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Abstract
In this paper we establish certain spaces of Boehmians for some Meijer type integral
transform. The extended Meijer type integral transform is defined and some desired
properties are obtained in the class of Boehmians. Further theorems are also
discussed with some details.
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1 Introduction
During the past decades, a number of Meijer-type integral transforms have been studied
by many authors such as Meijer [], Pandey [], Srivastava [], Srivastava and Vyas []
and many others. Some variants of Meijer-type integrals were given by Krätzel [–] and,
recently, by Waphare []. In , a new version of Meijer-type integral, referred to as
an Mα,β -integral, has been investigated and its inversion formula was duly achieved by
[]. This variant of this transform was formed to generalize those obtained by Krätzel
[], Conlan and Koh [], and Rodriguez [] as well.

In this article, we consider some variant defined, under conditions of regularity and con-
vergence, by Betancor [] as

�(γ ) = lα,α

(
φ(ζ )

)
(γ ) = γ –α

∫ ∞


ζ α,α–lα–(γ ζ )φ(ζ ) dζ ()

with the inversion formula given as

l–
α,α

(
φ(γ )

)
(ζ ) =

ζ –α

iπ

∫

�c

γ α,α–εα–(γ ζ )�(γ ) dγ , ()

where �c = {w ∈C : Re
√

w = c > }, α,α ∈C, lv and εv are the modified Bessel-Clifford
functions of the third and first kind of order v, respectively.

The modified Bessel functions εv and lv are indeed related to the homologous Bessel
functions jv and kv by the formulas

εv(x) = x
–v
 jv(

√
x) ()
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and

lv(x) = x
–v
 kv(

√
x), ()

which are solutions of the differential equation xy′′ + (v + )y′ – y = . They also satisfy the
relations l(n)

v = (–)nlv+n and ε
(n)
v = εv+n, for every choice of n ∈N.

In addition, the integral representation of the modified Bessel function lα– was intro-
duced by Rodriguez [], Meijer [] and Waphare [] as

lα–(γ ζ ) =



∫ ∞


τ–αe–τ– γ ζ

τ dτ . ()

For a complete account of lα– and εα– functions we refer to Rodriguez in [] and
Betancor in [].

The class of Boehmians was introduced to generalize regular operators []. The mini-
mal structure necessary for the abstract construction of Boehmian spaces consists of the
following elements:

(i) A nonempty set a.
(ii) A commutative semigroup (b,∗).

(iii) An operation � : a × b → a such that for each x ∈ a, the following formula is
satisfied:

x � (δ ∗ δ) = (x � δ) � δ

for every choice of δ, δ ∈ b.
(iv) A collection � ⊂ b such that:

(a) if x, y ∈ a, (δn) ∈ �, x � δn = y � δn for all n, then x = y;
(b) if (δn), (ψn) ∈ �, then (δn ∗ ψn) ∈ �.

The elements of � are called delta sequences. Denote by g the set

g =
{

(xn, δn) : xn ∈ a, (δn) ∈ �, xn � δm = xm � δn,∀m, n ∈N
}

.

Then, if (xn, δn), (yn,ψn) ∈ g , xn � ψm = ym � δn, ∀m, n ∈ N, then we say (xn, δn) ∼ (yn,ψn).
The relation ∼ is an equivalence relation in g . The space of equivalence classes ing is de-
noted by α. Elements of α are called Boehmians. Between a and α there is a canonical
embedding expressed as

x → x � δn

δn
.

The operation � can be extended to α × a by

xn

δn
� t =

xn � t
δn

.

In α, we have two types of convergence.
δ-convergence: A sequence (βn) in α is said to be δ-convergent to β in α, denoted by

βn
δ→ β , if there exists a delta sequence (δn) such that (βn � δn), (β � δn) ∈ a, ∀k, n ∈N, and

(βn � δk) → (β � δk) as n → ∞, in a, for every k ∈N.
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�-convergence: A sequence (βn) in α is said to be �-convergent to β in α, denoted by
βn

�→ β , if there exists a (δn) ∈ � such that (βn – β) � δn ∈ a, ∀n ∈ N, and (βn – β) � δn → 
as n → ∞ in a.

For the abstract construction of Boehmian spaces, we refer to Karunakaran and Roop-
kumar [], Karunakaran and Vembu [], Mikusinski [], Al-Omari [–], Al-Omari
and Kilicman [], Nemzer [], and some others.

2 Some notations and necessary theorems
Denote by (,∞) the Schwartz’ space of test functions of compact supports defined on
(,∞) and by �loc((,∞)), the set of all continuous functions of bounded supports over
(,∞) such that

∫

k

∣∣f (x)
∣∣dx ()

is finite for every compact subset k of (,∞).
The following are two definitions needed for our next investigation.

Definition  The Mellin-type convolution product of first kind is defined by Karunakaran
and Roopkumar as []

(φ ∗ ψ)(ζ ) =
∫ ∞


x–φ

(
ζx–)ψ(x) dx. ()

The general properties of ∗ are given by
(i) (φ ∗ ψ)(t) = (ψ ∗ φ)(t);

(ii) ((φ + ψ) ∗ ϕ)(t) = (φ ∗ ϕ)(t) + (ψ ∗ ϕ)(t);
(iii) (αφ ∗ ψ)(t) = α(ψ ∗ φ)(t), α is complex number;
(iv) ((φ ∗ ψ) ∗ ϕ)(t) = (φ ∗ (ψ ∗ ϕ))(t).

Definition  Let l denote the space of those functions which are complex-valued
Lebesgue and integrable on (,∞). Between the two functions φ and ψ in l we define
an operation � in terms of the integral equation

(φ �ψ)(γ ) =
∫ ∞


xα+α–φ(γ x)ψ(x) dx ()

for every choice of α and α.

The integrals () and () are clearly related by the following theorem.

Theorem  Let φ and ψ be complex-valued integrable functions in l and γ ∈ (,∞).
Then we have

lα,α (φ ∗ ψ)(γ ) = (lα,αφ �ψ)(γ ),

where α,α ∈C.
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Proof Let the hypothesis of the theorem be satisfied by some functions φ and ψ in l. Then
by invoking () in () we get

lα,α (φ ∗ ψ)(γ ) = γ –α

∫ ∞


ζ α+α–lα–(γ ζ )(φ ∗ ψ)(ζ ) dζ

= γ –α

∫ ∞


ζ α+α–lα–(γ ζ )

∫ ∞


x–φ

(
ζx–)ψ(x) dx dζ

= γ –α

∫ ∞


x–ψ(x)

∫ ∞


ζ α+α–lα–(γ ζ )φ

(
ζx–)dx dζ .

By Fubini’s theorem and setting variables, we obtain the integral equation

lα,α (φ ∗ ψ)(γ ) = γ –α

∫ ∞


ψ(x)xα+α–yα+α–lα–

(
γ (xy)

)
φ(y) dy dx.

Hence, simplifications yield

lα,α (φ ∗ ψ)(γ ) =
∫ ∞


ψ(x)xα+α–

×
(

(γ x)–α

∫ ∞


yα+α–lα–

(
(γ x)y

)
φ(y) dy

)
dx

=
∫ ∞


xα+α–lα,αφ(γ x)ψ(x) dx.

Therefore, by the aid of (), we get

lα,α (φ ∗ ψ)(γ ) = (lα,αφ �ψ)(γ ).

This completes the proof of the theorem. �

Theorem  Let φ, ϕ, and ψ be integrable functions in l and y ∈ (,∞). Then we have

(
φ � (ϕ ∗ ψ)

)
(y) =

(
(φ � ϕ) �ψ

)
(y).

Proof By taking into account () and () we by Fubini’s theorem obtain

(
φ � (ϕ ∗ ψ)

)
(y) =

∫ ∞


ζ α+α–φ(yζ )(ϕ ∗ ψ)(ζ ) dζ

=
∫ ∞


ζ α+α–φ(yζ )

∫ ∞


x–ϕ

(
ζx–)ψ(x) dx dζ

=
∫ ∞


xα+α–ψ(x)

∫ ∞


φ(yxτ )ϕ(z)τα+α– dτ dx.

Setting variables gives

(
φ � (ϕ ∗ ψ)

)
(y) =

∫ ∞


xα+α–(φ � ϕ)(yx)ψ(x) dx.
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Hence, equation () reveals

(
φ � (ϕ ∗ ψ)

)
(y) =

(
(φ � ϕ) �ψ

)
(y).

This completes the proof of the theorem. �

Theorem  Let φ ∈�loc(,∞). Then lα,α (φ) ∈�loc(,∞), for α < , α �=  – α.

Proof Let φ ∈�loc(,∞) be arbitrary and k be a compact subset in (,∞). Then, invoking
() in () suggests

∫

k

∣
∣lα,α

(
φ(ζ )

)
(γ )

∣
∣dγ ≤

∫

k

γ –α

∫ ∞


ζ α+α–∣∣lα–(γ ζ )

∣
∣
∣
∣φ(ζ )

∣
∣dζ dγ

≤ 


∫

k

γ –α

∫ ∞


ζ α+α–

∣∣∣
∣

∫ ∞


τ–α e–τ– γ ζ

τ dτ

∣∣∣
∣

× ∣
∣φ(ζ )

∣
∣dζ dγ

=



∫

k

ζ α+α–

×
∣
∣∣
∣

∫ ∞



(
γ ζy–)–α e–(γ ζ )–y–y(γ ζ )y– dy

∣
∣∣
∣
∣∣φ(ζ )

∣∣dζ dγ .

Setting variables reveals

∫

k

∣∣lα,α

(
φ(ζ )

)
(γ )

∣∣dγ ≤ 


∫

k

γ –α–α+
∫ ∞


ζ α

∣
∣∣
∣

∫ ∞


yα–e–(γ ζy–)–y dy

∣
∣∣
∣

× ∣
∣φ(ζ )

∣
∣dζ dγ .

By the fact that e–(γ ζy–)–y < e–y we have

∫

k

∣
∣lα,α

(
φ(ζ )

)
(γ )

∣
∣dγ ≤ 



∫

k

γ –α–α+
∫ ∞


ζ α

∣∣
∣∣

∫ ∞


yα–e–y dy

∣∣
∣∣
∣
∣φ(ζ )

∣
∣dζ dγ

<



∫

k

γ –α–α+
∫ ∞


ζ α

(∫ ∞


e–y dy

)∣∣φ(ζ )
∣∣dζ dγ .

By the fact that |yα–| < , for α < , we get

∫

k

∣∣lα,α

(
φ(ζ )

)
(γ )

∣∣dγ ≤ 


∫

k

γ –α–α+
∫ ∞


ζ α

∣∣φ(ζ )
∣∣dζ dγ .

The last equation follows from the fact that
∫ ∞

 e–y dy = .
Now, let k = [c, d],  < c < d, be a compact set containing the support of φ, i.e., suppφ ⊆

[c, d], and k = [a, b],  < a < b. Then we get

∫

k

∣
∣lα,α

(
φ(ζ )

)
(γ )

∣
∣dγ <




∫ b

a
γ –α–α+

(∫ d

c
ζ α

∣
∣φ(ζ )

∣
∣dζ

)
dη

<
M


∫ b

a
γ –α–α+ dγ ,
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where M =
∫ d

c ζ α |φ(ζ )|dζ . Hence,

∫

k

∣∣lα,α

(
φ(ζ )

)
(γ )

∣∣dγ <
M


(b–α–α+ – b–α–α+)
–α – α + 

< ∞.

The theorem is therefore completely proved. �

3 Constructed spaces of Boehmians
Here we begin by the following spaces of Boehmians, named α(�loc,,∗,∗), and α(�loc,,
∗,�), where � is a collection of delta sequence (δn) from  satisfying

�:
∫ ∞


δn(x) dx = ;

�:
∫ ∞



∣
∣δn(x)

∣
∣dx < M, M ∈R, M > ;

�: supp δn(x) →  as n → ∞.

Let us now establish that α(�loc,,∗,�) is a Boehmian space. We prefer to omit the details
of establishing α(�loc,,∗,∗) since the construction of the latter is straightforward from
the properties of ∗.

We prove certain theorems that are needed for this construction.

Theorem  Let φ ∈�loc(,∞) and ϕ,ψ ∈ (,∞). Then φ � (ϕ ∗ ψ) = (φ � ϕ) �ψ .

The proof of this theorem follows from Theorem . Details are thus omitted.

Theorem  Let φ ∈�loc(,∞) and ϕ ∈ (,∞). Then φ � ϕ ∈�loc(,∞).

Proof Let k be a compact subset in (,∞). Then we have

∫

k

∣∣(φ � ϕ)(γ )
∣∣dγ =

∫

k

∣
∣∣
∣

∫ ∞


xα+α–φ(γ x)ϕ(x) dx

∣
∣∣
∣dγ

≤
∫

k

∫

k

∣∣
∣∣

∫ ∞


xα+α–φ(γ x)

∣∣
∣∣
∣
∣ϕ(x)

∣
∣dx dγ

(by Fubini’s theorem)

≤
∫

k

∣∣ϕ(x)
∣∣
∫

k

∣∣xα+α–φ(γ x)
∣∣dγ dx,

where k is a compact set containing the suppϕ.
By �, we obtain

∫

k

∣∣(φ � ϕ)(γ )
∣∣dγ ≤ MM,

where M =
∫

k
|xα+α–φ(γ x)|dγ and M =

∫
k |ϕ(x)|dx.

Hence, the theorem is completely proved. �
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Theorem  Let φ,φ ∈�loc(,∞) and ψ,ψ ∈ (,∞). Then the following hold:
(i) (φ + φ) �ψ = φ �ψ + φ �ψ.

(ii) If φn → φ in �loc(,∞) and ψ ∈ (,∞), then

φn �ψ → φ �ψ as n → ∞.

(iii) If (δn), (ψn) ∈ � then (δn ∗ ψn) ∈ �.

Proof The proof of parts (i) and (ii) follows from a simple integration. The proof of part (iii)
follows from Roopkumar [].

Hence, the theorem is proved. �

Finally in this construction, we prove the following theorem.

Theorem  Let φ ∈ �
K
loc(,∞) and (δn) ∈ �. Then φ � δn → φ as n → ∞.

Proof Let k be a compact subset of (,∞). Then, by �, we write

∫

k

∣∣(φ � δn)(γ ) – φ(γ )
∣∣dγ =

∫

k

∣
∣∣
∣

∫ ∞


xα+α–φ(γ x)δn(x) dx – φ(γ )

∣
∣∣
∣dγ

=
∫

k

∣∣∣
∣

∫ ∞


xα+α–φ(γ x)δn(x) dx –

∫ ∞


φ(γ )δn(x) dx

∣∣∣
∣dγ

≤
∫

k

∫ ∞



∣∣xα+α–φ(γ x) – φ(γ )
∣∣∣∣δn(x)

∣∣dx dγ .

Let h(γ ) = xα+α–φ(γ x) – φ(γ ). Then h(γ ) is uniformly continuous for each γ ∈ (,∞).
Hence

∫

k

∣∣(φ � δn)(γ ) – φ(γ )
∣∣dγ →  as n → ∞.

Therefore φ � δn → φ as n → ∞.
This completes the proof of the theorem. �

The space α(�loc,,∗,�) is therefore constructed. Construction of the space α(�loc,,
∗,∗) is almost similar.

We define the sum and multiplication by a scalar of two Boehmians in α(�loc,,∗,�)
in the natural way by

[
(φn)
(δn)

]
+

[
(gn)
(ϕn)

]
=

[
(φn) � (ϕn) + (gn) � (δn)

(δn) ∗ (ϕn)

]

and ρ[ (φn)
(δn) ] = [ (ρφn)

(δn) ], ρ is a complex number.
Between �loc and α(�loc,,∗,�) there is a canonical embedding expressed as

x → x � δn

δn
.
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The operation � can be extended to α(�loc,,∗,�) ×�loc by

xn

δn
� t =

xn � t
δn

.

In α(�loc,,∗,�), we have two types of convergence.
δ-convergence: A sequence (βn) in α(�loc,,∗,�) is said to be δ-convergent to β in

α(�loc,,∗,�) if there can be a delta sequence (δn) such that (βn � δn), (β � δn) ∈ �loc,
∀k, n ∈N, and (βn � δk) → (β � δk) as n → ∞, in �loc, for every k ∈N.

�-convergence: A sequence (βn) in α(�loc,,∗,�) is said to be �-convergent to β in
α(�loc,,∗,�) if there can be a (δn) ∈ � such that (βn – β) � δn ∈ �loc, ∀n ∈ N, and (βn –
β) � δn →  as n → ∞ in �loc.

4 Introduction of the generalized Meijer-type integral
Here we introduce a generalized Meijer-type integral. Then we show its properties in the
space of Boehmians.

Definition  Let [ (φn)
(δn) ] ∈ α(�loc,,∗,∗). Then we define the generalized Meijer-type in-

tegral transform of [ (φn)
(δn) ] as lge

α,α [ (φn)
(δn) ] = [ lα,α (φn)

(δn) ] in α(�K
loc,,∗,�).

Theorem  shows that Definition  is well defined.
We discuss now some properties of lge

α,α .

Theorem  Let β,β ∈ α(�loc,,∗,∗). Then lge
α,α (β ∗ β) = lge

α,αβ � β in α(�loc,,
∗,�).

Proof Assume the hypothesis of the theorem is satisfied for some β,β ∈ α(�loc,,∗,∗).
Therefore there are (φn), (κn) ∈�loc(,∞) and (ϕn), (δn) ∈ � such that β = [ (φn)

(ϕn) ] and β =
[ (κn)

(δn) ]. Therefore,

lge
α,α (β ∗ β) = lge

α,α

([
(φn) ∗ (κn)
(ϕn) ∗ (δn)

])
.

Definition  gives

lge
α,α (β ∗ β) =

[
lα,α ((φn) ∗ (κn))

(ϕn) ∗ (δn)

]
.

By the aid of Theorem  we obtain

lge
α,α (β ∗ β) =

[
(lα,αφn) � (κn)

(ϕn) � (δn)

]
.

On separating quotients this yields

lge
α,α (β ∗ β) =

[
(lα,αφn)

(ϕn)

]
�

[
(κn)
(δn)

]
.

Hence, lge
α,α (β ∗ β) = lge

α,α (β) � β.
This completes the proof of the theorem. �
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Theorem  lge
α,α defines a linear mapping from α(�loc,,∗,∗) into α(�loc,,∗,�).

The proof is straightforward. Details are therefore omitted.

Theorem  Let [ (φn)
(δn) ] ∈ α(�loc,,∗,∗) and δ ∈ (,∞). Then we have

lge
α,α

([
(φn)
(δn)

]
∗ δ

)
=

[
(lα,αφn)

(δn)

]
� δ.

Proof Let [ (φn)
(δn) ] ∈ α(�loc,,∗,∗) and δ ∈ (,∞). By virtue of Definition  we write

lge
α,α

([
(φn)
(δn)

]
∗ δ

)
=

[
lα,α ((φn) ∗ δ)

(δn)

]
.

Once again, Definition  and Theorem  give

lge
α,α

([
(φn)
(δn)

]
∗ δ

)
=

[
(lα,αφn) � δ

(δn)

]
=

[
(lα,αφn)

(δn)

]
� δ.

This completes the proof of the theorem. �

Theorem  The transform lge
α,α is consistent with lge

α,α : �loc(,∞) →�loc(,∞).

Proof For every φ ∈ �loc(,∞), let β ∈ α(�loc,,∗,∗) be the representative in the space
α(�loc,,∗,∗), then ∀n ∈ N, (δn) ∈ �, β = [ φ∗(δn)

(δn) ]. For all n ∈ N it is clear that (δn) is inde-
pendent from the choice of the representative.

We have

lge
α,α (β) = lge

α,α

([
φ ∗ (δn)

(δn)

])
=

[
lα,α (φ ∗ (δn))

(δn)

]
=

[
lα,αφ ∗ (δn)

(δn)

]
,

which is the representative of lge
α,αφ in the space �loc(,∞).

Hence the proof is completed. �

Theorem  The necessary and sufficient condition for [ (gn)
(ψn) ] ∈ α(�loc,,∗,�) to be in the

range of lge
α,α is that gn belongs to the range of lα,α for every n ∈N.

Proof Let [ (gn)
(ψn) ] be in the range of lge

α,α . Then of course gn belongs to the range of lα,α ,
∀n ∈ N. To establish the converse, let gn be in the range of lα,α , ∀n ∈ N. Then there is
φn ∈�loc(,∞) such that lα,αφn = gn, n ∈N.

Since [ (gn)
(ψn) ] ∈ α(�loc,,∗,�) we get gn�ψm = gm�ψn, ∀m, n ∈N. Therefore, Theorem 

yields

lα,α (φn ∗ δm) = lα,α (φm ∗ δn), ∀m, n ∈N,

where φn ∈�loc(,∞) and (δn) ∈ �, ∀n ∈N. Thus φn ∗ δm = φm ∗ δn, m,∀n ∈N. Hence,
[

(φn)
(δn)

]
∈ α(�loc,,∗,∗) and lge

α,α

([
(φn)
(δn)

])
=

[
(gn)
(ψn)

]
.

The theorem is therefore completely proved. �
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Theorem  The mappings lge
α,α are continuous with respect to δ and �-convergence.

The proof of this theorem is given by various papers of many authors. A detailed proof
is therefore omitted.

5 Concluding remark
The present study defined the space of Boehmians for some Meijer type integral transform
and desired some properties in the class of Boehmians. The results given in this paper are
seen to generalize those given by Roopkumar in [, ].
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