.10)
M

In particular,

Plgu = ;7). ()

where
Fg.f) :/ (IVf1* + cR)e” dv
M

ifweletf = —2log u. Itis easy to see from (1.11) that the nondecreasing of the F?-functional
is equivalent to the nondecreasing of A(¢).
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In this paper, we consider the monotonicity along the Ricci flow of lowest constant A2(g)
such that to the following nonlinear equation there exist positive solutions:

—Au + aulogu + bRu = Azu (1.12)
with
/ wdv=1, (1.13)
M

where a is a real constant. In particular, (1.7) can be seen a special case of (1.12) when
a = 0. For the lowest constant A2(g) such that to the nonlinear equation (1.12) there exist
positive solutions, we prove the following.

Theorem 1.1 Let g(¢), t € [0, T) be a solution to the Ricci flow

3
2287 = 2R, (1.14)

on a compact Riemannian manifold M. Then for b > i, the lowest constant AZ (g) such that

to the nonlinear equation (1.12) with (1.13) there exist positive solutions satisfies

d 2\ 1 2 1
— Az(t) + ﬂt =—/ eldv+ (26— = / |R,»/|2e’fdv

>0, (1.15)

a
Rl‘/‘ +ﬁ7 + Egij

where f = -2 log u.
For the normalized Ricci flow, we can obtain the following.

Theorem 1.2 Let g(¢), t € [0, T) be a solution to the normalized Ricci flow

a r
581 = -2\ Ry - 8 (1.16)
on a compact Riemannian manifold M, where r = (fM Rdv)/(fM dv) is the average scalar

curvature. Then the lowest constant Az(g) such that to the nonlinear equation (1.12) with
(1.13) there exist positive solutions satisfies

d Ab+na2t +2r}\h_ 1/
dt 4 8 n - 2 M
1
+ (2b— 5) / IR;|%e dv, (1.17)
M

where f = —2logu and A" is the lowest eigenvalue of (1.7).

2
e’ dv

a
Rij+fi + 58i

In particular, when # = 2, we have R;; = % g; and the normalized Ricci flow (1.16) becomes
%g,; =—(R-r)g;. Hence, %r = 0, which implies that r is a constant (or see p.455 in [5] for
an alternative proof). Then from the estimate (1.17), we obtain the following.
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Theorem 1.3 Let g(t), t € [0, T) be a solution to the normalized Ricci flow (1.16) on a com-
pact surface M?. Then for b > i, the lowest constant 1L(g) such that to the nonlinear equa-
tion (1.12) with (1.13) there exist positive solutions satisfies

d (., a Loy 1
- i A i
dt<ku+ 4t+r/(; (s)ds) 2/M
1
+<2b——)/ |R;|%e dv
2/ Jm

>0, (1.18)

2
e’ dv

a
R,‘j + Jij + Egl‘]‘

where f = —2logu and 1" is the lowest eigenvalue of (1.7).

Remark 1.1 In particular, when a = 0, our estimate (1.15) reduces to Theorem 1.5 of Cao

in [1] and the estimate (1.18) reduces to the Corollary 2.4 of Cao in [1], respectively.

On the other hand, under the transformation f = —2logu = —logv with u? = v, equation
(1.2) becomes

8 = ~2R; (1.19)
Ve =—=Av+ Ry.

In particular, the second equation in (1.19) is exactly the conjugate heat equation intro-
duced by Perelman. In [6], Cao and Zhang obtained differential Harnack inequalities for
positive solutions of the nonlinear parabolic equation of the type v, = Av —vlogv + Rv.

Extending the second equation in (1.19) to the following nonlinear version:

v, =—Av+avlogv+ Sy, (1.20)
Guo and Ishida [7, 8] studied Harnack inequalities for positive solutions of equation (1.20)
on a compact Riemannian manifold with a family of g(¢) evolving by a geometric flow

% g = —2S;, where S;; is a family of smooth symmetric two-tensor and S = gS;;. Clearly,

there is a one-to-one relation for the following two equations:

3 9
Ev:-Avmwogva — af=—Af+ |Vf|* +af -R (1.21)

under f = —log v. Therefore, a natural problem is to consider the monotonicity of

Folef) = fM [VfP + R + d(f + V]e dv 122)

under the Ricci flow coupled to a nonlinear backward heat-type equation

8 = ~2R (1.23)
fe==Af +|VfP +af - R,

where ¢, d are two real constants.
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For the functional ?;(g, f), we derive the following monotonicity formula.

Theorem 1.4 Letg(t),t € [0, T) be a solution to the Ricci flow (1.14) on a compact Rieman-
nian manifold M. Then all functionals 7;(g, f) defined by (1.22) under the system (1.23)

satisfy

d—
%fk%f_k(g’f)=2/M

+ %ak]-"l(g, 1) +aF@.f). (1.24)

2 2
e’ dv+2(k - 1)/ e’ dv
M

a a
Rij+fi— ngi/ Ry - Zf &

In particular, if R(t) > 0 for all t and a > 0, k > 1, then %]_'—k%k (g.f)=o0.
Remark 1.2 Choosing a = 0 in (1.24), we obtain Theorem 4.2 of Li in [2].

2 Proof of Theorems 1.1 and 1.2

Proof of Theorems 1.1 Let u be a positive solution to the following nonlinear elliptic equa-

tion:
—Au + aulogu + bRu = Azu. (2.1)

Multiplying both sides of (2.1) with u and integrating on M, we have
AL = / (IVul* + au? log u + bRu?) dv. (2.2)
M

If the metric g(¢) evolves by (1.14), we have % dv = —Rdv. It follows from (2.2) that

d . )
—AZ = / (2R,',»u‘u’ + 2(u) u; + 2auulog u + auu, + bRu> + ZbRuut) dv
M

dt
- / (|Vz,t|2 +au®logu + bRu2)Rdv. (2.3)
M
Applying
2 / Ryu' dv = / (—R v — 2Ry u) dv (2.4)
M M
and
—/ |Vul*Rdy = / (RAu + R;u')udv (2.5)
M M

into (2.3) yields

d 3
EAZ = f [—2Ru’u + bRu* + auu,
M

+2uy(—Au + aulogu + bRu) — Ru(—Au + aulogu + bRu)] dv
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= / [—ZRi,u’ju + bR + 4 (uz)t] dv+ A(/ u? dv)
M 2 M t
= / [—ZRijui/u + bR + zRuz] dv, (2.6)
" 2
where the last equality used
/ [(#),-Ru*]dv=0 (2.7)
M
from (1.13). Noticing R, = AR + 2|R,',»|2 for the Ricci flow, hence from (2.6) we have
d b_ i 2 2N, %50
—A0 —2R;u’u + bu® (AR + 2|Rj|*) + —Ru” | dv
dat * Ju 2

= / |:—2R,7u’7u + bRA(uz) + 2[9|Rij|2u2 + gRuz] dv. (2.8)
M

Taking a transformation f = —2 log &, which is equivalent to u? = e, then

y 1 .. 1. .
- <_§ i, Zflf]>e_£' (2.9)
Thus, (2.8) can be written as
d., § Lo g 2 2, 45|
= Rilf’ ~ SRif'f ~BRAS + bRIVS® + 2bIRsI* + TR | dbv. (2.10)

Using the second Bianchi identity R; = 2R;;/ again, we have
-b / RAfe” dv = / (bR ' - bRIVf*)e dv
M M
= / (~2bRyf " + 2bRyf'f — bR|VS|*)e™ dv. (2.11)
M

Therefore, inserting (2.11) into (2.10) yields

ii 1 .
iki =(1- 217)/ Ryfie” dv + <2b - —) f Ryf'fie” dv

+2b / |Rj|%e” dv + — f Re” dv. (2.12)
Integrating by parts again, one has
. . 1
/ Ryfe” dv = / Ryf'fle’ dv— = f RAe” dv (2.13)
M M 2 Jm
and
/Rijfije_fdv+/ Ifil*e” dv
M M

1 . 1
:_/ A|Vf|26‘fdv—/ (Af)J’e‘fdv——/ RAe dy
2 Jym M 2 Jym
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1 1
= —/ [Af— ~|VFIE + —R:|Ae_fdv
" 2 2
1
= (Zb— —)] RAe’de—a/ |Vf|ze’fdv,
2/ Jm M
where the last equality in (2.14) was used with
b 1 2
24 = Af = S IVf ~af + 2R,

By virtue of (2.14), subtracting (2.13), we obtain

/[ﬂj|2e’fdv:2b/ RAe’fdv—/ R,ifijf/e’fdv—a/ \Vf2e™ dv.
M M M M

It follows from (2.13) and (2.14) that

ii 1 .
ik’; =(1- 217)/ Ryfie” dv + <2b - —) f Ryf'fle” dv
dt M 2/ Jm

+2b/ |Rij|2e’fdv+ ‘_’/ Re” dv
M 2 Jm
y 1 .
= / Rlif‘/e’fdv——/ Ryf'fle” dv
M 2 Jm
+2b/ |Rij|2e’fdv+ 6—1/ Re’fdv+bf RAe” dv
M 2 Jm M

= f Rlif‘7e’f dav + 219/ [R;j 27 dv + E/ Re” dv
M M 2 Jum

1
+ E/ [fij|ze’fdv+g/ (Af)e” dv
M M

1 2 1
= _/ e’ dv+ (219— —)/ |R,»,»|ze’fdv
2 Jm 2) Jum

a
Ri/ +ﬁ‘1‘ + Eg,‘j

and the desired estimate (1.15) is achieved.
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(2.14)

(2.15)

(2.16)

(2.17)

d

Proof of Theorem 1.2 If the metric g(t) evolves by (1.16), we have % dv=—-R-r)dv. It

follows from (2.2) that

d
dt

+ 2bRuut) dv — / (|V1,t|2 + au? logu + bRuz)(R —r)dv.
M
Applying (2.4) and

_/ sz(R_,)dv:/ [(R-r)Au+ R |udv
M M

.. 2r ,
—AZ = / <2R,~ju‘u’ — |\ Vul? + 2(uy) w; + 2auu, 1og u + auu, + bR,u*
M n

(2.18)

(2.19)
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to (2.18) yields

d . 2r
&)‘2 = / I:—ZRZ;u”u - Z\Vul? + bR + auu,
M n

+ 2uy(—Au + aulogu + bRu) — (R — r)u(—Au + aulogu + bRu)] dv

" 2
= / —2R;u’u — —r|Vz,t|2 + bR + Z(uz) dav+ A / u* dv
M n 24t M ¢

o2
_ / |:—2Rl7u’]u ~ZL\VupP bR + fRuz] dv.
M n 2
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(2.20)

Noticing R, = AR + 2|R;|* — %R for the normalized Ricci flow, we obtain from (2.20)

d o2
Lk / 2Ry~ S|V ul® + bR + ZRMZ] dv
ML n 2

-
g

—&/ (IVu|2+bRu2)dv.
n Jm

Using (2.9), then (2.21) can be written as

d
dt

2r
n

1
(—|Vf|2 +bR>e‘fdv.
wm \ &

By virtue of a similar computation, we can obtain

d, 1f

Zab_Z

at ¢ 2 Jyu
na* 2r

1
-——— (—Af+bR)efdv,
8 n Jm 4

a
le +ﬁ1' + igij

which gives

d 2 2 1 2
— A2+ﬂt +—rkb=—/ e” dv

a
Rij+fi + 58i

1
+ (2b— —) / IR;|%e™ dbv.
2) Jum

Then the desired estimate (1.17) is attained.

9 2
2Ry~ = |Vul® + bu? (AR + 2[Ry - —rR)
n n

—2[\)1‘]‘1/![714 + bRA (uz) + 2b|Rij|2M2 + gRu2j| dv

.1 .
—ab- / [R,lf”— Elef’ﬂ—bRAf+bR|Vf|2+2b|R,',»|2+ ;—lR:|e"f dv
M

2
1

e’ dv+ (219— —)/ |Ri,»|2e_f dv
2) Jm

(2.21)

(2.22)

(2.23)

(2.24)
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3 Proof of Theorem 1.4
Under the following coupled system (1.23), by a direct computation, we have the following:

%(e’f dv) = ~(f; + R)e7 dv = [Af - |Vf|* - af |e dv
=—(ae?)dv - afe” dv, (3.1)
IV = 28977+ 2f (),
=2R7ff; + 2f (- Af + |VfI” +af - R),
= 2RV = 2f (AF)i + A Uff; + 2al V> — 2R f". (3.2)

Thus, we have

jt/ fdv——a/fefdv, (3.3)
—/Refdv / AR+2|R,,|2—afR] 7 dy - / (Ae‘f)dv
M

- /M [2IR;|* - afR]e” dv, (3.4)
d
o fM fe dv= /M (af = R)e™ dv - fM f(aeT)dv- /M af*e” dv

:/[af af> —= R+ Af)]e? dv (3.5)

M
and

d
- V£2e”
z fM Vf e dv
_ / [2RVff; — 2f (Af); + AFff; + 2alVF 12 - 2Rf e dv
M
- / (Ae‘f)|Vf|2dv— / af |Vf*e” dv
M M
_ /M [2£2 = 4F (AF); + 4FIffy + 2alVf 1 — 2R f e dv
- / af\Vf|*e” dv. (3.6)
M
By virtue of the Bochner formula with respect to the f-Laplacian, we have
1 L
EAf|Vu|2 = ui + ui(Apu)i + (RY + [ wuj,  Vu,
and hence
0= / [f; +fi(Arf)i + (R +f’7)f¢}§]e‘f dv
M

= | 7 +£(AN): + RIff — fiff e dv. 3.7)
M J
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Therefore, (3.6) becomes

d y )
—/ |Vf|ze_fdv:/ [2 f+4R‘1flﬁ+2¢|Vf|2—2RJ’]e_fdv—/ af |Vf|*e” dv
at Ju m ! M

:/ [Zf; +4Rf; + 2a|Vf|2]e_f dv—/ a(f +1)(Af)e” dv.  (3.8)
M M

Therefore, from (3.4) and (3.8), we obtain

2

d a
o /M(R+ |Vf|2)e-fdv:2/M Ry +fj = /8 e’ dv
na’
-— / frel dv+ a/ IVf2e™ dv. (3.9)
8 Ju M
Noticing (3.5) tells us that
20 dy= & o v
—a | feldv=— (f+Dedv )+ | R+ Af)e” dv. (3.10)
M dt\Jm M

Thus, (3.9) can be written as
i/ R+|Vf|2+ﬁ(f+1) e’ dv
dt Jy 8

o

Since (3.4) holds, we have

i/ Re’fdv:Z/

which gives

2
Rj+fi— ngg el dv+ % /M(R + |Vf|2)e_f dv+a/M |Vf|ze_fdv. (3.11)

2 2
e’ dv- el f fre? dv, (3.12)
8 Jm

a
R - Efgij

d na a. |’
a/M[R+?(f+l)]e‘fdv:2/M Ry 12 el dv
s / R+ |Vf2)e dv. (3.13)
8 Jm
Therefore, we have
d/ Vf k| R+ 2241y | Yol a
— + + —(f+ e” dv
dt Ju 8
a. |? a . |?
22/ Rl‘]'+ ij — _fgij e_fdv+2(k—1)/ Rl']'— _fgij e_fdv
M 4 M 4
+ Ek/ (R+ |Vf|2)e_fdv+a/ |Vf|2e_fdv (3.14)
8 Jm M

and the desired estimate (1.24) is obtained.
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4 Conclusions

We establish the first variation formula of the lowest constant 1%(g) along the Ricci flow
and the normalized Ricci flow, such that to the following nonlinear equation there exist
positive solutions:

—Au +aulogu + bRu = qu (4.1)

with [}, u*dv = 1, where a is a real constant. Equation (4.1) can be seen as a nonlinear
version of eigenvalue problem of the operator —Au + bR. In particular, when a = 0, our
estimate (1.15) in Theorem 1.1 reduces to Theorem 1.5 of Cao in [1] and the estimate (1.18)
in Theorem 1.3 reduces to the Corollary 2.4 of Cao in [1], respectively.

On the other hand, we obtained the first variation formula (1.24) of the functional

f;(g,f) = /M[IVf|2 +cR+d(f + 1)]e*fdv

under the Ricci flow coupled to a nonlinear backward heat-type equation

78 = —2Ry
fo==Af +IVfI> +af =R,

where ¢,d are two real constants. In particular, when a = 0 in (1.24), we obtain Theo-
rem 4.2 of Li in [2].
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