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Abstract
For 0 < α < n, the homogeneous fractional integral operator T�,α is defined by

T�,α f (x) =
∫
Rn

�(x – y)
|x – y|n–α f (y)dy.

In this paper we prove that if � satisfies some smoothness conditions on Sn–1, then
T�,α is bounded from L

λ
α ,λ(Rn) to BMO(Rn), and from Lp,λ(Rn) ( λ

α
< p < ∞) to a class of

the Campanato spaces Ll,λ(Rn), respectively.
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1 Introduction
Before going into the next sections addressing details, let us agree to some conventions.
The n-dimensional Euclidean space Rn, Q = Q(x, d) is a cube with its sides parallel to the
coordinate axes and center at x, diameter d > .

For  ≤ l ≤ ∞, – n
l ≤ λ ≤ , we denote

‖f ‖Ll,λ = sup
Q


|Q|λ/n

(


|Q|
∫

Q

∣∣f (x) – fQ
∣∣l dx

)/l

,

where fQ = 
|Q|

∫
Q f (y) dy. Then the Campanato space Ll,λ(Rn) is defined by

Ll,λ
(
R

n) =
{

f ∈ Ll
loc

(
R

n) : ‖f ‖Ll,λ < ∞}
.

If we identify functions that differ by a constant, then Ll,λ becomes a Banach space with
the norm ‖ · ‖Ll,λ . It is well known that

Lipλ

(
R

n), for  < λ < ,

Ll,λ
(
R

n) ∼ BMO
(
R

n), for λ = ,

Morrey space Lp,n+lλ(
R

n), for –n/l ≤ λ < .

On the other properties of the spaces Ll,λ(Rn), we refer the reader to [].
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The Morrey space, which was introduced by Morrey in , connects with certain
problems in elliptic PDE [, ]. Later, there were many applications of Morrey space to
the Navier-Stokes equations (see []), the Schrödinger equations (see [] and []) and the
elliptic problems with discontinuous coefficients (see [–] and []).

For  ≤ p < ∞ and  < λ ≤ n, the Morrey space is defined by

Lp,λ(
R

n) =
{

f ∈ Lp
loc : ‖f ‖Lp,λ =

[
sup

x∈Rn , d>
dλ–n

∫
Q(x,d)

∣∣f (y)
∣∣p dy

] 
p

< ∞
}

,

where Q(x, d) denotes the cube centered at x and with diameter d > . The space Lp,λ(Rn)
becomes a Banach space with norm ‖ · ‖Lp,λ . Moreover, for λ =  and λ = n, the Morrey
spaces Lp,(Rn) and Lp,n(Rn) coincide (with equality of norms) with the space L∞(Rn) and
Lp(Rn), respectively.

The boundedness of the Hardy-Littlewood maximal operator, the fractional integral op-
erator, and the Calderón-Zygmund singular integral operator on Morrey space can be
found in [–]. It is well known that further properties and applications of the classical
Morrey space have been widely studied by many authors. (For example, see [, –].)

A function g ∈ BMO(Rn) (see []), if there is a constant C >  such that for any cube
Q ∈R

n,

‖g‖BMO = sup
x∈Rn , r>

(


|Q|
∫

Q

∣∣g(x) – gQ
∣∣dx

)
< ∞,

where gQ = 
|Q|

∫
Q g(y) dy.

The Hardy-Littlewood-Sobolev theorem showed that the Riesz potential operator Iα is
bounded from Lp(Rn) to Lq(Rn) for  < α < n,  < p < n

α
, and 

q = 
p – α

n . Here

Iαf (x) =


γ (α)

∫
Rn

f (y)
|x – y|n–α

dy, and γ (α) =
π

n
 α�(α/)
�( n–α

 )
.

In , Muckenhoupt and Wheeden [] gave the weighted boundedness of Iα from
L n

α (w,Rn) to BMOv(Rn).
In , Adams proved the following theorem in [].

Theorem A (Adams) ([]) Let α ∈ (, n) and λ ∈ (, n], there is a constant C > , such
that, if  < p = λ

α
, then

‖Iαf ‖BMO ≤ C‖f ‖Lp,λ .

On the other hand, many scholars have investigated the various map properties of the
homogeneous fractional integral operator T�,α , which is defined by

T�,αf (x) =
∫
Rn

�(x – y)
|x – y|n–α

f (y) dy,

where  < α < n, � is homogeneous of degree zero on R
n with � ∈ Ls(Sn–) (s ≥ ) and Sn–

denotes the unit sphere of Rn. For instance, the weighted (Lp, Lq)-boundedness of T�,α for
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 < p < n
α

had been studied in [] (for power weights) and in [] (for A(p, q) weights). The
weak boundedness of T�,α when p =  can be found in [] (unweighed) and in [] (with
power weights). In , Ding [] proved that T�,α is bounded from L n

α (Rn) to BMO(Rn)
when � satisfies some smoothness conditions on Sn–.

Inspired by the (Lp,λ(Rn), BMO(Rn))-boundedness of Riesz potential integral operator Iα
for p = λ

α
. We will prove the (Lp,λ(Rn), BMO(Rn))-boundedness of homogeneous fractional

integral operator T�,α for p = λ
α

. Then we find that T�,α is also bounded from Lp,λ(Rn)
( λ
α

< p < ∞) to a class of the Campanato spaces Ll,λ(Rn).
We say that � satisfies the Ls-Dini condition if � is homogeneous of degree zero on R

n

with � ∈ Ls(Sn–) (s ≥ ), and

∫ 


ωs(δ)

dδ

δ
< ∞,

where ωs(δ) denotes the integral modulus of continuity of order s of � defined by

ωs(δ) = sup
|ρ|<δ

(∫
Sn–

∣∣�(
ρx′) – �

(
x′)∣∣s dx′

) 
s
,

and ρ is a rotation in R
n and |ρ| = ‖ρ – I‖.

Now, let us formulate our result as follows.

Theorem . Let  < α, λ < n, if � satisfies the Ls-Dini condition (s > ), then there is a
constant C >  such that

‖T�,αf ‖BMO ≤ C‖f ‖
L

λ
α ,λ . (.)

Remark . If � ≡ , s = ∞, and λ = , then T�,α is a Riesz potential Iα , and Theorem .
becomes Theorem A (Adams) [].

The following theorem shows that T�,α is a bounded map from Lp,λ(Rn) ( λ
α

< p < ∞) to
the Campanato spaces Ll,λ(Rn) for appropriate indices λ >  and l ≥ .

Theorem . Let  < α < ,  < λ < n, λ/α < p < ∞, and s > λ/(λ–α). If for some β > α–λ/p,
the integral modulus of continuity ωs(δ) of order s of � satisfies

∫ 


ωs(δ)

dδ

δ+β
< ∞,

then there is a C >  such that for  ≤ l ≤ λ/(λ – α),

‖T�,αf ‖Ll,n( α
n – 

p
λ
n )

≤ C‖f ‖Lp,λ . (.)

Remark . If we take � ≡ , then T�,α is the Riesz potential Iα , and Theorem . is even
new for the Riesz potential Iα .

Below the letter ‘C’ will denote a constant not necessarily the same at each occurrence.
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2 Proof of Theorem 1.1
In this section we will give the proof of Theorem .. Let us recall the following conclusion.

Lemma . ([]) Suppose that  < α < n, s > , � satisfies the Ls-Dini condition. There is
a constant  < a < 

 such that if |x| < aR, then

(∫
R<|y|<R

∣∣∣∣ �(y – x)
|y – x|n–α

–
�(y)
|y|n–α

∣∣∣∣
s

dy
) 

s

≤ CRn/s–(n–α)
{ |x|

R
+

∫
|x|/R<δ<|x|/R

ωs(δ)
dδ

δ

}
.

Proof of Theorem . Fix a cube Q ⊂ R
n, we denote the center and the diameter of Q by

x and d, respectively. We write

T�,αf =
∫

B

�(x – y)
|x – y|n–α

f (y) dy +
∫

Rn\B

�(x – y)
|x – y|n–α

f (y) dy

:= Tf (x) + Tf (x),

where B = {y ∈ R
n; |y – x| < d}. It is sufficient to prove (.) for Tf (x) and Tf (x), respec-

tively.
First let us consider Tf (x). We have


|Q|

∫
Q

∣∣Tf (x) – (Tf )Q
∣∣dx ≤ 

|Q|
∫

Q

∫
B

|�(x – y)|
|x – y|n–α

∣∣f (y)
∣∣dy dx

+


|Q|
∫

Q

(


|Q|
∫

Q

∫
B

|�(z – y)|
|z – y|n–α

∣∣f (y)
∣∣dy dz

)
dx

≤ 
|Q|

∫
B

∣∣f (y)
∣∣
∫

Q

|�(x – y)|
|x – y|n–α

dx dy

≤ 
|Q|

∫
B

∣∣f (y)
∣∣
∫

|x–y|<d

|�(x – y)|
|x – y|n–α

dx dy. (.)

Note that �(x′) ∈ Ls(Sn–), ‖�‖Ls(Sn–) = (
∫

Sn– |�(y′)|s dσ (y′)) 
s , we get

∫
|x–y|<d

|�(x – y)|
|x – y|n–α

dx ≤ Cdα‖�‖Ls(Sn–)

≤ C|Q| α
n ‖�‖Ls(Sn–). (.)

On the other hand, since p′ < 

p ( λ

n –)– α
n

, by using the Hölder inequality, we get

∫
B

∣∣f (y)
∣∣dy ≤

(∫
B

∣∣f (y)
∣∣p dy

) 
p
(∫

B
p′

dy
) 

p′

≤
(∫

B

∣∣f (y)
∣∣p dy

) 
p
(∫

B




p ( λ

n –)– α
n dy

) 
p ( λ

n –)– α
n

= |B| 
p ( λ

n –)– α
n

(∫
B

∣∣f (y)
∣∣p dy

) 
p
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= |B| 
p ( λ

n –)– α
n |B| 

p (– λ
n )

(
dλ–n

∫
B

∣∣f (y)
∣∣p dy

) 
p

= |B|– α
n ‖f ‖Lp,λ . (.)

Here and below we denote p = λ
α

in the proof of Theorem .. Plugging (.) and (.) into
(.), we obtain


|Q|

∫
Q

∣∣Tf (x) – (Tf )Q
∣∣dx ≤ C|Q| α

n |B|– α
n ‖f ‖Lp,λ

≤ C‖f ‖Lp,λ . (.)

Now, let us turn to the estimate for Tf (x). In this case we have


|Q|

∫
Q

∣∣Tf (x) – (Tf )Q
∣∣dx

=


|Q|
∫

Q

∣∣∣∣ 
|Q|

∫
Q

{∫
|y–x|≥d

f (y)
[

�(x – y)
|x – y|n–α

–
�(z – y)
|z – y|n–α

]
dy

}
dz

∣∣∣∣dx

≤ 
|Q|

∫
Q


|Q|

∫
Q

{ ∞∑
j=

∫
jd≤|y–x|<j+d

∣∣f (y)
∣∣
∣∣∣∣ �(x – y)
|x – y|n–α

–
�(z – y)
|z – y|n–α

∣∣∣∣dy

}
dz dx. (.)

By Hölder’s inequality, we get

∫
jd≤|y–x|<j+d

∣∣f (y)
∣∣
∣∣∣∣ �(x – y)
|x – y|n–α

–
�(z – y)
|z – y|n–α

∣∣∣∣dy

≤
(∫

jd≤|y–x|<j+d

∣∣f (y)
∣∣s′ dy

) 
s′

×
(∫

jd≤|y–x|<j+d

∣∣∣∣ �(x – y)
|x – y|n–α

–
�(z – y)
|z – y|n–α

∣∣∣∣
s

dy
) 

s
. (.)

Since
∣∣∣∣ �(x – y)
|x – y|n–α

–
�(z – y)
|z – y|n–α

∣∣∣∣ =
∣∣∣∣ �(x – y)
|x – y|n–α

–
�(y – x)
|y – xo|n–α

+
�(y – x)
|y – xo|n–α

–
�(z – y)
|z – y|n–α

∣∣∣∣
≤

∣∣∣∣ �(x – y)
|x – y|n–α

–
�(y – x)
|y – xo|n–α

∣∣∣∣ +
∣∣∣∣ �(y – x)
|y – xo|n–α

–
�(z – y)
|z – y|n–α

∣∣∣∣,

we have

(∫
jd≤|y–x|<j+d

∣∣∣∣ �(x – y)
|x – y|n–α

–
�(z – y)
|z – y|n–α

∣∣∣∣
s

dy
) 

s

≤
(∫

jd≤|y–x|<j+d

∣∣∣∣ �(x – y)
|x – y|n–α

–
�(y – x)
|y – x|n–α

∣∣∣∣
s

dy
) 

s

+
(∫

jd≤|y–x|<j+d

∣∣∣∣ �(z – y)
|z – y|n–α

–
�(y – x)
|y – x|n–α

∣∣∣∣
s

dy
) 

s

:= J + J. (.)
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Let us give the estimates of J and J, respectively. We write J as

J =
(∫

jd≤|y–x|<j+d

∣∣∣∣�((x – x) – y)
|x – x – y|n–α

–
�(y)
|y|n–α

∣∣∣∣
s

dy
) 

s
.

Note that x ∈ Q, if taking R = jd, then |x – x| < 
j+ R. Applying Lemma . to J, we get

J ≤ C
(
jd

)n/s–(n–α)
{ |x – x|

jd
+

∫
|x–x|/j+d<δ<|x–x|/jd

ωs(δ)
dδ

δ

}

≤ C
(
jd

)n/s–(n–α)
{


j+ +

∫
|x–x|/j+d<δ<|x–x|/jd

ωs(δ)
dδ

δ

}
. (.)

By z ∈ Q and using a similar method, we have

J ≤ C
(
jd

)n/s–(n–α)
{


j+ +

∫
|z–x|/j+d<δ<|z–x|/jd

ωs(δ)
dδ

δ

}
. (.)

Since p = λ
α

and n
s – (n – α) < – n

s′(p/s′)′ , we get

(
jd

)n/s–(n–α) ≤ C
∣∣j+√nQ

∣∣– 
s′(p/s′)′ ,

where j+√nQ denote the cube with the center at x and the diameter j+√nd.
Thus, plugging (.) and (.) into (.), we have

(∫
jd≤|y–x|<j+d

∣∣∣∣ �(x – y)
|x – y|n–α

–
�(z – y)
|z – y|n–α

∣∣∣∣
s

dy
) 

s

≤ C
∣∣j+√nQ

∣∣n/s–(n–α)
{


j +

∫
|x–x|/j+d<δ<|x–x|/jd

ωs(δ)
dδ

δ

+
∫

|z–x|/j+d<δ<|z–x|/jd
ωs(δ)

dδ

δ

}

≤ C
∣∣j+√nQ

∣∣– 
s′(p/s′)′

{

j +

∫
|x–x|/j+d<δ<|x–x|/jd

ωs(δ)
dδ

δ

+
∫

|z–x|/j+d<δ<|z–x|/jd
ωs(δ)

dδ

δ

}
. (.)

On the other hand, we estimate (
∫

jd≤|y–x|<j+d |f (y)|s′ dy)

s′ , since p′ < s′( p

s′ )
′ and s′( p

s′ )
′ <



p ( λ

n –)+ 
(p/s′)′s′

, by using Hölder’s inequality again, we get

(∫
jd≤|y–x|<j+d

∣∣f (y)
∣∣s′ dy

) 
s′

≤
(∫

jd≤|y–x|<j+d

∣∣f (y)
∣∣p dy

) 
p
(∫

|y–x|<j+d
s′( p

s′ )′ dy
) 

(p/s′)′s′

≤ C
(∫

|y–x|<j+d

∣∣f (y)
∣∣p dy

) 
p
(∫

|y–x|<j+d




p ( λ

n –)+ 
(p/s′)′s′ dy

) 
p ( λ

n –)+ 
(p/s′)′s′
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≤ C|B|

p ( λ

n –)+ 
(p/s′)′s′ |B|


p (– λ

n )
((

j+d
)λ–n

∫
|y–x|<j+d

∣∣f (y)
∣∣p dy

) 
p

≤ C|B|


(p/s′)′s′ ‖f ‖Lp,λ , (.)

where B = {y ∈ R
n; |y – x| < j+d}.

Plugging (.) and (.) into (.) we obtain

∞∑
j=

∫
jd≤|y–x|<j+d

∣∣f (y)
∣∣
∣∣∣∣ �(x – y)
|x – y|n–α

–
�(z – y)
|z – y|n–α

∣∣∣∣dy

≤ C
∞∑
j=

‖f ‖Lp,λ |B|


(p/s′)′s′
∣∣j+√nQ

∣∣n/s–(n–α)
{


j +

∫
|x–x|/j+d<δ<|x–x|/jd

ωs(δ)
dδ

δ

+
∫

|z–x|/j+d<δ<|z–x|/jd
ωs(δ)

dδ

δ

}

≤ C‖f ‖Lp,λ

∞∑
j=

|B|


(p/s′)′s′ |B|–


(p/s′)′s′
{


j +

∫
|x–x|/j+d<δ<|x–x|/jd

ωs(δ)
dδ

δ

+
∫

|z–x|/j+d<δ<|z–x|/jd
ωs(δ)

dδ

δ

}

≤ C‖f ‖Lp,λ

{
 + 

∫ 


ωs(δ)

dδ

δ

}

≤ C‖f ‖Lp,λ . (.)

Therefore, applying (.) into (.) we obtain


|Q|

∫
Q

∣∣Tf (x) – (Tf )Q
∣∣dx ≤ C‖f ‖Lp,λ . (.)

Combining (.) and (.), we get

‖T�,αf ‖BMO =


|Q|
∫

Q

∣∣T�,αf (y) – (T�,αf )Q
∣∣dy

≤ 
|Q|

∫
Q

∣∣Tf (y) – (Tf )Q
∣∣dy +


|Q|

∫
Q

∣∣Tf (y) – (Tf )Q
∣∣dy

≤ C‖f ‖Lp,λ .

Thus, we complete the proof of Theorem .. �

3 Proof of Theorem 1.3
Similarly to the proof of Theorem .. We need only to prove (.) for T and T, respec-
tively. First let us consider Tf (x). We have



|Q| α
n – 

p
λ
n

(


|Q|
∫

Q

∣∣Tf (x) – (Tf )Q
∣∣l dx

) 
l

≤ 

|Q| α
n – 

p
λ
n

(


|Q|
∫

Q

∣∣Tf (x)
∣∣l dx

) 
l
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=


|Q| α
n – 

p
λ
n

(


|Q|
∫

Q

∣∣∣∣
∫

B

�(x – y)
|x – y|n–α

f (y) dy
∣∣∣∣
l

dx
) 

l

≤ 

|Q| α
n – 

p
λ
n



|Q| 
l

∫
B

∣∣f (y)
∣∣
(∫

|y–x|<d

( |�(x – y)|
|x – y|n–α

)l

dx
) 

l
dy. (.)

Note that �(x′) ∈ Ls(Sn–), ‖�‖Ls(Sn–) = (
∫

Sn– |�(y′)|s dσ (y′)) 
s , and s > λ

λ–α
≥ l, hence

(∫
|y–x|<d

( |�(x – y)|
|x – y|n–α

)l

dx
) 

l ≤ Cd
n
l –(n–α)‖�‖Ls(Sn–)

≤ C|Q| 
l –(– α

n )‖�‖Ls(Sn–). (.)

On the other hand, by Hölder’s inequality,

∫
B

∣∣f (y)
∣∣dy ≤

(∫
B

∣∣f (y)
∣∣p dy

) 
p
(∫

B
p′

dy
) 

p′

= |B| 
p (– λ

n )
(

|B| λ
n –

∫
B

∣∣f (y)
∣∣p dy

) 
p

×
(∫

B



– λ

n (– 
p′ )+ 

p ( λ
n –) dy

)– λ
n (– 

p′ )+ 
p ( λ

n –)

≤ |B|– λ
n (– 

p′ )+ 
p ( λ

n –)|B| 
p (– λ

n )‖f ‖Lp,λ

= |B|– λ
n (– 

p′ )‖f ‖Lp,λ . (.)

Plugging (.) and (.) into (.) we get



|Q| α
n – 

p
λ
n

(


|Q|
∫

Q

∣∣Tf (x) – (Tf )Q
∣∣l dx

) 
l

≤ C|Q| λ
n


p – α

n – 
l +– λ

n (– 
p′ )+ 

l –(– α
n )‖�‖Ls(Sn–)‖f ‖Lp,λ

≤ C‖f ‖Lp,λ . (.)

Now, let us turn to the estimate for Tf (x). In this case we have



|Q| α
n – 

p
λ
n

(


|Q|
∫

Q

∣∣Tf (x) – (Tf )Q
∣∣l dx

) 
l

=


|Q| α
n – 

p
λ
n

(


|Q|
∫

Q

∣∣∣∣∣


|Q|
∫

Q

{ ∞∑
j=

∫
jd≤|y–x|<j+d

f (y)

×
[

�(x – y)
|x – y|n–α

–
�(z – y)
|z – y|n–α

]
dy

}
dz

∣∣∣∣∣
l

dx

) 
l

. (.)
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By Hölder’s inequality and the proof of Theorem ., s′ < λ
α

< p,

∫
jd≤|y–x|<j+d

∣∣f (y)
∣∣
∣∣∣∣ �(x – y)
|x – y|n–α

–
�(z – y)
|z – y|n–α

∣∣∣∣dy

≤
(∫

jd≤|y–x|<j+d

∣∣f (y)
∣∣s′ dy

) 
s′

(J + J)

≤
(∫

jd≤|y–x|<j+d

∣∣f (y)
∣∣p dy

) 
p
(∫

|y–x|<j+d
s′(p/s′)′ dy

) 
s′(p/s′)′

(J + J)

=
(
j+d

)– λ–n
p

[(
j+d

)λ–n
∫

|y–x|<j+d

∣∣f (y)
∣∣p dy

] 
p

×
(∫

|y–x|<j+d





s′(p/s′)′ + λ–n
np + 

p (– λ
n ) dy

) 
s′(p/s′)′ + λ–n

np + 
p (– λ

n )

(J + J)

≤ C‖f ‖Lp,λ |B|–
λ–n
np |B|


s′(p/s′)′ + λ–n

np + 
p (– λ

n )(J + J)

= C‖f ‖Lp,λ
(
jd

) n
s′(p/s′)′ + n

p (– λ
n )(J + J)

= C‖f ‖Lp,λ
(
jd

) n
s′(p/s′)′ j( n

p – λ
p )|Q| 

p – 
p

λ
n (J + J), (.)

where B = {y ∈ R
n; |y – x| < j+d}.

Since the integral modulus of continuity ωs(δ) of order s of � satisfies (.) and

∫ 

o
ωs(δ)

dδ

δ
<

∫ 

o
ωs(δ)

dδ

δ+β
< ∞,

we know that � satisfies also the Ls-Dini condition. From Lemma . and the proof of
Theorem ., we get

J + J ≤ C
(
jd

)n/s–(n–α) ×
{


j +

∫
|x–x|/j+d<δ<|x–x|/jd

ωs(δ)
dδ

δ

+
∫

|z–x|/j+d<δ<|z–x|/jd
ωs(δ)

dδ

δ

}
. (.)

Note that

(
jd

)n/[s′(p/s′)′]+n/s–(n–α)j( n
p – λ

p ) =
(
jd

)n( α
n – 

p )j( n
p – λ

p )

≤ C|Q| α
n – 

p jn( α
n – 

p )+j( n
p – λ

p )

= C|Q| α
n – 

p jn( α
n – 

p
λ
n ). (.)

Moreover,

jn( α
n – 

p
λ
n )

∫ |x–x|/jd

|x–x|/j+d
ωs(δ)

dδ

δ
≤ jn( α

n – 
p

λ
n )(|x – x|/jd

)β
∫ |x–x|/jd

|x–x|/j+d
ωs(δ)

dδ

δ+β

≤ Cj[n( α
n – 

p
λ
n )–β]

∫ 


ωs(δ)

dδ

δ+β
. (.)
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By  < α <  and β > α – λ
p , we have n( α

n – 
p

λ
n ) –  <  and n( α

n – 
p

λ
n ) – β < , respectively.

Applying (.), (.), and (.) to (.) we obtain

∞∑
j=

∫
jd≤|y–x|<j+d

f (y)
[

�(x – y)
|x – y|n–α

–
�(z – y)
|z – y|n–α

]
dy

≤ C‖f ‖Lp,λ |Q| 
p – 

p
λ
n |Q| α

n – 
p

∞∑
j=

{
j[n( α

n – 
p

λ
n )–] + Cj[n( α

n – 
p

λ
n )–β]

∫ 


ωs(δ)

dδ

δ+β

}

≤ C‖f ‖Lp,λ |Q| α
n – 

p
λ
n . (.)

Plugging (.) into (.), we obtain



|Q| α
n – 

p
λ
n

(


|Q|
∫

Q

∣∣Tf (x) – (Tf )Q
∣∣l dx

) 
l ≤ C‖f ‖Lp,λ . (.)

Then by (.) and (.) we get

‖T�,αf ‖Ll,n( α
n – 

p
λ
n )

≤ 

|Q| α
n – 

p
λ
n

(


|Q|
∫

Q

∣∣Tf (x) – (Tf )Q
∣∣l dx

) 
l

+


|Q| α
n – 

p
λ
n

(


|Q|
∫

Q

∣∣Tf (x) – (Tf )Q
∣∣l dx

) 
l

≤ C‖f ‖Lp,λ .

Thus, we complete the proof of Theorem .. �
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