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Abstract
For a simple graph G of order n, let μ1 ≥ μ2 ≥ · · · ≥ μn = 0 be its Laplacian
eigenvalues, and let q1 ≥ q2 ≥ · · · ≥ qn ≥ 0 be its signless Laplacian eigenvalues. The
Laplacian-energy-like invariant and incidence energy of G are defined as, respectively,

LEL(G) =
n–1∑

i=1

√
μi and IE(G) =

n∑

i=1

√
qi .

In this paper, we present some new upper and lower bounds on LEL and IE of line
graph, subdivision graph, para-line graph and total graph of a regular graph, some of
which improve previously known results. The main tools we use here are the
Cauchy-Schwarz inequality and the Ozeki inequality.
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1 Introduction
There are a large number of remarkable chemical applications in graph theory, one of
which is based on the close correspondence between the graph eigenvalues and the molec-
ular orbital energy levels of π-electrons in conjugated hydrocarbons. For the Hüchkel
molecular orbital (HMO) approximation, the total π-electron energy in conjugated hy-
drocarbons is given by the sum of absolute values of the eigenvalues of the corresponding
molecular graph in which the degree of each vertex is not more than three in general. In
, Gutman [] extended the concept of energy to all simple graphs, and defined the
energy of a graph G (of order n) as

E(G) =
n∑

i=

|λi|,

where λ ≥ λ ≥ · · · ≥ λn are the eigenvalues of the adjacency matrix A(G) of G (also called
the eigenvalues of the graph G). The concept of graph energy was further extended to any
matrix in []: the energy E(M) of a (not necessarily square) matrix M is the sum of its
singular values, where the singular values of M are the square roots of the eigenvalues of
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the (square) matrix MMT (MT stands for the transpose of M). Obviously, E(G) = E(A(G)).
For more details in the theory of graph energy, see [] by Li et al.

The Laplacian matrix L(G) of a graph G is another important and well-studied matrix in
graph theory, which is defined to be L(G) = D(G)–A(G), where D(G) is the diagonal matrix
of vertex degrees of G. The eigenvalues of L(G) are also called the Laplacian eigenvalues
of the graph G, which are always denoted by μ ≥ μ ≥ · · · ≥ μn– ≥ μn = . Based on the
Laplacian eigenvalues, Liu and Liu [] conceived the following invariant:

LEL(G) =
n–∑

i=

√
μi. ()

They called this invariant the Laplacian-energy-like invariant, which was later proved to
be an energy like invariant []. Nowadays, LEL has become a successful molecular descrip-
tor []. A great deal of work has been done on LEL, see [] for a comprehensive survey.

Recall that giving an arbitrary orientation to each edge of G would yield an oriented
graph �G. Let B( �G) be the (vertex-edge) incidence matrix of �G. Then B( �G)B( �G)T = L(G), and
hence LEL(G) = E(B( �G)). This provides a new interpretation for LEL: oriented incidence
energy [], and furnishes a new insight into its possible physical or chemical meaning.

Let B(G) be the (vertex-edge) incidence matrix of G. Motivated by Nikiforov’s idea and
LEL, Jooyandeh et al. [] introduced the concept of incidence energy of a graph G: if the
singular values of B(G) are σ,σ, . . . ,σn then the incidence energy of G is IE(G) =

∑n
i= σi =

E(B(G)). Note that B(G)B(G)T = A(G) + D(G) = Q(G) is the signless Laplacian matrix of G,
with its eigenvalues q ≥ q ≥ · · · ≥ qn ≥  (also called the signless Laplacian eigenvalues
of the graph G). Thus, it follows that

IE(G) =
n∑

i=

σi =
n∑

i=

√
qi. ()

Observe that LEL(G) = IE( �G). Furthermore, we have the following relation between LEL
and IE.

Theorem . (see []) Let G be a graph of order n. Then LEL(G) ≤ IE(G), with the equality
holding if and only if G is bipartite.

For more results on IE, we refer the reader to [, –].
The line graph, subdivision graph, para-line graph and total graph are the well-known

operations on graphs, which can produce many new types of graphs. In [], Ramane et al.
studied the spectra and energies of (iterated) line graphs of regular graphs, and based on
the derived results they found a systematic construction of pairs of equienergetic graphs.
Gao et al. [] established formulas and lower bounds of the Kirchhoff index of line, sub-
division and total graphs of a regular graph. Yan et al. [] considered the asymptotic be-
havior of the number of spanning trees and the Kirchhoff index of iterated line graphs and
iterated para-line graphs of a regular graph. Recently, in [], Wang and Luo presented
upper and lower bounds for the Laplaican-energy-like invariant of line graph, subdivision
graph and total graph of a regular graph. In addition, upper and lower bounds for the in-
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cidence energy of (iterated) line graphs of a regular graph were also obtained by Gutman
et al. [].

In this paper, we give some new upper and lower bounds on the Laplacian-energy-like
invariant and the incidence energy of line graph, subdivision graph, para-line graph and
total graph of a regular graph, some of which improve the corresponding bounds in []
and [].

2 Preliminaries
In this section, we recall the concepts of line graphs and related graph operations, and list
some lemmas that will be used in the subsequent sections.

The line graph L(G) of a graph G is the graph whose vertices are the edges of G, with
two vertices in L(G) adjacent whenever the corresponding edges in G have exactly one
vertex in common. If G is a regular graph of degree r with n vertices and m (= nr/) edges,
then characteristic polynomial of L(G) can be expressed in terms of the characteristic
polynomial of G, namely []

PA(L(G))(x) = (x + )m–nPA(G)(x – r + ), ()

where we write PM(x) for the characteristic polynomial of a matrix M. By (), we have the
following lemma immediately.

Lemma . Let G be a regular graph of degree r with n vertices. If the eigenvalues of G are
λ,λ, . . . ,λn, then the eigenvalues of L(G) are r –  + λ, r –  + λ, . . . , r –  + λn, and –
(with multiplicity n(r – )/).

The subdivision graph S(G) of a graph G is the graph obtained by inserting a new vertex
into every edge of G. Clearly, S(G) is a bipartite graph. Moreover, if G is a regular graph
of degree r with n vertices and m edges, then []

PL(S(G))(x) = (–)m( – x)m–nPL(G)
(
x(r +  – x)

)
. ()

From () we arrive at the next lemma (see also []).

Lemma . Let G be a regular graph of degree r with n vertices. If the Laplacian eigenval-
ues of G are μ,μ, . . . ,μn, then S(G) has n(r – )/ Laplacian eigenvalues equal to  and
the following n Laplacian eigenvalues:

r +  ± √
(r + ) – μi


(i = , , . . . , n).

The para-line graph C(G) of a graph G, which was first introduced in [], is defined to
be the line graph of the subdivision graph of G. In [], the para-line graph is also called
the clique-inserted graph.

Lemma . (see []) Let G be a regular graph of degree r with n vertices. If the eigenvalues
of G are λ,λ, . . . ,λn, then the eigenvalues of C(G) are – (with multiplicity n(r – )/),



Chen et al. Journal of Inequalities and Applications  (2016) 2016:51 Page 4 of 15

 (with multiplicity n(r – )/), and

r –  ± √
r +  + λi


(i = , , . . . , n).

The total graph T (G) of a graph G is the graph whose vertices are the vertices and edges
of G, with two vertices of T (G) adjacent if and only if the corresponding elements of G are
adjacent or incident.

Lemma . (see []) Let G be a regular graph of degree r (r > ) having n vertices. If the
eigenvalues of G are λ,λ, . . . ,λn, then T (G) has n(r – )/ eigenvalues equal to – and the
following n eigenvalues:

r –  + λi ±
√

r +  + λi


(i = , , . . . , n).

The following is known as the Ozeki inequality.

Lemma . (see []) Let ā = (a, a, . . . , an) and b̄ = (b, b, . . . , bn) be two positive n-tuples
with  < a ≤ ai ≤ A and  < b ≤ bi ≤ B, where i = , , . . . , n. Then

n∑

i=

a
i

n∑

i=

b
i –

( n∑

i=

aibi

)

≤ 


n(AB – ab).

Lemma . (see [, ]) Let G be a graph with n vertices, m edges and maximum degree �.
Then

√
(m)

n� + m
≤ LEL(G) ≤ √

� +  +
√

(n – )(m – � – ),

with the left equality if and only if G ∼= Kn and the right if and only if G ∼= Kn or G ∼= Sn.

From Lemma ., it follows directly that if G be a regular graph of degree r with n ver-
tices, then

nr√
r + 

≤ LEL(G) ≤ √
r +  +

√
(n – )(nr – r – ), ()

with both equalities if and only if G ∼= Kn.

Lemma . (see []) Let G be a graph of order n with at least one edge. Then μ = μ =
· · · = μn– if and only if G ∼= Kn.

Finally, we should remark that if G is a regular graph of degree r = , then G is nothing but
the disjoint union of independent edges. Hence, in the following, for avoiding the triviality
we always assume that r ≥ .

3 The Laplacian-energy-like invariant
In this section, we consider LEL of line graph, subdivision graph, para-line graph, and total
graph of a regular graph. We begin with the case of line graphs.
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Theorem . (see []) Let G be a regular graph of degree r with n vertices. Then

LEL
(
L(G)

)
= LEL(G) +

n(r – )


√
r.

By Theorem . and (), we have the following corollary directly.

Corollary . Let G be a regular graph of degree r with n vertices. Then

nr√
r + 

+
n(r – )


√

r ≤ LEL
(
L(G)

) ≤ √
r +  +

√
(n – )(nr – r – ) +

n(r – )


√
r,

with both equalities holding if and only if G ∼= Kn.

Remark  In [], Wang and Luo proved that if G is a regular graph of n vertices and of
degree r, then

n(r – )


√
r < LEL

(
L(G)

) ≤ √
(n – )nr +

n(r – )


√
r, ()

with the right equality if and only if G ∼= Kn. Evidently, the lower bound in Corollary . is
better than that in (). For the upper bound, our bound is also better than that in (). To
see this, we only need to show that

√
r +  +

√
(n – )(nr – r – ) ≤ √

(n – )nr, ()

that is,

(n – )(nr – r – ) ≤ (√
(n – )nr –

√
r + 

),

that is,


√

(n – )(r + )nr ≤ nr + (n – )(r + ) = (
√

nr) +
(√

(n – )(r + )
),

which is clearly obeyed.

We now consider the case of subdivision graphs.

Theorem . Let G be a regular graph of degree r with n vertices. Then

(i) LEL(S(G)) ≤ (n – )
√

r +  + 
n– LEL(G) +

√
r +  +

√
n(r–)

 , with the equality if and
only if G ∼= Kn;

(ii) LEL(S(G)) > (n – )
√

r + 
 + 

n– LEL(G) +
√

r +  +
√

n(r–)
 .

Proof Suppose that μ ≥ μ ≥ · · · ≥ μn– ≥ μn =  are the Laplacian eigenvalues of G.
Then from () and Lemma ., it follows that

LEL
(
S(G)

)
=

n–∑

i=

(√
r +  +

√
(r + ) – μi


+

√
r +  –

√
(r + ) – μi



)

+
√

r +  +
√

n(r – )
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=
n–∑

i=

√√√√
(√

r +  +
√

(r + ) – μi


+

√
r +  –

√
(r + ) – μi



)

+
√

r +  +
√

n(r – )


=
n–∑

i=

√
r +  + 

√
μi +

√
r +  +

√
n(r – )


. ()

Further, by the Cauchy-Schwarz inequality, we obtain

LEL
(
S(G)

) ≤
√√√√(n – )

n–∑

i=

(r +  + 
√

μi) +
√

r +  +
√

n(r – )


= (n – )
√

r +  +


n – 
LEL(G) +

√
r +  +

√
n(r – )


.

Moreover, it is easy to see that the equality holds if and only if μ = μ = · · · = μn–, which,
by Lemma ., is equivalent to G ∼= Kn. Hence, (i) follows.

We now prove (ii). Take ai =
√

r +  + √
μi and bi = , i = , , . . . , n – . Set A =√

r +  + 
√

r, a =
√

r + , and B = b = . Clearly,  < a ≤ ai ≤ A (as  ≤ μn– ≤ · · · ≤
μ ≤ r), and  < b ≤ bi ≤ B. Furthermore, we get

(AB – ab) =
r

(
√

r +  + 
√

r +
√

r + )
<

r
(r + )

< .

Then by Lemma ., it follows from () that

LEL
(
S(G)

) ≥
√√√√(n – )

n–∑

i=

(r +  + 
√

μi) –



(n – )(AB – ab)

+
√

r +  +
√

n(r – )


> (n – )
√

r +



+


n – 
LEL(G) +

√
r +  +

√
n(r – )


,

as desired, completing the proof. �

Theorem ., together with (), would yield the next immediate corollary.

Corollary . Let G be a regular graph of degree r with n vertices. Then

(i) LEL(S(G)) ≤ (n – )
√

r +  + (
√

r++
√

(n–)(nr–r–))
n– +

√
r +  +

√
n(r–)

 , with the
equality if and only if G ∼= Kn;

(ii) LEL(S(G)) > (n – )
√

r + 
 + nr

(n–)
√

r+ +
√

r +  +
√

n(r–)
 .

Remark  It was showed in [] that if G is a regular graph of n vertices and of degree r,
then

√
n(r – )


+ n

√
r +  < LEL

(
S(G)

) ≤ (n – )
√

r +
√

r +  +
√

(nr – )


, ()
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the right equality holds if and only if G ∼= K. Note that the lower and upper bounds in
Corollary . are better than those in (), respectively. Indeed, for the lower bound, since√

r
r+ ≥

√


 and n > n – , we have

√
r +




+
nr

(n – )
√

r + 
+

√
r +  +

√
n(r – )



> (n – )
√

r +



+
√

r +
√

r +  +
√

n(r – )


> n
√

r +  +
√

n(r – )


.

For the upper bound, using () and the fact that n
n– ≤ , we obtain

(n – )

√

r +  +
(

√
r +  +

√
(n – )(nr – r – ))
n – 

+
√

r +  +
√

n(r – )


≤ (n – )

√

r +  +

√

(n – )nr
n – 

+
√

r +  +
√

n(r – )


≤ (n – )
√

r +  + 
√

r +
√

r +  +
√

n(r – )


= (n – )
√

r +
√

r +  +
√

(nr – )


.

Next, we turn our attention to the case of para-line graphs. Notice that if G is r-regular,
then C(G) is also r-regular, and hence it follows from Lemma . that the Laplacian eigen-
values of C(G) are r +  (with multiplicity n(r – )/), r (with multiplicity n(r – )/),
and

r +  ± √
(r + ) – μi


(i = , , . . . , n),

where μ ≥ μ ≥ · · · ≥ μn are the Laplacian eigenvalues of G. Using the same argument
as the proof of Theorem ., we may arrive at the following result.

Theorem . Let G be a regular graph of degree r with n vertices. Then

(i) LEL(C(G)) ≤ (n – )
√

r +  + 
n– LEL(G) + ( n(r–)

 + )
√

r +  + n(r–)


√
r, with the

equality if and only if G ∼= Kn;
(ii) LEL(C(G)) > (n – )

√
r + 

 + 
n– LEL(G) + ( n(r–)

 + )
√

r +  + n(r–)


√
r.

Likewise, the next corollary follows evidently from Theorem . and ().

Corollary . Let G be a regular graph of degree r with n vertices. Then

(i) LEL(C(G)) ≤ (n – )
√

r +  + (
√

r++
√

(n–)(nr–r–))
n– + ( n(r–)

 + )
√

r +  + n(r–)


√
r, with

the equality if and only if G ∼= Kn;
(ii) LEL(C(G)) >

√
r + 

 + nr
(n–)

√
r+ + ( n(r–)

 + )
√

r +  + n(r–)


√
r.

We finally consider the case of total graphs.
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Theorem . Let G be a regular graph of degree r with n vertices. Then
(i) LEL(T (G)) ≤ n

√
r +  +

√
(n – )nr + n(r–)



√
r + , with the equality if and only if

G ∼= Kn;
(ii) LEL(T (G)) > (n – )

√
r +  +

√
r +  + n(r–)



√
r + .

Proof Note first that T (G) is a regular graph of degree r with n(r+)
 vertices. Then from

Lemma ., it follows that T (G) has n(r–)
 Laplacian eigenvalues equal to r +  and the

following n Laplacian eigenvalues:

r +  + μi ±
√

(r + ) – μi


(i = , , . . . , n),

where μ ≥ μ ≥ · · · ≥ μn =  are the Laplacian eigenvalues of G. Then by () and some
computation, we get

LEL
(
T (G)

)
=

n–∑

i=

√
r +  + μi + 

√
μ

i + (r + )μi +
√

r +  +
n(r – )


√

r + . ()

On the other hand, by using the Cauchy-Schwarz inequality and the fact that
∑n–

i= μi = nr
and

∑n–
i= μ

i = nr + nr, we have

n–∑

i=

√
r +  + μi + 

√
μ

i + (r + )μi

≤
√√√√(n – )

n–∑

i=

(
r +  + μi + 

√
μ

i + (r + )μi
)

≤ (n – )

√√√√√r +  +
nr

n – 
+ 

√√√√ 
n – 

n–∑

i=

(
μ

i + (r + )μi
)

= (n – )

√

r +  +
nr

n – 
+ 

√
nr

n – 
(r + )

= (n – )
√

r +  +
√

(n – )nr,

which, together with (), yields the required upper bound. For the sharpness of this
bound, it is not difficult to check that if G ∼= Kn then the equality holds. Conversely,
we assume that the equality holds. Then the above two inequalities should be equali-
ties. Thus, it follows from the second inequality that, for any  ≤ i, j ≤ n –  and i �= j,√

μ
i + (r + )μi =

√
μ

j + (r + )μj, that is, (μi – μj)(μi + μj + r + ) = , which implies that
μi = μj. In other words, we have μ = μ = · · · = μn–. Note that in this case, the first in-
equality is also an equality. Eventually, by Lemma ., we get G ∼= Kn.

We next prove (ii). Since μi ≥ , i = , , . . . , n – , by () we get

LEL
(
T (G)

) ≥
n–∑

i=

√
r +  + μi + 

√
(r + )μi +

√
r +  +

n(r – )


√
r + . ()
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We now take ai =
√

r +  + μi + 
√

(r + )μi and bi = , i = , , . . . , n – . Set A =
√

r +  + 
√

(r + )r, a =
√

r + , and B = b = . It is easy to see that  < a ≤ ai ≤ A,
and  < b ≤ bi ≤ B. Furthermore, if r ≥ , then A =

√
r +  + 

√
(r + )r ≤ √

r +  and
hence,

(AB – ab) ≤ (
√

r +  –
√

r + ) =
(r)

r +  + 
√

(r + )(r + )

<
r

r
= r;

if r = , then by a direct calculation, we also obtain (AB – ab) < r. Thus by Lemma .
and (), we get

n–∑

i=

√
r +  + μi + 

√
(r + )μi

≥
√√√√(n – )

n–∑

i=

(
r +  + μi + 

√
(r + )μi

)
–




(n – )(AB – ab)

> (n – )

√
nr

n – 
+


√

r + 
n – 

LEL(G) + 

> (n – )

√(√
r + 
r + 

+ 
)

nr
n – 

+ 

> (n – )
√

r + ,

which, together with (), would yield the required lower bound.
This completes the proof. �

Remark  It was proved in [] that if G is a regular graph of n vertices and of degree r,
then

LEL
(
T (G)

)
>

n(r – )


√
r +  + n

√
r + , and ()

LEL
(
T (G)

) ≤ (n – )
√

r +
(nr – )


√

r +  +
√

r + , ()

with the equality if and only if G ∼= K. Obviously, the lower bound in Theorem . is better
than that in (). For the upper bound, it is easy to check that, for n ≥  and r > ,

√
r +  +

√
nr

n – 
≤ √

r +  + 
√

r ≤ √
r +

√
r + ,

implying that

(n – )
√

r +  +
√

(n – )nr ≤ (n – )(
√

r +
√

r + ),

from which we would find that the upper bound in Theorem . is better than that in ().
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4 The incidence energy
In this section, we investigate IE of line graph, subdivision graph, para-line graph and total
graph of a regular graph.

Theorem . Let G be a regular graph of degree r with n vertices. Then

(i) (see []) IE(L(G)) ≤ (n – )
√

n–
n– r –  +

√
r –  + n(r–)



√
r – , with the equality

if and only if G ∼= Kn;
(ii) IE(L(G)) > (n – )

√
n–
n– r –  +

√
r –  + n(r–)



√
r – .

Proof Suppose that λ ≥ λ ≥ · · · ≥ λn are the eigenvalues of G and that q ≥ q ≥ · · · ≥ qn

are the signless Laplacian eigenvalues of G. Noticing that G is r-regular, we have qi = r +λi,
i = , , . . . , n. Moreover, since L(G) is (r – )-regular, from Lemma ., it follows that the
signless Laplacian eigenvalues of L(G) are r –  + q, r –  + q, . . . , r –  + qn, and r – 
(with multiplicity n(r – )/). Thus, from () and noting that q = r, it follows that

IE
(
L(G)

)
=

n∑

i=

√
r –  + qi +

√
r –  +

n(r – )


√
r – . ()

Remark that (i) has been proved in [] by Gutman et al. Hence, we here only give a proof
for (ii). Take ai =

√
r –  + qi and bi = , i = , , . . . , n. Set A =

√
r – , a =

√
r – , and

B = b = . It is clear that  < a ≤ ai ≤ A (as  ≤ qn ≤ · · · ≤ q ≤ q = r), and  < b ≤ bi ≤ B.
Furthermore, we have

(AB – ab) =
r

r –  + 
√

(r – )(r – )
<

r

r – 
≤ r.

Thus by Lemma . and the fact that
∑n

i= qi = (n – )r, it follows from () that

IE
(
L(G)

) ≥
√√√√(n – )

n∑

i=

(r –  + qi) –



(n – )(AB – ab)

+
√

r –  +
n(r – )


√

r – 

> (n – )
√

n – 
n – 

r –  +
√

r –  +
n(r – )


√

r – ,

as desired, completing the proof. �

Remark  In [], Gutman et al. gave the following lower bound:

IE
(
L(G)

)
>

n(r – )


√
r –  +

√
r –  + (n – )

√
r – . ()

Obviously, the lower bound in Theorem . is better than that in (), since n–
n– >  always

holds for n ≥ .

Since the subdivision graph S(G) of any graph G is bipartite, by Theorem . we have
IE(S(G)) = LEL(S(G)). Consequently, the next theorem is obvious.
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Theorem . Let G be a regular graph of degree r with n vertices. Then

(i) IE(S(G)) ≤ (n – )
√

r +  + (
√

r++
√

(n–)(nr–r–))
n– +

√
r +  +

√
n(r–)

 , with the equality
if and only if G ∼= Kn;

(ii) IE(S(G)) > (n – )
√

r + 
 + nr

(n–)
√

r+ +
√

r +  +
√

n(r–)
 .

Theorem . Let G be a regular graph of degree r with n vertices. Then

(i) IE(C(G)) ≤ (n – )
√

r –  + 
√

r – nr
n– +

√
r +

√
r –  + n(r–)

 (
√

r +
√

r – ), with

the equality if and only if G ∼= Kn;

(ii) IE(C(G)) > (n – )
√

r –  – 
r + 

√
r – nr

n– – 
 +

√
r +

√
r –  + n(r–)

 (
√

r +
√

r – ).

Proof Since C(G) is a regular graph of degree r, it follows from Lemma . that the signless
Laplacian eigenvalues of C(G) are r –  (with multiplicity n(r – )/), r (with multiplicity
n(r – )/), and

r –  ± √
(r – ) + qi


(i = , , . . . , n),

where r = q ≥ q ≥ · · · ≥ qn are the signless Laplacian eigenvalues of G. Now, by () and
a little calculation, we get

IE
(
C(G)

)
=

n∑

i=

√
r –  + 

√
(r – )r + qi +

√
r +

√
r – 

+
n(r – )


(
√

r +
√

r – ). ()

On the other hand, by the Cauchy-Schwarz inequality and the fact that
∑n

i= qi = (n – )r,
we have

n∑

i=

√
r –  + 

√
(r – )r + qi ≤

√√√√(n – )
n∑

i=

(
r –  + 

√
(r – )r + qi

)

≤ (n – )

√√√√√r –  + 

√√√√ 
n – 

n∑

i=

(
(r – )r + qi

)

= (n – )

√

r –  + 
√

r –
nr

n – 
,

which, together with (), yields the desired upper bound. Moreover, it is easily seen that
the equality holds if and only if q = r and q = q = · · · = qn, which, in turn, implies that
μ = μ = · · · = μn– (since G is r-regular and hence μi = r – qn–i+, i = , , . . . , n). Thus,
by Lemma ., we have G ∼= Kn. Hence, (i) follows.

We next prove (ii). Take ai =
√

r –  + 
√

(r – )r + qi and bi = , i = , , . . . , n. Set A =
√

( + 
√

)r – , a =
√

( + 
√

)r – (
√

 + ), and B = b = . Clearly,  < a ≤ ai ≤ A and
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 < b ≤ bi ≤ B. Furthermore, we get

(AB – ab) =


(
√

( + 
√

)r –  +
√

( + 
√

)r – (
√

 + ))

<


( + 
√

)r – (
√

 + )
<


r

.

Then by Lemma ., it follows from () that

IE
(
C(G)

) ≥
√√√√(n – )

n∑

i=

(
r –  + 

√
(r – )r + qi

)
–




(n – )(AB – ab)

+
√

r +
√

r –  +
n(r – )


(
√

r +
√

r – )

> (n – )

√√√√r –  –


r
+


n – 

n∑

i=

√
(r – )r + qi

+
√

r +
√

r –  +
n(r – )


(
√

r +
√

r – ). ()

Now, take ai =
√

(r – )r + qi and bi = , i = , , . . . , n, and set A =
√

r, a =
√

(r – )r,
and B = b = . It is easy to check that  < a ≤ ai ≤ A,  < b ≤ bi ≤ B, and (AB – ab) < .
Thus, recalling that

∑n
i= qi = (n – )r, and again by Lemma . we have

n∑

i=

√
(r – )r + qi ≥ (n – )

√
r –

nr
n – 

–



,

which, together with (), yields the required result.
The proof is completed. �

Theorem . Let G be a regular graph of degree r with n vertices. Then
(i) IE(T (G)) ≤ n

√
r –  +

√
(n – )(n – )r +

√
r + n(r–)



√
r – , with the equality if

and only if G ∼= Kn;

(ii) IE(T (G)) > (n – )
√

r –  + 
√

(r – ) +
√

r +
√

r –  + n(r–)


√
r – .

Proof Since T (G) is a regular graph of degree r, it follows from Lemma . that the sign-
less Laplacian eigenvalues of T (G) are r –  (with multiplicity n(r – )/), and

r –  + qi ±
√

(r – ) + qi


(i = , , . . . , n),

where r = q ≥ q ≥ · · · ≥ qn ≥  are the signless Laplacian eigenvalues of G. Thus, from
() and by a little computation, we have

IE
(
T (G)

)
=

n∑

i=

√
r –  + qi + 

√
q

i + (r – )qi + (r – )r

+
√

r +
√

r –  +
n(r – )


√

r – . ()
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On the other hand, by using the Cauchy-Schwarz inequality and the fact that
∑n

i= qi =
(n – )r and

∑n
i= q

i = (n – )r + nr, we obtain

n∑

i=

√
r –  + qi + 

√
q

i + (r – )qi + (r – )r

≤
√√√√(n – )

n∑

i=

(
r –  + qi + 

√
q

i + (r – )qi + (r – )r
)

≤ (n – )

√√√√√r –  +
(n – )r

n – 
+ 

√√√√ 
n – 

n∑

i=

(
q

i + (r – )qi + (r – )r
)

= (n – )

√

r –  +
(n – )r

n – 
+ 

√
(n – )r

n – 
(r – )

= (n – )
(√

r –  +
√

(n – )r
n – 

)
,

which, together with (), would yield the desired upper bound. For the sharpness of this
bound, it is easy to check that if G ∼= Kn then the equality holds. Conversely, we assume that
the equality holds. Then the above two inequalities should be equalities. Thus, it follows
from the second inequality that, for any  ≤ i, j ≤ n and i �= j,

√
q

i + (r – )qi + (r – )r =
√

q
j + (r – )qj + (r – )r, that is, (qi – qj)[qi + qj + (r – )] = , which implies that qi = qj.

In other words, we have q = q = · · · = qn. Note also that in this case, the first inequality
is also an equality. Now, using the same argument as in the proof of Theorem ., we
eventually arrive at G ∼= Kn. Hence, (i) follows.

We next prove (ii). From (), we have

IE
(
T (G)

)
>

n∑

i=

√
r –  + qi + 

√
q

i + 
√

(r – )qi +
(√

(r – )
)

+
√

r +
√

r –  +
n(r – )


√

r – 

=
n∑

i=

√
r –  + 

√
(r – ) + qi

+
√

r +
√

r –  +
n(r – )


√

r – . ()

Now take ai =
√

r –  + 
√

(r – ) + qi and bi = , i = , , . . . , n. Set A =√
r –  + 

√
(r – ), a =

√
r –  + 

√
(r – ), and B = b = . Evidently,  < a ≤ ai ≤ A

(as  ≤ qn ≤ · · · ≤ q ≤ q = r), and  < b ≤ bi ≤ B. Furthermore, we get

(AB – ab) <
(r)

r –  + 
√

(r – ) + 
√

(r – )(r – )
<

r

r
=




r.



Chen et al. Journal of Inequalities and Applications  (2016) 2016:51 Page 14 of 15

Thus, noting that
∑n

i= qi = (n – )r and from Lemma ., it follows that

n∑

i=

√
r –  + 

√
(r – ) + qi

≥
√√√√(n – )

n∑

i=

(
r –  + 

√
(r – ) + qi

)
–




(n – )(AB – ab)

> (n – )
√

r –  + 
√

(r – ) +
(n – )

n – 
r –




r

> (n – )
√

r –  + 
√

(r – ) (for n ≥ ),

which, together with (), yields the desired lower bound.
This completes the proof. �
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