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Abstract
Let {Xn,n ≥ 1} be an independent and identically distributed random sequence with
common distribution F obeying the lognormal distribution. In this paper, we obtain
the exact uniform convergence rate of the distribution of maxima to its extreme value
limit under power normalization.
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1 Introduction
Let {Xn, n ≥ } be a sequence of independent and identically distributed random variables
with common distribution function (df ) F(x). Suppose that there exist constants an > ,
bn ∈R and a non-degenerate distribution G(x) such that

lim
n→∞ P(Mn ≤ anx + bn) = lim

n→∞ Fn(anx + bn) = G(x) (.)

for all x ∈ C(G), the set of all continuity points of G, where Mn = max≤i≤n Xi denotes the
largest of the first n. Then G(x) must belong to one of the following three classes:

�α(x) =

⎧
⎨

⎩

, if x < ,

exp{–x–α}, if x ≥ ,

�α(x) =

⎧
⎨

⎩

exp{–(–x)α}, if x < ,

, if x ≥ ,

�(x) = exp
{

–e–x}, x ∈R,

where α is one positive parameter. We say that F is in the max domain of attraction of G
if (.) holds, denoted by F ∈ Dl(G). Criteria for F ∈ Dl(G) and the choice of normalizing
constants an and bn can be found in Galambos [], Leadbetter et al. [], Resnick [], and
De Haan and Ferreira [].

The limit distributions of maxima under power normalization was first derived by
Pancheva []. A df F is said to belong to the max domain of attraction of a non-degenerate
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df H under power normalization, written as F ∈ Dp(H), if there exist constants αn >  and
βn >  such that

lim
n→∞ P

(∣
∣
∣
∣
Mn

αn

∣
∣
∣
∣


βn

sign(Mn) ≤ x
)

= lim
n→∞ Fn(αn|x|βn sign(x)

)
= H(x), (.)

where sign(x) = –,  or  according to x < , x =  or x > . Pancheva [] showed that H
can be only of power type of the df ’s, that is,

H,α(x) =

⎧
⎨

⎩

, if x ≤ ,

exp{–(log x)–α}, if x > ,

H,α(x) =

⎧
⎪⎪⎨

⎪⎪⎩

, if x ≤ ,

exp{–(– log x)α}, if  < x < ,

, if x ≥ ,

H,α(x) =

⎧
⎪⎪⎨

⎪⎪⎩

, if x ≤ –,

exp{–(– log(–x))–α}, if – < x < ,

, if x ≥ ,

H,α(x) =

⎧
⎨

⎩

exp{–(log(–x))α}, if x < –,

, if x ≥ –,

H,α(x) = �(x) =

⎧
⎨

⎩

, if x ≤ ,

exp{–x–}, if x > ,

H,α(x) = �(x) =

⎧
⎨

⎩

exp{x}, if x < ,

, if x ≥ ,

where α is a positive parameter. Necessary and sufficient conditions for F to satisfy (.)
have been given by Christoph and Falk [], Mohan and Ravi [], Mohan and Subramanya
[] and Subramanya [].

The logarithmic normal distribution (lognormal distribution for short) is one of the most
widely applied distributions in statistics, biology, and some other disciplines. In this paper,
we are interested in considering the uniform rate of convergence of (.) with Xn following
the lognormal distribution. The probability density function of the lognormal distribution
is given by

F ′(x) =
x–

√
π

exp

{

–
(log x)



}

, x > .

One interesting problem in extreme value analysis is to estimate the rate of uniform
convergence of Fn(·) to its extreme value distribution. For a power normalization, Chen et
al. [] derived the convergence rates of the distribution of maxima for random variables
obeying the general error distribution. For convergence rates of distributions of extremes
under linear normalization, see De Haan and Resnick [] under second-order regular
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variation and for special cases see Hall [] and Nair [] for the normal distribution, which
also is extended to those such as general error distribution, logarithmic general error dis-
tribution, see recent work of Peng et al. [] and Liao and Peng []. For other related work
on the convergence rates of some given distributions, see Castro [] for the gamma distri-
bution, Lin et al. [] for the short-tailed symmetric distribution due to Tiku and Vaughan
[], and Liao et al. [] for the skew normal distribution which extended the results of
Nair []. The aim of this paper is to study the uniform and point-wise convergence rates
of the distribution of power normalized maxima to its limits, respectively.

The contents of this article is organized as follows: some auxiliary results are given in
Section . In Section , we provide our main results with related proofs deferred to Sec-
tion .

2 Preliminaries
To prove our results, we first cite some results from Liao and Peng [] and Mohan and
Ravi [].

In the sequel, let {Xn, n ≥ } be a sequence of independent identically distributed random
variables with common df F which follows the lognormal distribution. As before, let Mn =
max≤i≤n Xi represent the partial maximum of {Xn, n ≥ }. Liao and Peng [] defined

an =
exp(( log n)/)

( log n)/ , bn =
(
exp

(
( log n)/))

(

 –
log π + log log n

( log n)/

)

, (.)

and they obtained

lim
n→∞ P

(
(Mn – bn)/an ≤ x

)
= exp

(
–e–x) =: �(x). (.)

From (.) we immediately derive F ∈ Dl(�). The following Mills ratio of the lognormal
distribution is due to Liao and Peng []:

 – F(x)
F ′(x)

∼ x
log x

, (.)

as x → ∞, where F ′(x) is the density function of the lognormal distribution F(x). Accord-
ing to Liao and Peng [], we have

 – F(x) = c(x) exp

(

–
∫ x

e

g(t)
f (t)

dt
)

for sufficiently large x, where c(x) → (πe)–/ as x → ∞, g(x) =  + (log x)– and

f (x) =
x

log x
. (.)

Note that f ′(x) →  and g(x) →  as x → ∞.

Lemma . [] Let F denote the lognormal distribution function. Then

 – F(x) =
√
π

(log x)– exp

(

–
(log x)



)

– γ (x) (.)

=
√
π

(log x)– exp

(

–
(log x)



)
(
 – (log x)–) + S(x) (.)
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for x > , where

 < γ (x) <
√
π

(log x)– exp

(

–
(log x)



)

(.)

and

 < S(x) <
√
π

(log x)– exp

(

–
(log x)



)

. (.)

In order to obtain the main results, we need the following two lemmas.

Lemma . [] Let F denote a df and r(F) = sup{x : F(x) < }. Suppose that F ∈ Dl(�) and
r(F) = ∞, then F ∈ Dp(�), where normalizing constants αn = bn, βn = an/bn.

Lemma . [] Let F denote a df, if F ∈ Dp(�) if and only if
(i) r(F) > , and

(ii) limt↑r(F)
–F(t exp(yf̄ (t)))

–F(t) = e–y, for some positive valued function f̄ .
If (ii) holds for some f̄ , then

∫ r(F)
a (( – F(x))/x) dx < ∞ for  < a < r(F) and (ii) holds with

the choice f̄ (t) =
∫ r(F)

t (( – F(x))/x) dx/( – F(t)). The normalizing constants may be chosen
as αn = F←( – /n) and βn = f̄ (αn), where F←(x) = inf{y : F(y) ≥ x}.

Theorem . Let {Xn, n ≥ } be a sequence of independent identically distributed lognor-
mal random variables. Then F ∈ Dp(�) and the normalizing constants can be chosen as
α∗

n = bn, β∗
n = an/bn, where an and bn are given by (.).

Proof Note that F follows the lognormal distribution, which implies F ∈ Dp(�) and α∗
n =

bn, β∗
n = an/bn by Lemma ., where an and bn are defined by (.). �

By Lemma . and (.) and combining with Proposition .(a) in [], a natural way to
choose constants αn and βn is to solve the following equations:

π (logαn) exp
(
(logαn)) = n (.)

and

βn =
f (αn)
αn

=


logαn
, (.)

where f is given by (.). The solution of (.) may be expressed as

αn =
(
exp

(
( log n)/))

(

 –
log π + log log n

( log n)/ + o
(


(log n)/

))

(.)

and we easily check that βn ∼ ( log n)–/.

3 Main results
In this section, we give two main results. Theorem . proves the result that the
rate of uniform convergence of Fn(αnxβn ) to its extreme value limit is proportional to
/ log n. Theorem . establishes the result that the point-wise rate of convergence of
|Mn/αn|/βn sign(Mn) to the extreme value df exp(–x–) is of the order of O(x–(log x) ×
e–/x(log n)–).
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Theorem . Let {Xn, n ≥ } denote an independent identically distributed random vari-
ables sequence with common df F following the lognormal distribution. Then there exist
absolute constants  < C < C such that

C

log n
< sup

x>

∣
∣Fn(αnxβn

)
– �(x)

∣
∣ <

C

log n

for large n > n, where αn and βn are determined by (.) and (.), respectively.

Theorem . Let αn and βn be given by (.) and (.). Then, for fixed x > ,

∣
∣Fn(αnxβn

)
– �(x)

∣
∣ ∼ x–e–/x

(

 +
(

 +



log x
)

log x
)


 log n

,

as n → ∞.

4 Proofs
First of all, we provide the proof of Theorem ., for it is relatively easy.

Proof of Theorem . By Lemma ., we have

 – F
(
αnxβn

)
=

√
π

(
log

(
αnxβn

))–
exp

(

–
(log(αnxβn ))



)

× (
 –

(
log

(
αnxβn

))–) + S
(
αnxβn

)

=: T(x)T(x) + T(x)

for x > , where T(x) = √
π

(log(αnxβn ))– exp(– (log(αnxβn ))

 ), T(x) =  – (log(αnxβn ))– and
T(x) = S(αnxβn ).

First, we calculate T(x). By (.) and (.), we have

T(x) =
√
π

(logαn)– exp

(

–
(logαn)



)
(
 + (logαn)–βn log x

)–

× exp

(

–(logαn)βn log x –
β

n log x


)

=


nx
(
 + β

n log x
)–

exp

(

–
β

n log x


)

=


nx
(
 – β

n log x + O
(
β

n
))

(

 –
β

n log x


+ O
(
β

n
)
)

=


nx

(

 – β
n

(

 +



log x
)

log x + O
(
β

n
)
)

. (.)

Second, we estimate T(x) and T(x) for x > . By (.), we derive

T(x) =  – β
n
(
 + β

n log x
)–

=  – β
n
(
 – β

n log x + O
(
β

n
))

=  – β
n + O

(
β

n
)
, (.)



Huang et al. Journal of Inequalities and Applications  (2016) 2016:60 Page 6 of 10

and by Lemma . we have

T(x) ≤ √
π

(
log

(
αnxβn

))–
exp

(

–
(log(αnxβn ))



)

= β
n
(
 + β

n log x
)–T(x)

= O
(
n–β

n
)
. (.)

By (.)-(.), we have

 – Fn(αnxβn
)

=


nx

(

 – β
n

(

 +
(

 +



log x
)

log x
)

+ O
(
β

n
)
)

.

Thus, we obtain

Fn(αnxβn
)

– �(x)

=
(

 –


nx

(

 – β
n

(

 +
(

 +



log x
)

log x
)

+ O
(
β

n
)
))n

– exp

(

–

x

)

= exp

(

–

x

)(

exp

(

x

(

β
n

(

 +
(

 +



log x
)

log x
)

+ O
(
β

n
)
))

– 
)

= exp

(

–

x

)(

β
n


x

(

 +
(

 +



log x
)

log x
)

+ O
(
β

n
)
)

(.)

for large n and x > . We immediately get the result of Theorem . by (.). �

Proof of Theorem . By Theorem . we can prove that there exists an absolute constant
C such that

sup
x>

∣
∣Fn(αnxβn

)
– �(x)

∣
∣ >

C

log n
.

In order to obtain the upper bound for x > , we need to prove

(a) sup
≤x<∞

∣
∣Fn(αnxβn

)
– �(x)

∣
∣ < dβ


n , (.)

(b) sup
cn≤x<

∣
∣Fn(αnxβn

)
– �(x)

∣
∣ < dβ


n , (.)

(c) sup
<x<cn

∣
∣Fn(αnxβn

)
– �(x)

∣
∣ < dβ


n (.)

for n > n, where di > , i = , ,  are absolute constants and

cn =


 log logαn

is positive for n > n. By (.), we have

.( log n)/ < logαn < ( log n)/

for n > n.
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First, consider the case of x ≥ cn. Set

Rn(x) = –
[
n log F

(
αnxβn

)
+ n�n(x)

]
,

Bn(x) = exp(–Rn), An(x) = exp

(

–n�n(x) +

x

)

,

where �n(x) =  – F(αnxβn ) and An(x) → , as x → ∞. We have

�n(x) ≤ �n(cn) <
√
π

(
log

(
αncβn

n
))–

exp

(

–
(log(αncβn

n ))



)

=

n

(
 + β

n log cn
)–

exp

(

– log cn –
β

n log cn



)

<

n

(
 + β

n log cn
)–c–

n

=
(

 –
log( log logαn)

(logαn)

)–  log logαn

n

< c̃ < 

for n > n. So,

inf
x>cn

(
 – �n(x)

)
>  – c̃ > .

Since

–x –
x

( – x)
< log( – x) < –x

for  < x < , we obtain

 < Rn(x) ≤ n�
n (x)

( – �n(x))
<

n�
n(cn)

( – �n(x))

<
n–( + β

n log cn)–c–
n

( – �n(x))

<
n–( + β

n log cn)–c–
n (logαn)

( – c̃)β–
n

=
√

π ( – c̃)

(

 –
log( log logαn)

(logαn)

)– (log logαn) logαn

exp( (logαn)

 )
β

n

< c̃β

n

for n > n.
Hence, we have

n–β–
n

(
 + β

n log cn
)–c–

n < c̃

for n > n. Thus,

∣
∣Bn(x) – 

∣
∣ < Rn < c̃β


n (.)



Huang et al. Journal of Inequalities and Applications  (2016) 2016:60 Page 8 of 10

for n > n. By (.), we have

∣
∣Fn(αnxβn

)
– �(x)

∣
∣

≤ �(x)Bn(x)
∣
∣An(x) – 

∣
∣ +

∣
∣Bn(x) – 

∣
∣

< �(x)
∣
∣An(x) – 

∣
∣ + c̃β


n (.)

for x ≥ cn.
We now prove (.). By (.), (.), and the definition of An(x), we have

A′
n(x) = An(x)


x

(

exp

(

–


β

n log x
)

– 
)

< 

for x > . Since

 < nγ (αn) < β
n and ex –  ≤ xex for  ≤ x ≤  and

exp
(
nγ (αn)

)
< exp

(
β

n
)

< exp

(


 log n

)

< exp

(


 log n

)

for n > n,

and by (.), (.), we have

sup
x≥

∣
∣An(x) – 

∣
∣ =

∣
∣An() – 

∣
∣

=
∣
∣exp

(
nγ (αn)

)
– 

∣
∣

≤ nγ (αn) exp
(
nγ (αn)

)

≤ c̃β

n (.)

for n > n.
Combining (.) with (.), we have

sup
x≥

∣
∣Fn(αnxβn

)
– �(x)

∣
∣ < (c̃ + c̃)β

n .

Second, consider the situation of cn ≤ x < . By Lemma ., we obtain

–n�n(x) +

x

= –n
(

√
π

(
log

(
αnxβn

))–
exp

(

–
(log(αnxβn ))



)

– γ
(
αnxβn

)
)

+

x

= –n
(

√
π

(
log

(
αnxβn

))–
exp

(

–
(log(αnxβn ))



)

–
√
π

(
log

(
αnxβn

))–qn
(
αnxβn

)
exp

(

–
(log(αnxβn ))



))

+

x

=

x
(
 + β

n log x
)–

(

–
(
 – (logαn)–qn

(
αnxβn

)(
 + β

n log x
)–)

× exp

(

–


β

n log x
)

+  + β
n log x

)

=

x
(
 + β

n log x
)–Qn(x),
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where  < qn(x) <  and

Qn(x) = –
(
 – β

nqn
(
αnxβn

)(
 + β

n log x
)–)

exp

(

–


β

n log x
)

+  + β
n log x.

Since e–x >  – x, as x > , we have

Qn(x) < –
(
 – β

nqn
(
αnxβn

)(
 + β

n log x
)–)

(

 –


β

n log x
)

+  + β
n log x

< β
n

(
(
 + β

n log x
)– +




log x
)

.

But

Qn(x) > β
nqn

(
αnxβn

)(
 + β

n log x
)– + β

n log x

> β
n log x.

Hence, we obtain

∣
∣Qn(x)

∣
∣ < β

n

(
(
 + β

n log x
)– +




log x + | log x|
)

< β
n

((

 –
log( log logαn)

log αn

)–

+



log x + | log x|
)

< β
n

(

c̃ +



log x + | log x|
)

for n > n, where cn ≤ x < . Therefore,

∣
∣
∣
∣–n�n(x) +


x

∣
∣
∣
∣ < β

n

(

c̃ +



log x + | log x|
)

x–( + β
n log x

)–

< β
n

(

c̃ +



log cn + | log cn|
)

c–
n

(
 + β

n log cn
)–

< c̃

for n ≥ n. Thus, there exists a positive number θ satisfying  < θ <  such that

�(x)
∣
∣An(x) – 

∣
∣ < �(x) exp

(

θ

(

–n�n(x) +

x

))∣
∣
∣
∣–n�n(x) +


x

∣
∣
∣
∣

< exp(c̃)β
n sup

cn≤x<

∣
∣
∣
∣

(

c̃ +



log x + | log x|
)

x–
∣
∣
∣
∣

(
 + β

n log cn
)–

< c̃β

n . (.)

By (.) and (.), the proof of (.) is complete.
Third, consider the circumstance of  < x < cn. In this case

�(x) < �(cn) = β
n ,



Huang et al. Journal of Inequalities and Applications  (2016) 2016:60 Page 10 of 10

we have

sup
<x<cn

∣
∣Fn(αnxβn

)
– �(x)

∣
∣ < Fn(αncβn

n
)

+ �(cn)

< sup
cn<x<

∣
∣Fn(αnxβn

)
– �(x)

∣
∣ + �(cn)

< (c̃ + c̃)β
n + β

n

< c̃β

n .

The proof of Theorem . is finished. �
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