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Abstract

In this paper, we investigate residual-based a posteriori error estimates for the hp
version of the finite element approximation of nonlinear parabolic optimal control
problems. By using the hp finite element approximation for both the state and the
co-state variables and the hp discontinuous Galerkin finite element approximation for
the control variable, we derive hp residual-based a posteriori error estimates for both
the state and the control approximation. Such estimates, which are apparently not
available in the literature, can be used to construct a reliable hp adaptive finite
element approximation for the nonlinear parabolic optimal control problems.
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1 Introduction

Recently, optimal control problems have attracted substantial interest due to their appli-
cations in atmospheric pollution problems, exploration and extraction of oil and gas re-
sources, and engineering. They must be solved with efficient numerical methods. The
hp version of the finite element method is an important numerical method for the opti-
mal control problems governed by partial differential equations. There have been exten-
sive studies of the convergence of the finite element approximation for optimal control
problems. Let us mention two early papers devoted to linear optimal control problems by
Falk [1] and Geveci [2]. A systematic introduction of the finite element method for opti-
mal control problems can be found in [3-5], but there are much less published results on
this topic for sp-finite element methods for optimal control problems. The adaptive finite
element method has been investigated extensively and became one of the most popular
methods in the scientific computation and numerical modeling. In [6], the authors studied
a posteriori error estimates for adaptive finite element discretizations of boundary control
problems. A posteriori error estimates and adaptive finite element approximation for pa-
rameter estimation problems have been obtained in [7, 8]. The adaptive finite element
approximation is among the most important means to boost the accuracy and efficiency
of the finite element discretization. There are three main versions in adaptive finite ele-
ment approximation, i.e., the p-version, s-version, and /p-version. The p-version of finite
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element methods uses a fixed mesh and improves the approximation of the solution by
increasing the degrees of piecewise polynomials. The /-version is based on mesh refine-
ment and piecewise polynomials of low and fixed degrees. In the sp-version adaptation,
one has the option to split an element (/-refinement) or to increase its approximation or-
der (p-refinement). Generally speaking, a local p-refinement is the more efficient method
on regions where the solution is smooth, while a local /i-refinement is the strategy suitable
on elements where the solution is not smooth in [9]. There have been many theoretical
studies as regards the /p finite element method in [9-16].

To the best of our knowledge, there are many /-versions of adaptive finite element meth-
ods for optimal control problems in [17, 18]. In fact, comparable literature for high order
elements such as the hp-version of the finite element method for optimal control prob-
lems is rather limited. For the constrained optimal control problem governed by elliptic
equations, the authors have derived a posteriori error estimates for the /p finite element
approximation in [19]. The purpose of this work is to derive /ip a posteriori error estimates
for optimal control problems governed by nonlinear parabolic equations.

In this paper, we adopt the standard notation W”#(Q2) for Sobolev spaces on €2 with a

norm || - |l given by ||[v|lh,, = > el<m ||D°‘V||Izpm), a semi-norm | - |,,,,, given by [vl},, =
Dt IDVII - We set W™ (Q) = (v € W™P(Q) : v]yq = 0}. For p = 2, we denote
H™(Q) = W2(Q), HP'(2) = W (), and [ - [l = I - w2, |- | = || - llo2. We denote by

L*(0, T; W™P(Q2)) the Banach space of all L* integrable functions from J into W”#(Q2) with
norm ||| zsgwme ) = (fOT IVIFRymp ) dt)% for s € [1,00), and the standard modification for
s = 00. Similarly, one can define the spaces H'(J; W"*(2)) and C*(J; W"?(S2)). The details
can be found in [20].

The paper is organized as follows. In Section 2, we shall construct the /p finite element
approximation for nonlinear parabolic optimal control problems. In Section 3, we derive
hp a posteriori error estimates for the optimal control problems. In the last section, we

briefly give conclusions and some possible future work.

2 The hp finite element of nonlinear parabolic optimal control

In this section, we study the /p finite element method and the backward Euler discretiza-
tion approximation of convex optimal control problems governed by nonlinear parabolic
equations. We shall take the state space W = L?(0, T;Y) with Y = H}(S2), the control space
X = L%(0, T; U) with U = L*(Qy) and H = L*(R) to fix the idea. Let B be a linear continu-
ous operator from X to L%(0, T; Y). We are interested in the following nonlinear parabolic

optimal control problems:

ml;g{% / Iy =yl + ||u||§2(9u))dr}, 1)
y: —div(AVy) + ¢(y) =f + Bu, x€Q,t€(0,T], (2.2)
y(x,8)=0, x€0dRte(0,T], (2.3)
y(x,0) =y(x), x€g, (2.4)

where Q and €2;; are bounded open sets in R? with a Lipschitz boundary 92 and 92,
K is aset defined by K ={v € X : fOT fﬂu vdxdt > 0}, and f,y; € L*(0, T; H), yo(x) € V =
H{(R2), and A(") = (a(-))2x2 € (C*(22))**?, such that there is a constant ¢ > 0 satisfying
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E'AE > c|£]?, &€ € R% The function ¢(-) € W2*(-R,R) for any R > 0, ¢'(y) € L%(Q) for
any y € H(R), and ¢'(y) > 0.

Let a(v,w) = [(AVV) - Vwdx, Yv,w € V, (fi, o) = [ fifrdx, YA.fo € H, (v,w)y =
fQu vwdx, Yv,w € U. It follows from the assumptions on A that there are constants ¢
and C > 0 such that

ﬂ(V, V) = C“V”]Z_II(Q)) |(l(V, W)| = C|V|?_11(Q)|W|§_[1(Q)’ VV: weY.

Then a weak formula of the convex nonlinear parabolic optimal control problems (2.1)-
(2.4) reads

: 1 ’ 2 2
min {5 /0' (“_y _yd”LZ(Q) + ”””LQ(QU)) dt}: (25)

u(t)eKk
where y € W, u € X, u(t) € K, subject to

ew) +aly,w) + (¢, w) = (f + Bu,w), VYweY,t€(0,T], (2.6)
y(x,0) = yo(x), x€ K. (2.7)
It is well known (see, e.g., [21]) that the optimal control problem (2.5)-(2.7) has at least a

solution (y, u), and if that a pair (y, &) is the solution of (2.5)-(2.7), then there is a co-state
p € W such that the triplet (y, p, u) satisfies the following optimality conditions:

e, w) +a(y, w) + (d)(y),w) =(f + Bu,w), VYweY,y(0)=yox), (2.8)
~(po,w) +alg,p) + (¢ 0)p.9) = Y -yarq), Vg€ Y,p(T) =0, (2.9)
T
/ (u+B*p,v—u)udt20, YveKk, (2.10)
0

where B* is the adjoint operators of B, and (-, -);; is the inner product of U, which will be
simply written as (-, -) in the rest of the paper when no confusion is caused.

Due to the special structure of the control constraint set K, we can derive a relation-
ship between the control variable and the co-state variable of (2.8)-(2.10) in the following
lemma.

Lemma 2.1 Let (y, p,u) be the solution of (2.8)-(2.10). Then we have
u = max{0,B*p} - B*p,

fOT fQLI B*pdxdt

where B*p = ——
Jo jQuldxdt

denotes the integral average on Qi X [0, T] of the function B*p.

Now, we consider the /p finite element approximation for the nonlinear parabolic opti-
mal control problems. We assume that €2 and 2, are polygonal. We consider the triangu-
lation T of the set Q C R2, which is a collection of elements t € T associated with each
element 7, and an affine element map F, : T — 7, where the reference element 7 is the

reference triangle

{(x,y)6R2:0<x<1,0<y<min(x,1—x)}.
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We consider the triangulation 7 which satisfies the standard conditions defined in [16]
and write /1, = diam . Additionally we assume that triangulation 7 is y-shape regular,

i.e.,
1| 7\ 1
I Eel oy e[ (D) ooy = v (211)
This implies that there exists a constant C > 0 that depends solely on y such that
C'Y, <hy <Ch,, 7,7 €T withTnNT #¢, (2.12)

and there exists a constant M € N that depends solely on y such that no more than M
elements share a common vertex. We assume that the triangulation 7;; of Q;; which is a
collection of elements t; € Ty, is y -shape regular which satisfies the standard conditions
as T. Associated with each element 7;; is an affine element map F;, : T — ;. We further
assume the triangulation 7 satisfies the relation between the patch and the reference patch
in [16].

For each element € T, we denote £(t) the set of edges of T and N () the set of vertices
of 7, and choose a polynomial degree p, € N and collect these numbers in the polynomial
degree vector p; = (p;);e7. Similarly, for each element t;; € Ty, we choose a polynomial
degree vector py = (1, )z e1y; P, € N). N(T) denotes the set of all vertices of 7, E(T)
denotes the set of all edges. Additionally, we introduce the following notation (V € N(T),
ec&(T)):

N ={VeN(T):Vee}

wy = {er:xe?and?ﬂ{V}#@}o,

1 1
W, = U Wy, wy = U wy,
) )

VeN(e VeN(t

hy, = diam 1y, pezmax{pr :eeE(r)},

where x° denotes the interior of the set x. Finally, we denote by /4, the length of the
edge e.

Next, we define the /ip-finite element space SP!(7) C H'(R2) and the /p-discontinuous
Galerkin finite element space UP2(7;;) C L2(Qy) by

SPUT) = [ve C(Q) : v, o F € T, (D),

upz(m) = {V € LZ(QU) : V|‘[u OFTU € np-[u (?)})
where we set

N P =span{x'y :0 <i+j<k}, ifT=T,
i (7) = - R
Qi =span{x'y : 0 <i,j<k}, ifTr=S.

We also assume that the polynomial degree vector p; satisfies

Y P <pr <yp., 1,7 €T withTn7 £y (2.13)
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Then we can introduce the finite dimensional spaces K, = K N UP2(Ty), Vi, =V N
SPL(T).

The semidiscrete /ip finite element approximation of (2.1)-(2.4) is as follows:

. 1 (7 ) )
uhrpflelf?hp{ E /(; (”yhp _yd||L2(Q) * ”uhp”LZ(Qu)) dt g, (2.14)
8yhp
Tap W )t aWnps Wip) + (S Wmp)s W) = (f + Bty Wip), VWi € Vi, (2.15)
i
p(®,0) =y (), x€Q, (2.16)

where yy, € H'(0, T; V) and ygp € Vjp is an finite element approximation of yo.

It follows that the optimal control problems (2.14)-(2.16) has at least a solution (¥, #,)
and if that a pair (yy,, uy,) is the solution of (2.14)-(2.16), then there is a co-state py, € Vj,
such that the triplet (y4,, piy, unp) satisfies the following optimality conditions:

oy,
( ?))tp ’ Whp) + a(yhpr Whp (¢(yhp)x W) = (f + Buhp’ Whp)r thp € Vhp: (217)

yhp(x! 0) = )/zp(x)» x €L,

OPhp
( 9t thp> + a(th7php) + (¢ (yhp)php:th) (yhp _yd:th)x thp € Vhp» (2'18)

php(xr T) = 0; VS Qx

(uhp + B*php, Vip — uhp)u >0, Vv, €Ky (2.19)

Furthermore, we consider the fully discrete finite element approximation for the above
semidiscrete problems by using the backward Euler scheme. Let 0 =ty < #; < -+ <31 <
tM:T,k,-:ti—ti_l,i:I,Z, Mk max{k}

1<l<

For i =1,2,...,M, construct the /p finite element approximation spaces V,ip C H)(Q)
(similar to V},,) on the ith time step. Similarly, we construct the /p finite element ap-
proximation spaces K}lp C L*(Qy) (similar to Kjp) on the ith time step. The fully dis-
crete hp finite element approximation scheme (2.17)-(2.19) is to find (y’hp, ulhp) € V;Ip x K ;lp,
i=1,2,...,M, such that

M
. 1, 1,
min {Z<§ ”yhp = ya (%, ti)”iZ(sz) *3 I Unp ||i2(szu>> }’ (2.20)

i
uhpel( -1

i i-1
Yip = In ; i
(P2 ) + i ) + 00, 3
= (f(x, +Buhp,whp) Ywp, € V;;p, (2.21)
ygp(x) :yo P(x), xeQ. (2.22)
It follows that the optimal control problem (2.20)-(2.22) has at least a solution (Y}, hp, Uhp)

and if a pair (Y hp, U,ip) € V,ip X I(;lp is the solution of (2.20)-(2.22), then there is a co-state

P;lp] € V;lp, such that the triplet (Y;I P;lpl, u ) € V;l X V;;p X K;;p, satisfies the following
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optimality conditions:
i i-1
th - th
k;
VYwy, € V;;p - V:Hé(Q), i=1,2,...,M, Y;?p(x) :ygp(x), x€Q,
-7,
ki
Vg € Vy,, CV =Hy(Q), i=M,...,2,1, Pp(x)=0, x€,

’Whp> +a(Yi,wip) + (6(Yi,) wip) = (F(x, 1) + BUj,, wiy), (2.23)

,q;,},) + a(qn P) + (8 (Vi )Pt aip) = (Vi — val, 0D, i), (2.24)

(Uj, + B* Py vy = Uj,) ;= 0, Vi €Kjpyi=1,2,..., M. (2.25)
Fori=1,2,...,M,let

Yol v = (8 — t)Y;i;l +(t- ti—l)Y;l;p)/kz’;
Php'(ti,l,t,'] = ((tl - t)Plh;gl + (t - ti—l)PZp)/ki)
Unnp (e = Upye

For any function w € C(0, T; L*(S2)), let W(zx, £)|re(t,_y 1 = W, &), WX, ) lre(ty_y ) = W, Eim1).
Then the optimality conditions (2.23)-(2.25) can be restated as

Yy, . . .
(B—tp’ Whp) + a(thr Whp) + (¢(th): Whp) = (f + Buhp: Whp): (226)
Ywip € Vi, CV =Hy(Q), te (b, tili=12,..., M,

Yip(x,0) =y (x), x€Q,

—(ag—thp:%p) + @Gy Prp) + (8" (YVip) o qip) = Yy — 9t qip)s (2.27)
Vau € V;,, CV =Hy(Q), te(tintili=M,...,21,

Py, T)=0, x€Q,

(Unp + B*Prp, vigp — Upy) ;> 0, (2.28)
Vv €K,y tE (b til,i=1,2,..., M.

The following lemmas [10, 16, 19] are important in deriving a posteriori error estimates of

residual type.

Lemma 2.2 There exist a constant C > 0 independent of v, hy,, and p,,, and a mapping

hr .o . .
”prf,[ :HY(ty) — Pra, (ty) such that ¥v € H (1), Ty € Ty the following inequality is valid:
Iy hey,
|v- Tpey iLZ(Tu) = C; V1| 1 2y
u

where we will write v € P, (tu) if the following satisfied: v|z, o Fy; € Py @ iftyisa

triangle; v]y, o Fr; € Qp,, (%) if Ty is a parallelogram.

w
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Lemma 2.3 Let p; be an arbitrary polynomial degree distribution satisfies (2.13). Then
there exists a linear operator Ey : Hy(Q2) — SPY(T) N HA(RQ), and there exists a constant
C > 0 depending solely on y such that for every v € Hy(Q) and all elements T € T and all
edgesec E(T):

h h
lv=Exvll2q + p—’ IV -Ew) 2y < CP—T IV VIl 2010
T

T

1
h 2
Iv—Evllp2e < C (;) VY201

e

Lemma 2.4 Let p, be an arbitrary polynomial degree distribution satisfying (2.13) and
pe > 2, V1 € T. Then there exists a bounded linear operator E, : Hy(Q2) N HX(Q) —
SPH(T) N HY(Q), and there exists a constant C > 0 that depends solely on y such that for
every v € Hy(Q) N H*(Q) and all elements v € T and all edges e € E(T):

h he\?
lv—Esvlzm + — ||V(V—52V)HL2(T) < C<—I) VIr2gi)
Pr p

T
3
2

h
V= Eavll2e < C<—e> Ik i)
De
For ¢ € W), we shall write

B(9) - (p) == (9) (0 — ) =—¢'(0)(p — 9) + " (¥) (0 — )%, (2.29)
where

5 1 » 1

¥lp) = fo $(o+sto-0)ds, @)= fo (156 (p +5(p - p)) ds
are bounded functions in Q [22].
3 Aposteriori error estimates

In this section, we shall derive some a posteriori error estimates for the iip finite element
approximation of the optimal control problems governed by nonlinear parabolic equa-

tions.
Let
1 2 2
S(I/l) = E(”_y—yd”[}(g) + ”M”Lz(ﬂu))’ (3'1)
1
Sip(Unp) = 5 (1Y = yall 2y + 1Unpll 2 ))- (32)

It can be shown [19] that

(S'w),v) = (u+B*p,v), (3.3)
(S'(Uip),v) = (Unp + B*p(Up), v), (3.4)

(Shp(Unp),v) = (Unp + B*DPyy,v). (3.5)
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It is clear that S and Sy, are well defined and continuous on K and Kj,,. Also the func-
tional Sy, can be naturally extended on K. Then (2.5) and (2.14) can be represented as

T
121}(1{/0 S(u)dt} (3.6)
and
T
U;zleillghp{/o Shp(uhp) dt}. (3.7)

In many application, S(-) is uniform convex near the solution #. The convexity of S(-) is
closely related to the second order sufficient conditions of the optimal control problems,
which are assumed in many studies on numerical methods of the problem. For instance,

in many applications, there is a ¢ > 0, independent of /4, such that

T
/ (S'(u) = S'(Unp), 1 = Unp) y dt = cllt = Upy gy 2.0, (3.8)
0

The following theorem is the first step to derive a posteriori error estimates.

Theorem 3.1 Let (y,u,p) and (Y, Py, Unp) be the solutions of (2.8)-(2.10) and (2.23)-
(2.25), respectively. Assume that (S;,p(Uhp))lr € H¥(7),Vt € Ty (s =0,1), and thereisa vy, €
Ky such that

(St Ui vip = 0)] < € 3 e |83 (Ui 1 = U - (3.9)
€Ty

Then we have

X 2
”I/l - uhp"iZU;LZ(Q)) = C’?f + CHp(uhp) - Php ||L2(];L2(Q))’ (3'10)

where

T
i= [y s BB b
0 €Ty

and p(Uy,y,) is defined by the following equations:

0
(a_ty(uhp); w) +a(y(Upp), w) + (¢ (y(Uny)), w) = (f + BUjp,w), VYweV, (3.11)
Y(Upp)(%,0) = yo(x), x €,
0
_(gp(uhp)ﬂ) + ﬂ(%?(uhp)) + (¢/(}’(Uhp))p(uhp),q)

= ((Un) -yarq), VgeV, (3.12)

pUp)x,T)=0, xe.
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Proof 1t follows from (3.6) and (3.7) that [ (S'(), u — v)dt <0, ¥v € K, and [,/ (S, (L),
Uy — vip) dt <0, Vv, € Ky, C K. Then it follows from the assumptions (3.8), (3.9), and
the Schwartz inequality that

T
clit= Uiy = [ (5160~ Wi)u— ) dt
0
T
< / {(S;,p(uhp): Vip — L{) + (S;,,p(uhp) - S/(Uhp)r u-— Uhp)} dt
0

T
<c [ mels,wl
0

1+s

) T ”Sixp(uhp) =S (Upp) ”;(Q)} dt

€Ty
¢ 2
+ 5 ||Lt - Uhp ||L2(];L2(Q))' (313)
It is not difficult to show
SipUnp) = Uy + B* Py, S'(Uyy) = Uy + Bp(Uy), (3.14)

where p(U},) is defined in (3.11)-(3.12). Thanks to (3.14), it is easy to derive

”Silp(uhp) - S/(uhp) ”LZ(Q) = ||P(Uhp) - j)hp ||L2(Q)' (3.15)
Then by using the estimates (3.13) and (3.15) we can prove the requested result (3.10). O

Next, we are in the position to estimate the errors Y}, — y(l,[hp)||iz(o THI(S) and

”Php _p(uhp) ”22(0,]";1_[1(9))'

Theorem 3.2 Let (Y, Py, Uy,) be the solutions of (2.26)-(2.28), let (y(Upy), p(Upy)) be
defined by (3.11)-(3.12). Then we have

6
” Yip = y(Up) ”iZ(O,T;Hl(Q)) + ”Php _p(uhp)”iz(O,T;Hl(Q)) = CZ '71’2’ (3.16)
i=2
where
T 2 2
,73:/ Zﬁ-;/(fmuhp+div(Av?hp)-¢(?h,, —%> dxdt,
0 T T T
T 2 R . ] . L aP, \?
n§=/ Zp—;/(th—yd+dlv(A*VPhp)—¢’(th)Php+ a—?"’) dxdt,
0 T T T
r h S 2 r h % 2
2 = / 3 / SE[(avTy) - deds+ / 3 / S{(49By) -l deds,
0 e e Pe 0 e e e

T T
Nz = / / |AV (¥, - V)| dxcdt + f / |A*V(By, - Pyy)|* dxdt,
0 Q 0 Q

2 v 2 { 2 ~on2
]76 = ”th - th”LZ(O,T;LZ(Q)) + ”th - th||L2(0,T;L2(Q)) + ”yd _yd”LZ(OYT;LZ(Q))

~ 2
+ ”f _f”iz(O,T;Lz(Q)) + ”yO(x) - th(xr 0) ||L2(Q)’



Lu et al. Journal of Inequalities and Applications (2016) 2016:62 Page 10 of 17

where e = T} N T2, T}, 12 are two neighboring elements in T, [AV f/hp -1l and [A*V Py, - 1),

are the A-normal and A*-normal derivative jumps over the interior edge e, respectively,
defined by

[(AVYy) - 1], = (AVYy|0 = AVYyl2) -1,
[(A*VPyy) - n], = (A*V Pyl = A"Vl 2) - 1,

where n is the unit normal vector on e = T} N T2 outwards t}. For later convenience, we
define [AV?;,,, -nl, =0 and [A*Vf’hp -n). =0 whene C 0S2.

Proof Let ry,, = p(Uy,) — Pyp and E; be the linear operator defined in Lemma 2.3. Note that
(p(Unp) — Ppp)(x, T) = 0, hence

T
/ _(M,W) dt > 0. (3.17)
; ot

By using the assumption of ¢, (2.29), and (3.17), we obtain

2
C||rhp||L2(0,T;H1(Q))

T T
= A ﬂ(rhp)p(uhp) - Php) dt + /0 (‘p/(y(uhp)) (p(uhp) - Php)’p(uhp) - Php) dt

T T 1 3(p(Uyy) - P,
5/0 (Vrhpr*V(p(uhp)_Php))dt_/o (W,rhp)dt

T
. fo (& (Up)) (P (Uip) = Br), p(Uip) — Pry) dt

T
+ [ @ oW @i )ity - Piy) e

T ~ T r3(p(Uy,) - P,
:/ (Vrhp,A*V(p(Uhp)—Php))dt—/ (Wwﬂ) dt
0 0

T
+ /0 (W()’(Uhp))p(uhp) - ¢/(?hp)i)hp’p(uhp) _Php) dt
T ~ ~ ~ ~
+ /0 (8" (Tip) (Vi — 9 (Unp)) Papp p{Uiy) — Py dit
T ~
+ /0 (& (/(Unp) Brp - Pap), p(Uiy) — Py di
T ~
+ /0 (V73p, A*N (Pryy — Pyp)) dit. (3.18)
Connecting (2.27), (3.12), and (3.18), we have

C”rhp”iZ((),T;Hl(Q))
T ~
< [ (903 - B A"V (plL,) - By) e
0

_ /T<a(p(uhp) _Php)
0

ot »Php —Elrhp) dt
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T
+ /0 (‘l’/(y(uhp))P(Uhp) - ¢,(th)[~)hl” Fnp — Elrhp) dt
T P u,,) — P, T 2
_ / <W,Eﬂhﬁ) dt + / (VE71p, AV (p(Unp) — Prp) ) dt
A 0
T ..
+ /0 (0" (¥(Unp))p(Unp) = &' (Yip) Pips Evry) dit
T B -
+ /0 (¢N(th)(th _y(uhp))Php’p(uhI’) h Php) dt
; T
+ /0 (¢ (W) oy = Pry), p(Usy) = Poy) it + fo (V7 A7V (Bl = Pry))
T . . L= 0Py,

at

T
+/ Z/[(A*Vﬁhp)'”](Vhp—Elrhp)dedt
o /e
T e gl g ~
+ /0 (@ Yip) (Yip = y(Unp)) Phps p(Unp) ~ Pip)
r . T
+/ (Y (Unp) = Yip, Errip) dt+/ G = ya Evrap) dt
0 0

T
+ [ U By - P ptly) - Pry) e

T
+ / (Vup A*V (Pyy — Pip)) dit. (3.19)
0
Then we have

c|p(Uny) - Py “iZ(O,T;Hl(Q))

(s A . = S oP,
< / (th —Va+ le(A*VPhp) — ¢ (Ynp)Ppp + a—:p, Thp _Elrhp) dr
0
T ~
+/ Z/[(A*Vphp) : Vl](”hp — Eiryp)dedt
0o /e
T R T
+/ (y(uhp)_ th;rhp)dt+/ @d_ydrrhp)dt
0 0
T ~
+ / (V1ip, A*V Py = Pyyp)) dt
0
T 7 g g ~
¥ f (@ Vi) (Yip = y(Unp) ) Prps p(Unp) ~ Piyp) dt
0

T
+ A (¢/(y(uhp))(1~)hp - Php)rp(uhp) - Php) dt

7
> I (3.20)

i=1
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It follows from Lemma 2.3 that
L o B, 0P
I = Yip = Ja + div(A*VPyy) — ¢'(Yyp) Py + g T — Eiryy | dt
0
R N |

< C(a)/ Z? /(th — 54 +div(A*VDy,) — ¢ (Vi) Dy + a—f’”) dxdt

0 T T T

T
+8/ ”rhp”?{l(ﬂ) dt
0
2

= O3 + 8] p(Wnp) = Py | 1210 141 (321)

Similarly,

T
e [ [0V -l i dedt

T he 5 T
<) /0 3 / p—e[(A*VPhp)~n]2dedt+8 fo i 2

2
< COM; + 8] pWnp) = Pip | 20,741 (3.22)

For I3-I5, we have

T
I = / ()’(Uhp) - th’ rhp) dt
0

T
= C(‘S)_/ /S;|y(uhp) - th|2 dxdt + 8| p(Uy) ~ Php”iz(O,T;Hl(Q))
0

2 A
= C((S) ”J’(Uhp) - th”LZ(O,T;Hl(Q)) + C(5)” th - YhP”%Z(O,T;ﬂ(Q))
2
+ 8| p(Unp) ~ Py “L2(O,T;H1(Q))

2 2
= C(‘S)Ué + C(‘S)Hy(uhp) - Y ||L2(O,T;H1(SZ)) +8 ”P(Uhp) =Py “LZ(O,T;HI(Q))’ (3.23)
T
I =/ d = ya> rnp) dt
0

A 2
S C((S) ||}’d - yd ”%,Z(O,T;LZ(Q)) + 8 ||p(uhp) - Php ||L2(0,T;H1(Q))

2
< COME +8|pWUn) = Pip | 120711100y (3.24)

and

T
Is = / (V7ps AN (Ppyy — Pyyp)) dlt
0

T T
gcw)/ /|A*V(13hp—1>hp)|2dxdt+5/ / |Vry,|* dx dt
0 Q 0 Q

2
< C@)15 + 8] pUnp) = Pip | 200 701 (3.25)



Lu et al. Journal of Inequalities and Applications (2016) 2016:62 Page 13 of 17

Similarly, we can obtain

T
Is = / (8" (Yip) (Yip — y(Unp)) Pripr p(Upp) — Prp) dit
0

T
< C((S)/ / |y(Up) - th|2 dxdt + 8| p(Upy,) — Py ||i2(0,T;H1(Q))
0o Ja

2 ~
< COyWnp) = Yip | 120 7116 + CONYip = Yip 320 7120

+ 8|\ p(Uip) = Prp ||i2(O,T;H1(Q))

=< C(a)”lé + C(S) ”J’(Uhp) - th HEZ(O,T;Hl(Q)) +4 Hp(uhp) - Php ”iZ(O,T;Hl(Q)) (326)
and
T ~
I = / (¢ (y(Unp)) (P — Pip), p(Upp) — Ppy) it
0

= 2
< CO)|IPpp - PhP"iZ(O,T;LZ(Q)) + 8| p(Unp) = Pry ”L2(0,T;H1(Q))

T
< C(8) / / |A*V (P, —Php)|2 dxdt + 8| p(Uyp) —phpujz(o,T;Hl @
0 Ja
S C(a)né + 8 ”P(Uhp) - Php ”iZ(O,T;Hl(Q))' (3'27)

Then let § be small enough, from (3.20)-(3.27), we derive

6
HP(Uhp) - Php ”iZ(O,T;Hl(Q)) = C(S) Z 7712 + C(S) ”)’(Uhp) - th ”iZ(O,T;Lz(Q))' (3~28)
i=2

Furthermore, we estimate the error |y(Uj,) - th||%2(O r2@) Let ey, = y(Upp) — Yip and
E; be the linear operator defined in Lemma 2.3. Note that

/T<8(y(uhp) - th) )dt
at

/'/8()/L[hp) th)ehpdxdt

= /Q (U - Yip) (x, 1)) d / (((Uny) - Yip) (x,0)) dix

Q

’ a(y(uhp) - th)
[P, )

Thus

T )(Uip) - V) 1
/ (WW) dt + 3 [0 = Yip(x,0) 3, = 0. (3.29)
0

From (2.29), it is easy to see that

(6 ((Unp)) = ¢ (Yip), enp) = (&' (¥(Unp)) (¥(Unp) = Yip)» €1p) > O. (3.30)
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By using (3.29) and (3.30), we have

2
C”ehp”LZ(O’T;Hl(Q))
T

T
5[) a(y(uhp) - th’ehp) dt"’/ (¢(y(uhp)) _¢(th)yehp) dt

0
T

T A
f[) d(y(uhp) - thyehp) dt"’/ (¢(y(uhp)) _¢(th)yehp) dt

0
T a(y(uhp) - th)
o (e

T
9t ’ ehp) dt + /0 (¢(th) - ¢(th)) ehp) dt

1
+ 306 = Yi (5, 0) 2

T

T
= /0 (AV (y(Up) - Vi), Veny) dt + /0 (6 (y(Unp)) — ¢V, enp) it

T 8()/(Uhp) - th)
o (e

T
ot ,ehp) dt + / (AV(}A/hp - th), Vehp) dt
0

T
o [ @) - o) i) de
0
1 2
+ 5 ||yo(x) - Y (%,0) ||L2(Q). (3.31)
Connecting (2.26), (2.29), (3.11), and (3.31), we obtain
C”ehp”iz(o,T;Hl(Q))
T, . S 5 ath
< / f + BL[hp + le(AVth) - ¢(th) - T,Bhp —Elehp dt
0
T A T .
+ / > j [(AVY3) - n](eny — Erenp) dedt + / (f —f, enp) dt
0 e e 0
r 1
3 2
+ / (AV(Yip = Yip), Ve, ) dt + 3 [y0(x) = Yy, 0)HL2(Q)
0
T ~ A A
+ / (' (Yip) Yy — Yip), €p) it
0
T [(- . . Y\
< C((S)/ Zp—; /(f + BUyy, + div(AVY),) — ¢(Yy,) — 8—:17> dxdt
0 T T T
T he < 2 2
+CE) | > p—[(Avyhp) -n]"dedt + CONf - 1720 7120
0 N e Pe
T . ) .
+ C(S)/ /}AV(YhP = Yip)|" dxdt + CO) Yy = Yip 720, 712
o Ja
1 2 2
+ ) ||y0(x) = Yyp(x,0) ||L2(SZ) + 5”3’(1’1}4’) - YhP||L2(0,T;H1(Q))

6

E C((S) Z 71? + 8 HJ’(Uhp) - th HEZ(O,T;HI(Q))' (3'32)
i=2
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Hence, let § be small enough, we have

6

”J’(Uhp) - th ||i2(0,T;H1(Q)) E C((S) Z r/lz (333)
i=1
Then (3.16) follows from (3.28) and (3.33). O

Finally, collecting Theorems 3.1-3.2, we derive the following residual-based a posteriori

error estimates.

Theorem 3.3 Let (y,p,u) and (Yyp, Py, Uyy) are the solutions of (2.8)-(2.10) and (2.26)-
(2.28) respectively. Assume that all the conditions in Theorem 3.1 are valid. Then

2 2 2
”y_ th”L2(0,T;H1(Q)) + ”p _Php”LZ(O,T;Hl(Q)) + ”M - Uhp”LZ(O,T;LZ(Qu))

6
<Cy (3.34)
i=1

where 711'2’ i=1,...,6 aredefined in Theorem 3.1 and Theorem 3.2.

Proof 1t follows from Theorem 3.1 and Theorem 3.2 that
2 2 B 2
”u - uhP”LZ(O,T;LZ(Qu)) =< C’h + C”Php —P(Uhp) ”LZ(O,T;LZ(Q))

< Cn} + ClPup = Piy 1720 712

+ C|[ Py - p(Up) ”i2(0,T;L2(Q))

6
< CY i+ ClPup = PipllFao 712 (3.35)
i=1

Note that A is positive definite, it follows from the Poincaré inequality that

T
D =4 2
”Php —Php||32(0,T;L2(Q)) E / / |A*V(Php - Php)| dxdt
0 Q

<Cni. (3.36)

Then it follows from (3.35) and (3.36) that
6
”I/l - UhP”iZ(O,T;LZ(QU)) = CZ 77,2 (337)

i=1

Note that

lly - YhP";(O,T;Hl(Q)) = ”3’ _y(UhP)HiZ(O,T;Hl(Q)) + ||9’(Uhp) =Yy ”iZ(O,T;Hl(Q))’ (3.38)

”p - Php ”iZ(O,T;Hl(Q)) S ”P _p(uhp) HEZ(O,T;HI(Q)) + ”p(uhp) - Php ||§,2(0,T;H1(Q))’ (339)
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and

2
”)’ _y(uhp) ||L2(0,T;H1(Q)) <Cllu- uhp”iz(O,T;Lz(Qu))’ (3'40)

2 2
||p —P(Uhp) “LZ(O,T;HI(Q)) = “J’ _y(uhp) ||L2(0,T;L2(Q)) = C“M - UhP||i2(0,T;L2(QU))‘ (34'1)
Therefore, we obtain (3.34) from (3.16) and (3.37)-(3.41). O

4 Conclusion and future work

In this paper, we present the /p version of the finite element approximation for the opti-
mal control problems governed by nonlinear parabolic equations. By using the /p finite
element approximation for both the state and the co-state variables and the 4p discontinu-
ous Galerkin finite element approximation for the control variable, we derive /ip residual-
based a posteriori error estimates for the nonlinear parabolic optimal control problems.
To the best of our knowledge in the context of optimal control problems, these residual-
based a posteriori error estimates for the nonlinear parabolic optimal control problems
are new.

In future, we shall consider the /p version of the finite element method for hyperbolic
optimal control problems. Furthermore, we shall consider a posteriori error estimates and
the superconvergence of the /p finite element solutions for hyperbolic optimal control
problems.
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