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Abstract
This paper is dedicated to the introduction a new class of equilibrium problems
named generalized multivalued equilibrium-like problems which includes the classes
of hemiequilibrium problems, equilibrium-like problems, equilibrium problems,
hemivariational inequalities, and variational inequalities as special cases. By utilizing
the auxiliary principle technique, some new predictor-corrector iterative algorithms
for solving them are suggested and analyzed. The convergence analysis of the
proposed iterative methods requires either partially relaxed monotonicity or jointly
pseudomonotonicity of the bifunctions involved in generalized multivalued
equilibrium-like problem. Results obtained in this paper include several new and
known results as special cases.
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1 Introduction
During the last decades, the theory of variational analysis including variational inequalities
(VI) have attracted a lot of attention because of its applications in optimization, nonlinear
analysis, game theory, economics, and so forth; see, for example, [] and the references
therein. Because of the importance and active impact of VI in branches of sciences, en-
gineering, and social sciences, it has been extended and generalized in many different
directions. It has been used as a tool to study different aspects of optimization problems;
see, for example, [–] and the references therein. By replacing the linear term appear-
ing in the formulation of variational inequalities by a vector-valued term, Parida et al.
[] and Yang and Chen [] independently introduced and studied a class of variational in-
equalities known as variational-like inequalities or pre-variational inequalities which is an
important extension of the variational inequalities. Another useful and important gener-
alization of variational inequalities is a class of variational inequalities known as hemivari-
ational inequalities involving the nonlinear Lipschitz continuous functions. It should be
pointed out that the hemivariational inequalities are connected with nonconvex and pos-
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sibly nonsmooth energy functions and have important applications in structural analysis
and nonconvex optimization. For more details, we refer the reader to [–].

On the other hand, the concept of equilibrium plays a central role in various applied
sciences, such as physics (especially, mechanics), economics, finance, optimization, im-
age reconstruction, network, ecology, sociology, chemistry, biology, engineering sciences,
transportation, and other fields. The study of equilibrium problems (EP), which was intro-
duced by Blum and Oettli [] in , in terms of their formulation, qualitative analysis,
and computation has been the focus of much research in the past several decades and has
given rise to the development of a variety of mathematical methodologies. Examples of
mathematical formulations that have been used for equilibrium problems are: nonlinear
equations, optimization problems, complementarity problems, fixed point problems, and,
most recently, variational inequality problems; see, for example, [–] and the references
therein.

In recent years, EP has received much attention by many authors due to the fact that it
provides a unified model including the above mentioned problems, and various important
generalizations of it have been proposed and analyzed; see, for example, [–] and the
references therein. An important and useful generalization of EP is the multivalued equi-
librium problems involving a nonlinear bifunction. It has been shown that a wide class of
unrelated odd order and nonsymmetric free, moving, obstacle and equilibrium problems
can be studied via the multivalued equilibrium problems.

Inspired and motivated by the research going in this interesting and fascinating area,
Noor [, ] introduced and investigated the class of equilibrium-like (or invex equilib-
rium) problems as a useful and important extension of the class of equilibrium problems. It
has been shown that equilibrium-like problems include equilibrium problems, variational-
like inequalities, variational inequalities and their invariant forms as special cases. In the
meanwhile, related to the hemivariational inequalities, Noor [] introduced and stud-
ied the class of hemiequilibrium problems as a generalization of the class of equilibrium
problems. It is shown that the hemiequilibrium problems include equilibrium problems,
hemivariational inequalities and variational inequalities as special cases. It is worth men-
tioning that the hemiequilibrium problems and equilibrium-like problems are two quite
different extensions of the classical equilibrium problems.

One of the most important and interesting problems in the theory of variational in-
equalities is the development of numerical methods which provide an efficient and imple-
mentable algorithm for solving variational inequalities and its generalizations. In the last
decades, many efforts have been devoted to the development of efficiency and of imple-
mentable methods for solving variational inequalities and their extensions. Though, vari-
ous numerical techniques are proposed for solving variational inequalities, but the nature
of equilibrium problems does not allow us to use these methods in their present forms.
As an example, projection technique, one of the main methods used in existence theory
of variational inequalities, cannot be used in a similar way for equilibrium problems. The
auxiliary principle technique helps to avoid these constraints and addresses the demand of
nature of equilibrium problems in a right way. In this technique, a supporting (auxiliary)
problem linked to the original one is considered. This actually is a way to define a map-
ping that relates the original problem wit the auxiliary problem. This technique was used
by Glowinski et al. [] to study the existence of a solution of mixed variational inequality
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and later was developed by many authors for solving various classes of variational inequal-
ities and equilibrium problems; see, for example, [, –] and the references therein.

Motivated and inspired by the work mentioned above, the purpose of this paper is to in-
troduce a new class of equilibrium problems named generalized multivalued equilibrium-
like problems (GMELP), which includes hemiequilibrium problems, equilibrium-like
problems, equilibrium problems, hemivariational inequalities, and variational-like in-
equalities as special cases. By using the auxiliary principle technique, we suggest and ana-
lyze some predictor-corrector methods for solving GMELP. The convergence analysis of
the proposed iterative methods requires either partially relaxed monotonicity or jointly
pseudomonotonicity of the bifunctions involved in GMELP. As special cases, one can ob-
tain several new and known methods for solving variational inequalities and equilibrium
problems. The results presented in this paper generalize and improve some recent results
in this field.

2 Formulations, algorithms, and convergence results
Let H be a real Hilbert space whose norm and inner product are denoted by ‖ · ‖ and
〈·, ·〉, respectively. Let K be a nonempty closed set in H and let CB(H) be the family of all
nonempty, closed, and bounded subsets of H. Suppose further that S, T : K → CB(H) are
two multivalued operators and let g : K → K and η : K × K → H be two operators. For
given bifunctions F , G : H×H → R, we consider the problem of finding u ∈ K , ν ∈ T(u),
and ϑ ∈ S(u) such that

F
(
ν, g(v)

)
+ G

(
ϑ ,η

(
g(v), g(u)

)) ≥ , ∀v ∈ K , (.)

which is called the generalized multivalued equilibrium-like problem (GMELP).
If η(x, y) = x – y, for all x, y ∈ K , then the problem (.) reduces to the problem of finding

u ∈ K , ν ∈ T(u), and ϑ ∈ S(u) such that

F
(
ν, g(v)

)
+ G

(
ϑ , g(v) – g(u)

) ≥ , ∀v ∈ K , (.)

which is called the generalized multivalued hemiequilibrium problem (GMHEP).
It should be remarked that by taking different choices of the operators S, T , η, g , and the

bifunctions F and G in the above problems, one can easily obtain the problems studied in
[, ] and the references therein.

In the sequel, we denote by GMELP(F , G, S, T ,η, g, K) and GMHEP(F , G, S, T , g, K) the
set of solutions of the problems (.) and (.), respectively.

Lemma . [] Let X be a complete metric space, T : X → CB(X) be a multivalued map-
ping. Then for any ε >  and for any given x, y ∈ X, u ∈ T(x), there exists v ∈ T(y) such
that

d(u, v) ≤ ( + ε)M
(
T(x), T(y)

)
,

where M(·, ·) is the Hausdorff metric on CB(X) defined by

M(A, B) = max
{

sup
x∈A

inf
y∈B

‖x – y‖, sup
y∈B

inf
x∈A

‖x – y‖
}

, ∀A, B ∈ CB(X).
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Let F , G, S, T , η, and g be the same as in GMELP (.). For given u ∈ K , ν ∈ T(u), and
ϑ ∈ S(u), we consider the auxiliary generalized multivalued hemiequilibrium-like problem
of finding w ∈ K such that

ρF
(
ν, g(v)

)
+ ρG

(
ϑ ,η

(
g(v), g(u)

))
+

〈
g(w) – g(u), g(v) – g(w)

〉 ≥ , ∀v ∈ K , (.)

where ρ >  is a constant. Obviously, if w = u, then (w,ν,ϑ) is a solution of GMELP (.).
This observation and Nadler’s technique [] enables us to suggest the following finite
step predictor-corrector method for solving GMELP (.).

Algorithm . Let F , G, S, T , η, and g be the same as in GMELP (.). For given u ∈ K ,
ν ∈ T(u), and ϑ ∈ S(u), compute the iterative sequences {un}, {νn}, and {ϑn} by the
iterative schemes

ρF
(
ν,n, g(v)

)
+ ρG

(
ϑ,n,η

(
g(v), g(u,n)

))

+
〈
g(un+) – g(y,n), g(v) – g(un+)

〉 ≥ , ∀v ∈ K , (.)

ρi+F
(
νi+,n, g(v)

)
+ ρi+G

(
ϑi+,n,η

(
g(v), g(ui+,n)

))

+
〈
g(yi,n) – g(yi+,n), g(v) – g(yi,n)

〉 ≥ , i = , , . . . , q – ,∀v ∈ K , (.)

ρqF
(
νn, g(v)

)
+ ρqG

(
ϑn,η

(
g(v), g(un)

))

+
〈
g(yq–,n) – g(un), g(v) – g(yq–,n)

〉 ≥ , ∀v ∈ K , (.)

νi,n ∈ T(yi,n) : ‖νi,n+ – νi,n‖ ≤ (
 + ( + n)–)M

(
T(yi,n+), T(yi,n)

)
,

i = , , . . . , q – , (.)

ϑi,n ∈ S(yi,n) : ‖ϑi,n+ – ϑi,n‖ ≤ (
 + ( + n)–)M

(
S(yi,n+), S(yi,n)

)
,

i = , , . . . , q – , (.)

νn ∈ T(un) : ‖νn+ – νn‖ ≤ (
 + ( + n)–)M

(
T(un+), T(un)

)
, (.)

ϑn ∈ S(un) : ‖ϑn+ – ϑn‖ ≤ (
 + ( + n)–)M

(
S(un+), S(un)

)
, (.)

where ρi >  (i = , , . . . , q) are constants and n = , , , . . . .

If η(x, y) = x – y, for all x, y ∈ K , then Algorithm . reduces to the following predictor-
corrector method.

Algorithm . For given u ∈ K , ν ∈ T(u) and ϑ ∈ S(u), compute the iterative se-
quences {un}, {νn}, and {ϑn} by the iterative schemes

ρF
(
ν,n, g(v)

)
+ ρG

(
ϑ,n, g(v) – g(u,n)

)

+
〈
g(un+) – g(y,n), g(v) – g(un+)

〉 ≥ , ∀v ∈ K ,

ρi+F
(
νi+,n, g(v)

)
+ ρi+G

(
ϑi+,n, g(v) – g(ui+,n)

)

+
〈
g(yi,n) – g(yi+,n), g(v) – g(yi,n)

〉 ≥ , i = , , . . . , q – ,∀v ∈ K ,
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ρqF
(
νn, g(v)

)
+ ρqG

(
ϑn, g(v) – g(un)

)

+
〈
g(yq–,n) – g(un), g(v) – g(yq–,n)

〉 ≥ , ∀v ∈ K ,

νi,n ∈ T(yi,n) : ‖νi,n+ – νi,n‖ ≤ (
 + ( + n)–)M

(
T(yi,n+), T(yi,n)

)
, i = , , . . . , q – ,

ϑi,n ∈ S(yi,n) : ‖ϑi,n+ – ϑi,n‖ ≤ (
 + ( + n)–)M

(
S(yi,n+), S(yi,n)

)
, i = , , . . . , q – ,

νn ∈ T(un) : ‖νn+ – νn‖ ≤ (
 + ( + n)–)M

(
T(un+), T(un)

)
,

ϑn ∈ S(un) : ‖ϑn+ – ϑn‖ ≤ (
 + ( + n)–)M

(
S(un+), S(un)

)
,

where ρi >  (i = , , . . . , q) are constants and n = , , , . . . .

In order to study the convergence analysis of the iterative sequences generated by Algo-
rithm ., we need the following definitions.

Definition . Let T : K → CB(H) be a multivalued operator and g : K → K be an oper-
ator. The bifunction F : H×H →R is said to be

(a) g-monotone with respect to T , if

F
(
w, g(u)

)
+ F

(
w, g(u)

) ≤ , ∀u, u ∈ K , w ∈ T(u), w ∈ T(u);

(b) partially α-relaxed g-monotone with respect to T , if there exists a constant α > 
such that

F
(
w, g(u)

)
+ F

(
w, g(z)

) ≤ α
∥
∥g(z) – g(u)

∥
∥,

∀u, u, z ∈ K , w ∈ T(u), w ∈ T(u).

It should be pointed out that if z = u, then the partially α-relaxed g-monotonicity of the
bifunction F with respect to T reduces to g-monotonicity with respect to T . Meanwhile,
if g ≡ I , then parts (a) and (b) of Definition . reduce to the definition of monotonicity
and partially α-relaxed monotonicity of the bifunction F with respect to T , respectively.

Definition . Let S : K → CB(H) be a multivalued operator and let g : K → K and η :
K × K →H be two operators. The bifunction G : H×H →R is said to be

(a) g-η-monotone with respect to S, if

G
(
w,η

(
g(u), g(u)

))
+ G

(
w,η

(
g(u), g(u)

)) ≤ ,

∀u, u ∈ K , w ∈ S(u), w ∈ S(u);

(b) partially β-relaxed g-η-monotone with respect to S, if there exists a constant β > 
such that

G
(
w,η

(
g(u), g(u)

))
+ G

(
w,η

(
g(z), g(u)

)) ≤ β
∥
∥g(z) – g(u)

∥
∥,

∀u, u, z ∈ K , w ∈ S(u), w ∈ S(u).

It should be remarked that if z = u, then the partially β-relaxed g-η-monotonicity of
the bifunction G with respect to S reduces to g-monotonicity of the bifunction G with
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respect to S. Furthermore, for the case when η(x, y) = x – y, for all x, y ∈ K , then parts (a)
and (b) of Definition . reduce to the definition of g-monotonicity and partially β-relaxed
g-monotonicity of the bifunction G with respect to S, respectively.

Definition . A multivalued operator T : H → CB(H) is said to be M-Lipschitz contin-
uous with constant δ, if there exists a constant δ >  such that

M
(
T(u), T(v)

) ≤ δ‖u – v‖, ∀u, v ∈H,

where M(·, ·) is the Hausdorff metric on CB(H).

The next proposition plays a crucial role in the study of convergence analysis of the
iterative sequences generated by Algorithm ..

Proposition . Let F , G, S, T , η, and g be the same as in GMELP (.) and let û ∈ K ,
ν̂ ∈ T(u), and ϑ̂ ∈ G(û) be the solution of GMELP (.). Suppose further that {un} and {yi,n}
(i = , , . . . , q – ) are the sequences generated by Algorithm .. If F is partially α-relaxed
g-η-monotone with respect to T , and G is partially β-relaxed g-η-monotone with respect
to S, then

∥∥g(û) – g(un+)
∥∥ ≤ ∥∥g(û) – g(y,n)

∥∥ –
(
 – (α + β)ρ

)∥∥g(un+) – g(y,n)
∥∥, (.)

∥
∥g(û) – g(yi,n)

∥
∥ ≤ ∥

∥g(û) – g(yi+,n)
∥
∥ –

(
 – (α + β)ρi+

)∥∥g(yi,n) – g(yi+,n)
∥
∥, (.)

∥
∥g(û) – g(yq–,n)

∥
∥ ≤ ∥

∥g(û) – g(un)
∥
∥ –

(
 – (α + β)ρq

)∥∥g(yq–,n) – g(un)
∥
∥, (.)

for all n ≥ , where i = , , . . . , q – .

Proof Since û ∈ K , ν̂ ∈ T(u), and ϑ̂ ∈ S(u) are the solution of GMELP (.), we have

F
(
ν̂, g(v)

)
+ G

(
ϑ̂ ,η

(
g(v), g(û)

)) ≥ , ∀v ∈ K . (.)

Taking v = un+ in (.) and v = u in (.), we get

F
(
ν̂, g(un+)

)
+ G

(
ϑ̂ ,η

(
g(un+), g(û)

)) ≥  (.)

and

ρF
(
ν,n, g(û)

)
+ ρG

(
ϑ,n,η

(
g(û), g(u,n)

))

+
〈
g(un+) – g(y,n), g(û) – g(un+)

〉 ≥ . (.)

By combining (.) and (.) and taking into account of the facts that the bifunction
F is partially α-relaxed g-monotone with respect to T , and the bifunction G is partially
β-relaxed strongly g-η-monotone with respect to G, it follows that

〈
g(un+) – g(y,n), g(û) – g(un+)

〉

≥ –ρF
(
ν,n, g(û)

)
– ρG

(
ϑ,n,η

(
g(û), g(u,n)

))
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≥ –ρ
(
F
(
ν,n, g(û)

)
+ F

(
ν̂, g(un+)

)

+ G
(
ϑ,n,η

(
g(û), g(u,n)

))
+ G

(
ϑ̂ ,η

(
g(un+), g(û)

)))

≥ –ρα
∥∥g(un+) – g(y,n)

∥∥ – ρβ
∥∥g(un+) – g(y,n)

∥∥

= –ρ(α + β)
∥∥g(un+) – g(y,n)

∥∥. (.)

On the other hand, letting x = g(û) – g(un+) and y = g(un+) – g(y,n) and by utilizing the
well-known property of the inner product, we have


〈
g(un+) – g(y,n), g(û) – g(un+)

〉

=
∥
∥g(û) – g(y,n)

∥
∥ –

∥
∥g(û) – g(un+)

∥
∥ –

∥
∥g(un+) – g(y,n)

∥
∥. (.)

Applying (.) and (.), it follows that

∥
∥g(û) – g(un+)

∥
∥ ≤ ∥

∥g(û) – g(y,n)
∥
∥ –

(
 – (α + β)ρ

)∥∥g(un+) – g(y,n)
∥
∥,

which is the required result (.).
Taking v = yi,n (i = , , . . . , q – ) in (.) and v = û in (.), for each i = , , . . . , q – , we

have

F
(
ν̂, g(yi,n)

)
+ G

(
ϑ̂ ,η

(
g(yi,n), g(û)

)) ≥  (.)

and

ρi+F
(
νi+,n, g(û)

)
+ ρi+G

(
ϑi+,n,η

(
g(û), g(ui+,n)

))

+
〈
g(yi,n) – g(yi+,n), g(û) – g(yi,n)

〉 ≥ . (.)

Letting x = g(û) – g(yi,n) and y = g(yi,n) – g(yi+,n) for each i = , , . . . , q – , and by using the
well-known property of the inner product, one has


〈
g(yi,n) – g(yi+,n), g(û) – g(yi,n)

〉

=
∥∥g(û) – g(yi+,n)

∥∥ –
∥∥g(û) – g(yi,n)

∥∥ –
∥∥g(yi,n) – g(yi+,n)

∥∥. (.)

In a similar fashion to the preceding analysis, employing (.)-(.) and considering the
facts that the bifunction F is partially α-relaxed g-η-monotone with respect to T , and the
bifunction G is partially β-relaxed g-η-monotone with respect to S, for each i = , , . . . ,
q – , one can deduce that

∥∥g(û) – g(yi,n)
∥∥ ≤ ∥∥g(û) – g(yi+,n)

∥∥ –
(
 – (α + β)ρi+

)∥∥g(yi,n) – g(yi+,n)
∥∥,

which is the required result (.).
Taking v = yq–,n in (.) and v = û in (.), we have

F
(
ν̂, g(yq–,n)

)
+ G

(
ϑ̂ ,η

(
g(yq–,n), g(û)

)) ≥  (.)
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and

ρqF
(
νn, g(û)

)
+ ρqG

(
ϑn,η

(
g(û), g(un)

))

+
〈
g(yq–,n) – g(un), g(û) – g(yq–,n)

〉 ≥ . (.)

By assuming x = g(û) – g(yq–,n) and y = g(yq–,n) – g(un), and by utilizing the well-known
property of the inner product, we obtain


〈
g(yq–,n) – g(un), g(û) – g(yq–,n)

〉

=
∥∥g(û) – g(un)

∥∥ –
∥∥g(û) – g(yq–,n)

∥∥ –
∥∥g(yq–,n) – g(un)

∥∥. (.)

By a similar way to that of proof of (.), by using (.)-(.) and in light of the facts that
the bifunction F is partially α-relaxed g-η-monotone with respect to T , and the bifunction
G is partially β-relaxed g-η-monotone with respect to S, we can show that

∥
∥g(û) – g(yq–,n)

∥
∥ ≤ ∥

∥g(û) – g(un)
∥
∥ –

(
 – (α + β)ρq

)∥∥g(yq–,n) – g(un)
∥
∥,

which is the required result (.). This completes the proof. �

In the next theorem, the strong convergence of the iterative sequences generated by
Algorithm . to a solution of GMELP (.) is established.

Theorem . Let H be a finite dimensional real Hilbert space and let g : K → K be a
continuous and invertible operator. Suppose that the bifunction F : H × H → R is con-
tinuous in the first argument, the bifunction G : H × H → R is continuous in both argu-
ments and the operator η : K × K → H is continuous in the second argument. Assume
that the multivalued operators S, T : K → CB(H) are M-Lipschitz continuous with con-
stants σ and δ, respectively. Moreover, let all the conditions of Proposition . hold and
GMELP(F , G, S, T ,η, g, K) �= ∅. If ρi ∈ (, 

(α+β) ), for each i = , , . . . , q, then the iterative
sequences {un}, {νn}, and {ϑn} generated by Algorithm . converge strongly to û ∈ K ,
ν̂ ∈ T(û), and ϑ̂ ∈ S(û), respectively, and (û, ν̂, ϑ̂) is a solution of GMELP (.).

Proof Let u ∈ K , ν ∈ T(u), and ϑ ∈ S(u) be the solution of GMELP (.). In view of the
fact that all the conditions of Proposition . hold, then Proposition . implies that for
all n ≥ 

∥∥g(u) – g(un+)
∥∥ ≤ ∥∥g(u) – g(y,n)

∥∥ –
(
 – (α + β)ρ

)∥∥g(un+) – g(y,n)
∥∥, (.)

∥∥g(u) – g(yi,n)
∥∥ ≤ ∥∥g(u) – g(yi+,n)

∥∥ –
(
 – (α + β)ρi+

)∥∥g(yi,n) – g(yi+,n)
∥∥, (.)

∥∥g(u) – g(yq–,n)
∥∥ ≤ ∥∥g(u) – g(un)

∥∥ –
(
 – (α + β)ρq

)∥∥g(yq–,n) – g(un)
∥∥, (.)

where i = , , . . . , q – . From the inequalities (.)-(.), it follows that the sequence
{‖g(un) – g(u)‖} is nonincreasing and hence the sequence {g(un)} is bounded. Since the
operator g is invertible, we deduce that the sequence {un} is also bounded. Furthermore,
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by (.)-(.), we have

(

 – (α + β)
q∑

i=

ρi

)(
∥∥g(un+) – g(y,n)

∥∥ +
q–∑

i=

∥∥g(yi,n) – g(yi+,n)
∥∥

+
∥
∥g(yq–,n) – g(un)

∥
∥

)

≤ ∥
∥g(u) – g(un)

∥
∥ –

∥
∥g(u) – g(un+)

∥
∥,

which implies that

∞∑

n=

(

 – (α + β)
q∑

i=

ρi

)(
∥
∥g(un+) – g(y,n)

∥
∥ +

q–∑

i=

∥
∥g(yi,n) – g(yi+,n)

∥
∥

+
∥∥g(yq–,n) – g(un)

∥∥
)

≤ ∥∥g(u) – g(u)
∥∥. (.)

The inequality (.) guarantees that

∥∥g(un+) – g(y,n)
∥∥ → ,

∥∥g(yi,n) – g(yi+,n)
∥∥ → ,

∥∥g(yq–,n) – g(un)
∥∥ → ,

for each i = , , . . . , q – , as n → ∞. Let û be a cluster point of the sequence {un}. Since
{un} is bounded, there exists a subsequence {unj} of {un} such that unj → û, as j → ∞.
Taking into consideration the fact that the multivalued operators S and T are M-Lipschitz
continuous with constants σ and δ, respectively, in virtue of the inequalities (.) and
(.), we have

‖νnj+ – νnj‖ ≤ (
 + ( + nj)–)M

(
T(unj+), T(unj )

)

≤ (
 + ( + nj)–)δ‖unj+ – unj‖ (.)

and

‖ϑnj+ – ϑnj‖ ≤ (
 + ( + nj)–)M

(
S(unj+), S(unj )

)

≤ (
 + ( + nj)–)σ‖unj+ – unj‖. (.)

The inequalities (.) and (.) imply that ‖νnj+ – νnj‖ →  and ‖ϑnj+ – ϑnj‖ → , as
j → ∞, that is, {νnj} and {ϑnj} are Cauchy sequences in H. Thus, νnj → ν̂ and ϑnj → ϑ̂ for
some ν̂, ϑ̂ ∈H, as j → ∞. By using (.), we have

ρqF
(
νnj , g(v)

)
+ ρqG

(
ϑnj ,η

(
g(v), g(unj )

))

+
〈
g(yq–,nj ) – g(unj ), g(v) – g(yq–,nj )

〉 ≥ . (.)

In view of the fact that F is continuous in the first argument, G is continuous in both argu-
ments, η is continuous in the second argument, g is continuous and ‖g(yq–,n)–g(un)‖ → ,
as n → ∞, letting i → ∞ and by using (.), we deduce that

F
(
ν̂, g(v)

)
+ G

(
ϑ̂ ,η

(
g(v), g(û)

)) ≥ , ∀v ∈ K .
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In the meantime, from the M-Lipschitz continuity of T with constant δ, it follows that

d
(
ν̂, T(û)

)
= inf

{‖ν̂ – z‖ : z ∈ T(û)
}

≤ ‖ν̂ – νnj‖ + d
(
νnj , T(û)

)

≤ ‖ν̂ – νnj‖ + M
(
T(unj ), T(û)

)

≤ ‖ν̂ – νnj‖ + δ‖unj – û‖. (.)

Notice that the right side of the above inequality tends to zero as j → ∞. Since T(û) ∈
CB(H) it follows that ν̂ ∈ T(û). Taking into account of the fact that the multivalued opera-
tor S is M-Lipschitz continuous with constant σ , in a similar way to that of proof of (.),
one can deduce that

d
(
ϑ̂ , S(û)

) ≤ ‖ϑ̂ – ϑnj‖ + σ‖unj – û‖,

which relying on the fact that S(û) ∈ CB(H) implies that ϑ̂ ∈ S(û). Hence, û ∈ K , ν̂ ∈ T(û),
and ϑ̂ ∈ S(û) are the solution of GMELP (.). Now, the inequalities (.)-(.) imply
that

∥∥g(un+ – g(û)
∥∥ ≤ ∥∥g(un) – g(û)

∥∥, ∀n ≥ . (.)

The inequality (.) guarantees that g(un) → g(û), as n → ∞ and hence un → û, as
n → ∞, since g is continuous and invertible. Consequently, the sequence {un} has ex-
actly one cluster point û. Considering the facts that S and T are M-Lipschitz continuous
with constants σ and δ, respectively, by using (.) and (.), we have

‖νn+ – νn‖ ≤ (
 + ( + n)–)M

(
T(un+), T(un)

)

≤ (
 + ( + n)–)δ‖un+ – un‖ (.)

and

‖ϑn+ – ϑn‖ ≤ (
 + ( + n)–)M

(
S(un+), S(un)

)

≤ (
 + ( + n)–)σ‖un+ – un‖. (.)

The inequalities (.) and (.) imply that {νn} and {ϑn} are Cauchy sequences in H.
Since ν̂ and ϑ̂ are cluster points of the sequences {νn} and {ϑn}, respectively, it follows
that νn → ν̂ and ϑn → ϑ̂ , as n → ∞, that is, the sequences {νn} and {ϑn} have exactly one
cluster point ν̂ and ϑ̂ , respectively. The proof is completed. �

The next proposition is a main tool for studying the convergence analysis of the iterative
sequences generated by Algorithm ..

Proposition . Let F , G, S, T , and g be the same as in GMHEP (.) and let û ∈ K ,
ν̂ ∈ T(u), and ϑ̂ ∈ G(û) be the solution of GMHEP (.). Furthermore, let {un} and {yi,n}
(i = , , . . . , q – ) be the sequences generated by Algorithm .. If F is partially α-relaxed
g-monotone with respect to T , and G is partially β-relaxed g-monotone with respect to S,
then the inequalities (.)-(.) hold for all n ≥ .
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Proof It follows from Proposition . by defining the operator η : K × K →H as η(x, y) =
x – y for all x, y ∈ K . �

The next assertion provides us the required conditions under which the iterative se-
quences generated by Algorithm . converge strongly to a solution of GMHEP (.).

Corollary . Suppose that H is a finite dimensional real Hilbert space and let g : K → K
be a continuous and invertible operator. Assume that the bifunction F : H × H → R is
continuous in the first argument and the bifunction G : H ×H → R is continuous in both
arguments. Let the multivalued operators S, T : K → CB(H) be M-Lipschitz continuous
with constants σ and δ, respectively. Furthermore, let all the conditions of Proposition .
hold and GMHEP(F , G, S, T , g, K) �= ∅. If ρi ∈ (, 

(α+β) ), for each i = , , . . . , q, then the iter-
ative sequences {un}, {νn}, and {ϑn} generated by Algorithm . converge strongly to û ∈ K ,
ν̂ ∈ T(û) and ϑ̂ ∈ S(û), respectively, and (û, ν̂, ϑ̂) is a solution of GMHEP (.).

Proof By defining the operator η : K × K →H as η(x, y) = x – y for all x, y ∈ K , the desired
result follows from Theorem .. �

It is well known that to implement the proximal point methods, one has to calculate the
approximate solution implicitly, which is itself a difficult problem. In order to overcome
this drawback, we consider another auxiliary problem and with the help of it, we construct
an iterative algorithm for solving the problem (.).

Let S, T , F , G, η, and g be the same as in GMELP (.). For given u ∈ K , ν ∈ T(u), and
ϑ ∈ S(u), we consider the auxiliary generalized multivalued equilibrium-like problem of
finding w ∈ K , ξ ∈ T(w), and γ ∈ S(w) such that

ρF
(
ξ , g(v)

)
+ ρG

(
γ ,η

(
g(v), g(u)

))
+

〈
g(w) – g(u), g(v) – g(w)

〉 ≥ , ∀v ∈ K , (.)

where ρ >  is a constant. It should be pointed out that the two problems (.) and (.)
are quite different. If w = u, then clearly (w, ξ ,γ ) is a solution of GMELP (.). By using this
observation and Nadler’s technique [], we are able to suggest the following predictor-
corrector method for solving GMELP (.).

Algorithm . Let F , G, S, T , η, and g be the same as in GMELP (.). For given u ∈ K ,
ξ ∈ T(u), and γ ∈ S(u), compute the iterative sequences {un}, {ξn}, and {γn} by the
iterative schemes

ρF
(
ξ,n, g(v)

)
+ ρG

(
γ,n,η

(
g(v), g(y,n)

))

+
〈
g(un+) – g(y,n), g(v) – g(un+)

〉 ≥ , ∀v ∈ K , (.)

ρi+F
(
ξi+,n, g(v)

)
+ ρi+G

(
γi+,n,η

(
g(v), g(yi+,n)

))

+
〈
g(yi,n) – g(yi+,n), g(v) – g(yi,n)

〉 ≥ , i = , , . . . , q – ,∀v ∈ K , (.)

ρqF
(
ξn, g(v)

)
+ ρqG

(
γn,η

(
g(v), g(un)

))

+
〈
g(yq–,n) – g(un), g(v) – g(yq–,n)

〉 ≥ , ∀v ∈ K , (.)

ξi,n ∈ T(yi,n) : ‖ξi,n+ – ξi,n‖ ≤ (
 + ( + n)–)M

(
T(yi,n+), T(yi,n)

)
,

i = , , . . . , q – , (.)
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γi,n ∈ S(yi,n) : ‖γi,n+ – γi,n‖ ≤ (
 + ( + n)–)M

(
S(yi,n+), S(yi,n)

)
,

i = , , . . . , q – , (.)

ξn ∈ T(un) : ‖ξn+ – ξn‖ ≤ (
 + ( + n)–)M

(
T(un+), T(un)

)
, (.)

γn ∈ S(un) : ‖γn+ – γn‖ ≤ (
 + ( + n)–)M

(
S(un+), S(un)

)
, (.)

where ρi >  (i = , , . . . , q) are constants and n = , , , . . . .

If η(x, y) = x – y, for all x, y ∈ K , then Algorithm . reduces to the following predictor-
corrector method.

Algorithm . For given u ∈ K , ξ ∈ T(u), and γ ∈ S(u), compute the iterative se-
quences {un}, {ξn}, and {γn} by the iterative schemes

ρF
(
ξ,n, g(v)

)
+ ρG

(
γ,n, g(v) – g(y,n)

)

+
〈
g(un+) – g(y,n), g(v) – g(un+)

〉 ≥ , ∀v ∈ K ,

ρi+F
(
ξi+,n, g(v)

)
+ ρi+G

(
γi+,n, g(v) – g(yi+,n)

)

+
〈
g(yi,n) – g(yi+,n), g(v) – g(yi,n)

〉 ≥ , i = , , . . . , q – ,∀v ∈ K ,

ρqF
(
ξn, g(v)

)
+ ρqG

(
γn, g(v) – g(un)

)

+
〈
g(yq–,n) – g(un), g(v) – g(yq–,n)

〉 ≥ , ∀v ∈ K ,

ξi,n ∈ T(yi,n) : ‖ξi,n+ – ξi,n‖ ≤ (
 + ( + n)–)M

(
T(yi,n+), T(yi,n)

)
, i = , , . . . , q – ,

γi,n ∈ S(yi,n) : ‖γi,n+ – γi,n‖ ≤ (
 + ( + n)–)M

(
S(yi,n+), S(yi,n)

)
, i = , , . . . , q – ,

ξn ∈ T(un) : ‖ξn+ – ξn‖ ≤ (
 + ( + n)–)M

(
T(un+), T(un)

)
,

γn ∈ S(un) : ‖γn+ – γn‖ ≤ (
 + ( + n)–)M

(
S(un+), S(un)

)
,

where ρi >  (i = , , . . . , q) are constants and n = , , , . . . .

To prove the strong convergence of the sequences generated by Algorithm . to a so-
lution of GMELP (.), we need the following definition.

Definition . Let S, T : K → CB(H), η : K × K → H, and g : K → K be operators. The
bifunctions F , G : H × H → R are said to be jointly g-η-pseudomonotone with respect to
S and T , if

F
(
w, g(u)

)
+ G

(
ϑ,η

(
g(u), g(u)

)) ≥ , implies that

F
(
w, g(u)

)
+ G

(
ϑ,η

(
g(u), g(u)

)) ≤ ,

∀u, u ∈ K , w ∈ T(u), w ∈ T(u),ϑ ∈ S(u),ϑ ∈ S(u).

It should be remarked that if the operator η : K × K →H is defined as η(x, y) = x – y, for
all x, y ∈ K , then Definition . reduces to the definition of jointly g-pseudomonotonicity
of the bifunctions F and G with respect to the multivalued operators S and T .
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Before turning to the study of convergence analysis of the iterative sequences gener-
ated by Algorithm ., we would like to present the following proposition which plays an
important and key role in it.

Proposition . Let F , G, S, T , η, and g be the same as in GMELP (.) and let û ∈ K ,
ν̂ ∈ T(û), and ϑ̂ ∈ S(û) be the solution of GMELP (.). Assume further that {un} and {yi,n}
(i = , , . . . , q – ) are the sequences generated by Algorithm .. If F and G are jointly g-η-
pseudomonotone with respect to S and T , then for all n ≥ 

∥
∥g(û) – g(un+)

∥
∥ ≤ ∥

∥g(û) – g(y,n)
∥
∥ –

∥
∥g(un+) – g(y,n)

∥
∥, (.)

∥
∥g(û) – g(yi,n)

∥
∥ ≤ ∥

∥g(û) – g(yi+,n)
∥
∥ –

∥
∥g(yi,n) – g(yi+,n)

∥
∥,

i = , , . . . , q – , (.)
∥
∥g(û) – g(yq–,n)

∥
∥ ≤ ∥

∥g(û) – g(un)
∥
∥ –

∥
∥g(yq–,n) – g(un)

∥
∥. (.)

Proof Since û ∈ K , ν̂ ∈ T(û), and ϑ̂ ∈ S(û) are the solution of GMELP (.), it follows that
(û, v̂, ϑ̂) satisfies (.). Taking v = y,n in (.), we have

F
(
ν̂, g(y,n)

)
+ G

(
ϑ̂ ,η

(
g(y,n), g(û)

)) ≥ . (.)

Taking into consideration the fact that the bifunctions F and G are jointly g-η-pseudo-
monotone with respect to S and T , from (.), we conclude that

F
(
ξ,n, g(û)

)
+ G

(
γ,n,η

(
g(û), g(y,n)

)) ≤ . (.)

Taking v = û in (.), we obtain

ρF
(
ξ,n, g(û)

)
+ ρG

(
γ,n,η

(
g(û), g(y,n)

))

+
〈
g(un+) – g(y,n), g(û) – g(un+)

〉 ≥ . (.)

By combining (.) and (.), we get

〈
g(un+) – g(y,n), g(û) – g(un+)

〉 ≥ –ρF
(
ξ,n, g(û)

)
– ρG

(
γ,n,η

(
g(û), g(y,n)

))

≥ . (.)

Relying on (.) and (.), we get

∥∥g(û) – g(un+)
∥∥ ≤ ∥∥g(û) – g(y,n)

∥∥ –
∥∥g(un+) – g(y,n)

∥∥,

which is the required result (.).
Taking v = yi+,n (i = , , . . . , q – ) in (.), we have

F
(
ν̂, g(yi+,n)

)
+ G

(
ϑ̂ ,η

(
g(yi+,n), g(û)

)) ≥ . (.)
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Considering the fact that F and G are jointly g-η-pseudomonotone with respect to S and T ,
the inequality (.) implies that, for each i = , , . . . , q – ,

F
(
ξi+,n, g(û)

)
+ G

(
γi+,n,η

(
g(û), g(yi+,n)

)) ≤ . (.)

Letting v = û in (.), for each i = , , . . . , q – , we obtain

ρi+F
(
ξi+,n, g(û)

)
+ ρi+G

(
γi+,n,η

(
g(û), g(yi+,n)

))

+
〈
g(yi,n) – g(yi+,n), g(û) – g(yi,n)

〉 ≥ . (.)

It follows from (.), (.), and (.) that, for each i = , , . . . , q – ,

∥∥g(û) – g(yi,n)
∥∥ ≤ ∥∥g(û) – g(yi+,n)

∥∥ –
∥∥g(yi,n) – g(yi+,n)

∥∥,

which is the required result (.).
Taking v = yq,n in (.), we have

F
(
ν̂, g(yq,n)

)
+ G

(
ϑ̂ ,η

(
g(yq,n), g(û)

)) ≥ . (.)

In light of the fact that F and G are jointly g-η-pseudomotone with respect to S and T , we
deduce that

F
(
ξn, g(û)

)
+ G

(
γn,η

(
g(û), g(un)

)) ≤ . (.)

Letting v = û in (.), we get

ρqF
(
ξn, g(û)

)
+ ρqG

(
γn,η

(
g(û), g(un)

))
+

〈
g(yq–,n) – g(un), g(û) – g(yq–,n)

〉 ≥ . (.)

Applying (.), (.) and (.), one can deduce that

∥∥g(û) – g(yq–,n)
∥∥ ≤ ∥∥g(û) – g(un)

∥∥ –
∥∥g(yq–,n) – g(un)

∥∥,

which is the required result (.). This completes the proof. �

Now we establish the strong convergence of the iterative sequences generated by Algo-
rithm . to a solution of GMELP (.).

Theorem . Let H be a finite dimensional real Hilbert space and let g : K → K be a
continuous and invertible operator. Suppose that the bifunction F : H × H → R is con-
tinuous in the first argument, the bifunction G : H × H → R is continuous in both argu-
ments and the operator η : K × K → H is continuous in the second argument. Assume
that the multivalued operators S, T : K → CB(H) are M-Lipschitz continuous with con-
stants σ and δ, respectively. Further, let all the conditions of Proposition . hold and
GMELP(F , G, S, T ,η, g, K) �= ∅. Then the iterative sequences {un}, {ξn}, and {γn} generated
by Algorithm . converge strongly to û ∈ K , ν̂ ∈ T(û), and ϑ̂ ∈ S(û), respectively, and
(û, ν̂, ϑ̂) is a solution of GMELP (.).
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Proof Let u ∈ K , ν ∈ T(u), and ϑ ∈ S(u) be the solution of GMELP (.). Since all the
conditions of Proposition . hold, according to Proposition ., for all n ≥  we have

∥
∥g(u) – g(un+)

∥
∥ ≤ ∥

∥g(u) – g(y,n)
∥
∥ –

∥
∥g(un+) – g(y,n)

∥
∥, (.)

∥
∥g(u) – g(yi,n)

∥
∥ ≤ ∥

∥g(u) – g(yi+,n)
∥
∥ –

∥
∥g(yi,n) – g(yi+,n)

∥
∥,

i = , , . . . , q – , (.)
∥
∥g(u) – g(yq–,n)

∥
∥ ≤ ∥

∥g(u) – g(un)
∥
∥ –

∥
∥g(yq–,n) – g(un)

∥
∥. (.)

It is easy to see that the inequalities (.)-(.) imply that the sequence {‖g(un) – g(u)‖}
is nonincreasing and hence the sequence {g(un)} is bounded. Considering the fact that
the operator g is invertible, it follows that the sequence {un} is also bounded. Meanwhile,
relying on (.)-(.), we have

∥∥g(un+) – g(y,n)
∥∥ +

q–∑

i=

∥∥g(yi,n) – g(yi+,n)
∥∥ +

∥∥g(yq–,n) – g(un)
∥∥

≤ ∥∥g(u) – g(un)
∥∥ –

∥∥g(u) – g(un+)
∥∥,

whence we deduce that

∞∑

n=

(
∥
∥g(un+) – g(y,n)

∥
∥ +

q–∑

i=

∥
∥g(yi,n) – g(yi+,n)

∥
∥ +

∥
∥g(yq–,n) – g(un)

∥
∥

)

≤ ∥
∥g(u) – g(u)

∥
∥. (.)

From (.), it follows that

∥∥g(un+) – g(y,n)
∥∥ → ,

∥∥g(yi,n) – g(yi+,n)
∥∥ → ,

∥∥g(yq–,n) – g(un)
∥∥ → ,

for each i = , , . . . , q – , as n → ∞. Let û be a cluster point of the sequence {un}. Since
{un} is bounded, there exists a subsequence {unj} of {un} such that unj → û, as j → ∞. In
a similar way to that of proof of Theorem ., one can establish that {ξnj} and {γnj} are
Cauchy sequences in H and ξnj → ν̂ , and γnj → ϑ̂ for some ν̂, ϑ̂ ∈ H, as j → ∞. Further-
more, û ∈ K , ν̂ ∈ T(û), and ϑ̂ ∈ S(û) are the solution of GMELP (.) and the sequences
{un}, {ξn}, and {γn} have exactly one cluster point û, ν̂ , and ϑ̂ , respectively. This gives us
the desired result. �

The next proposition plays a crucial role in the study of convergence analysis of the
iterative sequences generated by Algorithm ..

Proposition . Let F , G, S, T , and g be the same as in GMHEP (.) and let û ∈ K ,
ν̂ ∈ T(û), and ϑ̂ ∈ S(û) be the solution of GMHEP (.). Moreover, let {un} and {yi,n} (i =
, , . . . , q – ) be the sequences generated by Algorithm .. If the bifunctions F and G are
jointly g-pseudomonotone with respect to S and T , then the inequalities (.)-(.) hold.

Proof By defining the operator η : K × K →H as η(x, y) = x – y for all x, y ∈ K , we get the
desired result from Proposition .. �
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We now conclude this paper with the following result in which the strong convergence
of the iterative sequence generated by Algorithm . is established.

Corollary . Assume that H is a finite dimensional real Hilbert space and let g : K → K
be a continuous and invertible operator. Let the bifunction F : H ×H → R be continuous
in the first argument and the bifunction G : H×H →R be continuous in both arguments.
Suppose that the multivalued operators S, T : K → CB(H) are M-Lipschitz continuous with
constants σ and δ, respectively. Moreover, let all the conditions of Proposition . hold and
GMHEP(F , G, S, T , g, K) �= ∅. Then the iterative sequences {un}, {ξn}, and {γn} generated by
Algorithm . converge strongly to û ∈ K , ν̂ ∈ T(û), and ϑ̂ ∈ S(û), respectively, and (û, ν̂, ϑ̂)
is a solution of GMHEP (.).

Proof We obtain the desired result from Theorem . by defining η : K × K → H as
η(x, y) = x – y for all x, y ∈ K . �
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