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1 Introduction
In recent years, the theory of fractional differential equations is an important area of in-
vestigation for its wide applicability in the fields of physics, engineering, and economics.
For more details, we refer to the monographs of Oldham and Spanier [], Miller and Ross
[] and Podlubny [] and papers [–].

This paper deals with the fractional neutral evolution inclusions of the form

⎧
⎨

⎩

Dq(x(t) – g(t, xt)) ∈ –Ax(t) + F(t, xt), t ∈ [, b],

x(t) = φ(t), t ∈ [–τ , ],
(.)

where Dq represents the Caputo fractional derivative of order  < q < , b > , –A is the
infinitesimal generator of an analytic semigroup {T(t)}t≥ on a Banach space X, F : [, b]×
C([–τ , ], X) → P(X) is a multivalued map with nonempty, bounded, convex, and closed
values, P(X) is the family of all nonempty subsets of X, g : [, b] × C([–τ , ], X) → X is a
given function to be introduced later, and φ ∈ C([–τ , ], X), τ > . For any x ∈ C([–τ , b], X)
and any t ∈ [, b], define xt(ς ) by xt(ς ) = x(t + ς ) for ς ∈ [–τ , ], where xt(·) represents the
history of the state from time t – τ up to the present time t.

Neutral fractional differential systems arise in many areas of applied mathematics and
have received much attention recently. For some applications and recent results, we re-
fer to [–] and the references therein. Very recently, Wang and Zhou [] studied the
existence and controllability results for fractional evolution differential inclusions involv-
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ing the Caputo derivative in Banach spaces. Yan [] investigated the controllability of
fractional-order functional integro-differential inclusions with infinite delay in Banach
spaces. We remark that the existence or the controllability results in these mentioned pa-
pers are obtained under strong assumptions on the nonlinear parts f and F in equations
and inclusions, respectively. The purpose of this paper is to release the limitation on the
nonlinear term. For this purpose, we first present a new generalized Gronwall inequality
with singularity, which is effective in dealing with fractional neutral evolution systems.

The remainder of the paper is arranged as follows. In Section , we give some basic
definitions and preliminary results. A new generalized Gronwall inequality is proved in
Section . Section  is devoted to the existence result of mild solutions for problem (.).
An example is presented in Section  to illustrate our main theorem.

2 Preliminaries
Let (X, | · |) be a Banach space, and J ⊂ R. Then C(J , X) is the Banach space consisting of
all continuous functions from J into X equipped with the norm ‖y‖J = sup{|y(t)| : t ∈ J},
and B(X) denotes the Banach space of all bounded linear operators from X into X with
the norm

‖T‖ = sup
{∣
∣T(y)

∣
∣ : |y| = 

}
,

where T ∈ B(X) and y ∈ X.
For  ≤ p ≤ ∞, define the norm of a measurable function m : J → R by

‖m‖LpJ =

⎧
⎨

⎩

(
∫

J |m(t)|p dt)

p ,  ≤ p < ∞,

infμ(J)={supt∈J–J |m(t)|}, p = ∞,

where μ(J) is the Lebesgue measure on J . Denote by Lp(J , R) the Banach space of all
Lebesgue-measurable functions m : J → R with the norm satisfying ‖ · ‖LpJ < ∞.

Lemma . (Hölder inequality) Let r, p ≥  and 
r + 

p = . If l ∈ Lr(J , R) and m ∈ Lp(J , R),
then lm ∈ L(J , R) and ‖lm‖LJ ≤ ‖l‖LrJ‖m‖LpJ .

Lemma . (Bochner theorem) A measurable function x : J → X is Bochner-integrable if
|x| is Lebesgue-integrable.

Let –A be the infinitesimal generator of an analytic semigroup {T(t)}t≥ of uniformly
bounded linear operators on X. Let  ∈ ρ(A), where ρ(A) is the resolvent set of A. Then
we can define the fractional power Aα for  < α ≤  as a closed linear operator on the
domain D(Aα). We have the following known results:

(i) There is M ≥  such that

M := sup
t∈[,+∞)

∥
∥T(t)

∥
∥ ≤ ∞. (.)

(ii) For any α ∈ (, ], there exists a positive constant Cα such that

∥
∥AαT(t)

∥
∥ ≤ Cα

tα
,  < t ≤ b. (.)

For details on fractional powers of closed operators, we refer to [].
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Definition . ([]) The Riemann-Liouville fractional integral of order α ∈ R+ of f : R+ →
X is defined by

Iα
 f (t) =


�(α)

∫ t


(t – s)α–f (s) ds, t > ,

where � is the gamma function.

Definition . ([]) The Caputo fractional derivative of order  < α <  of f ∈ C([,∞),
X) is defined by

Dαf (t) =


�( – α)

∫ t


(t – s)–αf ′(s) ds, t > .

Next, we present some basic definitions and results on multivalued maps. See [] for
more details.

Let (X, d) be a metric space, and P(X) be the family for all nonempty subsets of X. We
give the following notation:

Pcl(X) =
{

Y ∈P(X) : Y is closed
}

, Pbd(X) =
{

Y ∈P(X) : Y is bounded
}

,

Pcv(X) =
{

Y ∈P(X) : Y is convex
}

, Pcp(X) =
{

Y ∈P(X) : Y is compact
}

.

A multivalued map F : X → P(X) is convex (closed) valued if F(x) is convex (closed)
for all x ∈ X; F is bounded on bounded sets if F(B) = Ux∈BF(x) is bounded in X for all
B ∈ Pbd(X), that is, supx∈B{sup{|y| : y ∈ F(x)}} < ∞; F is said to be upper semi-continuous
(u.s.c. for short) on X if for each x ∈ X, the set F(x) is a nonempty, closed subset of X
and if for each open set U of X containing F(x), there is an open neighborhood V of x

such that F(V) ⊂ U ; and F is completely continuous if F(B) is relatively compact for every
B ∈Pbd(X).

If a multivalued map F is completely continuous and has nonempty compact values,
then F is u.s.c. if and only if F has a closed graph, that is, xn → x∗, yn → y∗, yn ∈ F(xn)
imply y∗ ∈ F(x∗).

Consider Hd : P(X) ×P(X) → R+ ∪ {∞} given by

Hd(A, B) = max
{

sup
x∈A

d(x, B), sup
y∈B

d(A, y)
}

,

where d(A, y) = infx∈A d(x, y), d(x, B) = infy∈B d(x, y). Then (Pbd,cl(X), Hd) is a metric space,
and (Pcl(X), Hd) is a generalized metric space (see []).

Definition . ([]) A multivalued operator N : X →Pcl(X)
(i) is a contraction if and only if there exists  < γ <  such that, for each x, y ∈ X ,

Hd
(
N (x),N (y)

) ≤ γ d(x, y);

(ii) has a fixed point if there exists x ∈ X such that x ∈N (x).
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Theorem . ([]) Let J be a compact interval, and X be a Banach space. Let the map
F : J ×C(J , X) →Pbd,cl,cv(X), (t, u) �→ F(t, u), be measurable with respect to t for each u ∈ X
and upper semicontinuous with respect to u for each t ∈ J . Moreover, suppose that for each
fixed u ∈ C(J , X), the set

NF ,u =
{

f ∈ L(J , X) : f (t) ∈ F(t, u) for a.e. t ∈ J
}

is nonempty. Also, let T be a linear continuous mapping from L(J , X) to C(J , X). Then the
operator

T ◦NF : C(J , X) →Pbd,cl,cv
(
C(J , X)

)
, u → (T ◦NF )(u) = T (NF ,u),

is a closed graph operator in C(J , X) × C(J , X).

The main tool in our approach is the following fixed point theorem.

Theorem . ([, ]) Let X be a Banach space, and A : X → Pcl,cv,bd(X) and B : X →
Pcp,cv(X) be two multivalued operators satisfying

(a) A is a contraction, and
(b) B is upper semicontinuous and completely continuous.

Then, either
(i) the operator inclusion λx ∈Ax + Bx has a solution for λ = , or

(ii) the set U = {u ∈ X|u ∈ λAu + λBu,  < λ < } is unbounded.

3 A generalized Gronwall inequality
In this section, we establish a generalized Gronwall inequality, which is important in prov-
ing the existence result. The proof is based on an iteration argument.

Lemma . ([]) For x ≥ , we have

(
x
e

)x√
πx

(

 +


x

)

< �(x + ) <
(

x
e

)x√
πx

(

 +


x – .

)

.

Theorem . Suppose that α,β > , a(t) is a nonnegative function locally integrable on
R+, g(t) and h(t) are nonnegative, nondecreasing continuous functions defined on R+, and
u(t) is a nonnegative and locally integrable function on R+ such that

u(t) ≤ a(t) + g(t)
∫ t


(t – s)α–u(s) ds + h(t)

∫ t


(t – s)β–u(s) ds, t ∈ R+.

Then, for each constant b ≥ , t ∈ [, b], we have

u(t) ≤ a(t) +
∫ t



∞∑

n=

n∑

k=

Ck
n

(g(t)�(α))k(h(t)�(β))n–k

�(kα + (n – k)β)
(t – s)kα+(n–k)β–a(s) ds. (.)

Proof Let Bψ(t) = g(t)
∫ t

 (t – s)α–ψ(s) ds + h(t)
∫ t

 (t – s)β–ψ(s) ds for locally integrable
functions ψ . Then

u(t) ≤ a(t) + Bu(t).
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By iteration we have

u(t) ≤
n–∑

k=

Bka(t) + Bnu(t).

Next, we shall prove the following two statements:
(i) Bnu(t) ≤ ∫ t


∑n

k= Ck
n

(g(t)�(α))k (h(t)�(β))n–k

�(kα+(n–k)β) (t – s)kα+(n–k)β–u(s) ds.
(ii) For each t ∈ [, b], limn→∞ Bnu(t) = , and

∑∞
n= Bna(t) is convergent.

Proof of (i). From the definition of B we have (i) is true for n = . Assume that (i) is true
for some n = m. Then, for n = m + ,

Bm+u(t) = B
(
Bmu(t)

)

= g(t)
∫ t


(t – s)α–Bmu(s) ds + h(t)

∫ t


(t – s)β–Bmu(s) ds

≤ g(t)
∫ t


(t – s)α–

∫ s



m∑

k=

Ck
m

(g(t)�(α))k(h(t)�(β))m–k

�(kα + (m – k)β)

× (s – s)kα+(m–k)β–u(s) ds ds

+ h(t)
∫ t


(t – s)β–

∫ s



m∑

k=

Ck
m

(g(t)�(α))k(h(t)�(β))m–k

�(kα + (m – k)β)

× (s – s)kα+(m–k)β–u(s) ds ds.

By interchanging the order of integration and by the equality Cn
m + Cn+

m = Cn+
m+ we have

Bm+u(t)

≤
∫ t


g(t)u(s)

∫ t

s

m∑

k=

Ck
m

(g(t)�(α))k(h(t)�(β))m–k

�(kα + (m – k)β)
(t – s)α–(s – s)kα+(m–k)β– ds ds

+
∫ t


h(t)u(s)

∫ t

s

m∑

k=

Ck
m

(g(t)�(α))k(h(t)�(β))m–k

�(kα + (m – k)β)

× (t – s)β–(s – s)kα+(m–k)β– ds ds

=
∫ t



m∑

k=

Ck
m

(g(t)�(α))k+(h(t)�(β))m–k

�((k + )α + (m – k)β)
u(s)(t – s)(k+)α+(m–k)β– ds

+
∫ t



m∑

k=

Ck
m

(g(t)�(α))k(h(t)�(β))m+–k

�(kα + (m +  – k)β)
u(s)(t – s)kα+(m+–k)β– ds

=
∫ t



m+∑

k=

Ck
m+

(g(t)�(α))k(h(t)�(β))m–k

�(kα + (m – k)β)
u(s)(t – s)kα+(m–k)β– ds.

Therefore, by induction we get that (i) is true.
Proof of (ii). First, there exists N >  such that for n > N, we have

kα + (n – k)β –  >  for k = , , , . . . , n.
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Take arbitrary b > . Then, for n > N, k = , , . . . , n, we have

(t – s)kα+(n–k)β– ≤ bkα+(n–k)β–, t ∈ [, b], s ∈ [, t].

By Lemma ., for n > N, we have

n∑

k=

Ck
n

(g(t)�(α))k(h(t)�(β))n–k

�(kα + (n – k)β)
bkα+(n–k)β–

≤
n∑

k=

Ck
n

(g(t)�(α))k(h(t)�(β))n–k

( kα+(n–k)β–
e )kα+(n–k)β–

√
π (kα + (n – k)β – )

bkα+(n–k)β–

≤
n∑

k=

Ck
n

[
g(T)�(α)bα

( kα+(n–k)β–
e )α

]k[ h(T)�(β)bβ

( kα+(n–k)β–
e )β

]n–k

× e
b(kα + (n – k)β – )

√
π (kα + (n – k)β – )

.

Choosing constants c, c >  satisfying  < c + c < , we can easily get that there is an
integer constant N > N such that, for n > N , k = , , , . . . , n,

g(T)�(α)bα

( kα+(n–k)β–
e )α

< c,
h(T)�(β)bβ

( kα+(n–k)β–
e )β

< c,

e
b(kα + (n – k)β – )

√
π (kα + (n – k)β – )

< .

Therefore, for n > N and t ∈ [, b], we have

lim
n→∞ Bnu(t) ≤ lim

n→∞

∫ t



n∑

k=

Ck
n

(g(t)�(α))k(h(t)�(β))n–k

�(kα + (n – k)β)
(t – s)kα+(n–k)β–u(s) ds

≤ lim
n→∞

∫ t



n∑

k=

Ck
n

(g(t)�(α))k(h(t)�(β))n–k

�(kα + (n – k)β)
bkα+(n–k)β–u(s) ds

≤ lim
n→∞

n∑

k=

Ck
nck

 cn–k


∫ b


u(s) ds

= lim
n→∞(c + c)n

∫ b


u(s) ds

= .

Similarly, we can prove that for n > N and t ∈ [, b],

∞∑

n=

Bna(t) =
N∑

n=

Bna(t) +
∞∑

n=N+

Bna(t)

≤
N∑

n=

Bna(t) +
∞∑

n=N+

(c + c)n
∫ b


a(s) ds

≤ ∞.

Proof of (ii) is completed.
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As a consequence of (i) and (ii), we complete the proof of Theorem .. �

Remark . If h(t) ≡ , then (.) becomes

u(t) ≤ a(t) +
∫ t



∞∑

n=

(g(t)�(α))n

�(nα)
(t – s)nα–a(s) ds,

which is Theorem  in monograph [].

4 Existence result
According to [], we introduce the definition of the mild solution to problem (.).

Definition . A continuous function x : [–τ , b] → X is a mild solution of problem (.)
if x(t) = φ(t) on [–τ , ] and there exists f ∈ L([, b], X) such that f (t) ∈ F(t, x(t)) for a.e.
t ∈ [, b] and

x(t) = Sq(t)
[
φ() – g(,φ)

]
+ g(t, xt) +

∫ t


(t – s)q–ATq(t – s)g(s, xs) ds

+
∫ t


(t – s)q–

Tq(t – s)f (s) ds,

where

Sq(t) =
∫ ∞


ξq(θ )T

(
tqθ

)
dθ , Tq(t) = q

∫ ∞


θξq(θ )T

(
tqθ

)
dθ ,

ξq(θ ) =

q
θ

–– 
q �q

(
θ

– 
q
)
,

�q(θ ) =

π

∞∑

n=

(–)n–θ–qn– �(nq + )
n!

sin(nπq), θ ∈ R+.

Remark . ([]) The function ξq(θ ) is a probability density function defined on R+, and

∫ ∞


θ vξq(θ ) dθ =

∫ ∞




θqv �q(θ ) dθ =

�( + v)
�( + qv)

.

Lemma . ([]) The operators Sq and Tq have the following properties:
(i) For any fixed t ≥ , Sq and Tq are linear and bounded operators, that is, for any

x ∈ X ,

∣
∣Sq(t)x

∣
∣ ≤ M|x|, ∣

∣Tq(t)x
∣
∣ ≤ qM

�( + q)
|x|.

(ii) {Sq(t)}t≥ and {Tq(t)}t≥ are strongly continuous.
(iii) If T(t) is compact for t > , then Sq(t) and Tq(t) are also compact operators for t > .
(iv) For any x ∈ X , β ∈ (, ), and η ∈ (, ], we have

ATq(t)x = A–β
Tq(t)Aβx,  ≤ t ≤ b,
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and

∥
∥Aη

Tq(t)
∥
∥ ≤ qCη�( – η)

tqη�( + q( – η))
,  < t ≤ b.

Let us list the following hypotheses:
(H) T(t) is compact operator for every t > .
(H) The multivalued map F : [, b] × C([–τ , ], X) → Pb,cl,cv(X) satisfies the following

conditions:
(i) For each t ∈ [, b], F(t, ·) is upper semicontinuous, for each x ∈ C([–τ , ], X), F(·, x)

is measurable, and the set NF ,x = {f ∈ L([, b], X) : f (t) ∈ F(t, x), for a.e. t ∈ [, b]} is
not empty.

(ii) For each x ∈ C([–τ , ], X), there exist m ∈ L/q ([, b], R+) and r ∈ C([, b], R+) such
that

sup
{∣
∣f (t)

∣
∣ : f (t) ∈ F(t, x)

} ≤ m(t) + r(t)‖x‖[–τ ,] for a.e. t ∈ [, b],

where q ∈ [, q).
(H) There exists a constant β ∈ (, ) such that g ∈ D(Aβ ), Aβg is continuous, and
(i) there exists a positive constant L such that

∣
∣Aβg(t, x) – Aβg(t, x)

∣
∣ ≤ L

(|t – t| + ‖x – x‖[–τ ,]
)

for  < t, t < b, x, x ∈ C([–τ , ], X), and
(ii) there exist positive constants L, L such that

∣
∣Aβg(t, x)

∣
∣ ≤ L‖x‖[–τ ,] + L

for any x ∈ C([–τ , ], X).

Theorem . Assume that hypotheses (H)-(H) are satisfied. Then problem (.) has one
mild solution, provided that

L = L
(

∥
∥A–β

∥
∥ +

bqβC–β�( + β)
β�( + qβ)

)

< ,
∥
∥A–β

∥
∥L < . (.)

Proof Transform problem (.) into a fixed point problem. Consider the multivalued oper-
ator � : C([–τ , b], X) →P(C([–τ , b], X)) where �x is defined as the set of ρ ∈ C([–τ , b], X)
such that

ρ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

φ(t), t ∈ [–τ , ],

Sq(t)[φ() – g(,φ)] + g(t, xt) +
∫ t

 (t – s)q–ATq(t – s)g(s, xs) ds

+
∫ t

 (t – s)q–Tq(t – s)f (s) ds, t ∈ [, b],

where f ∈ NF ,x = {f ∈ L([, b], X) : f (t) ∈ F(t, xt) for a.e. t ∈ [, b]}. We know that the fixed
point of � is the mild solution of problem (.). Consider the operatorsA : C([–τ , b], X) →
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C([–τ , b], X) and B : C([–τ , b], X) →P(C([–τ , b], X)) defined by

(Ax)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

φ(t), t ∈ [–τ , ],

Sq(t)[φ() – g(,φ)] + g(t, xt)

+
∫ t

 (t – s)q–ATq(t – s)g(s, xs) ds, t ∈ [, b],

and

Bx =

{

ρ ∈ C
(
[–τ , b], X

)
: ρ(t) =

{
, t ∈ [–τ , ],
∫ t

 (t – s)q–Tq(t – s)f (s) ds, f ∈ NF ,x, t ∈ [, b]

}

.

It is clear that � = A+B. Mild solutions of problem (.) are converted to the fixed points
of x ∈Ax + Bx. We shall show that the operators A and B satisfy the conditions of Theo-
rem . by the following steps.

Step . A is a contraction.
Let x, y ∈ C([–τ , b], X). Then, for each t ∈ [, b], from condition (H) we have that

∣
∣(Ax)(t) – (Ay)(t)

∣
∣ =

∣
∣
∣
∣g(t, xt) +

∫ t


(t – s)q–ATq(t – s)g(s, xs) ds

– g(t, yt) –
∫ t


(t – s)q–ATq(t – s)g(s, ys) ds

∣
∣
∣
∣

≤ ∣
∣g(t, xt) – g(t, yt)

∣
∣ +

∣
∣
∣
∣

∫ t


(t – s)q–ATq(t – s)

(
g(s, xs) – g(t, ys)

)
ds

∣
∣
∣
∣

≤ L
∥
∥A–β

∥
∥‖xt – yt‖[–τ ,]

+ L
∫ t


(t – s)q–∥∥A–β

Tq(t – s)
∥
∥‖xs – ys‖[–τ ,] ds

≤ L
(

∥
∥A–β

∥
∥ +

qC–β�( + β)
�( + qβ)

∫ t


(t – s)qβ– ds

)

sup
≤s≤t

‖xs – ys‖[–τ ,]

≤ L
(

∥
∥A–β

∥
∥ +

bqβC–β�( + β)
β�( + qβ)

)

‖x – y‖[–τ ,b]

= L‖x – y‖[–τ ,b].

Therefore,

‖Ax – Ay‖[–τ ,b] ≤ L‖x – y‖[–τ ,b],

so that A is a contraction since L < .
Step . Bx is convex for each x ∈ C([–τ , b], X).
Indeed, if ρ and ρ belong to Bx, then there exist f, f ∈ NF ,x such that for each t ∈ [, b],

we have

ρi(t) =
∫ t


(t – s)q–

Tq(t – s)fi(s) ds, i = , .
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Let  ≤ λ ≤ . Then for each t ∈ [, b], we have

(
λρ + ( – λ)ρ

)
(t) =

∫ t


(t – s)q–

Tq(t – s)
(
λf(s) + ( – λ)f(s)

)
ds.

Since NF ,x is convex, we have λρ + ( – λ)ρ ∈ Bx.
Step . B sends bounded sets to bounded sets in C([–τ , b], X).
It suffices to prove that there exists a constant l >  such that for each ρ ∈ Bx, x ∈ Bk =

{x ∈ C([–τ , b], X),‖x‖[–τ ,b] ≤ k}, we have ‖ρ‖[–τ ,b] ≤ l.
Let ρ ∈ Bx. Then there exists f ∈ NF ,x such that for t ∈ [, b], we have

ρ(t) =
∫ t


(t – s)q–

Tq(t – s)f (s) ds.

Then, for t ∈ [, b], we have

∣
∣ρ(t)

∣
∣ =

∣
∣
∣
∣

∫ t


(t – s)q–

Tq(t – s)f (s) ds
∣
∣
∣
∣ ≤ qM

�( + q)

∫ t


(t – s)q–∣∣f (s)

∣
∣ds. (.)

From (H), for t ∈ [, b], we have

∫ t


(t – s)q–∣∣f (s)

∣
∣ds ≤

(∫ t


(t – s)

q–
–q ds

)–q

‖m‖
L


q [,t]

+ rk

∫ t


(t – s)q– ds

≤ M

( + a)–q
b(+a)(–q) +

rkbq

q
, (.)

where a = q–
–q

∈ (–, ), M = ‖m‖
L


q [,b]

, and r = sup{r(t), t ∈ [, b]}.
Then from (.) and (.) we get that

‖ρ‖[–τ ,b] ≤ ‖ρ‖[–τ ,] + ‖ρ‖[,b]

≤  +
qM

�( + q)

[
M

( + a)–q
b(+a)(–q) +

rkbq

q

]

:= l.

Step . B maps bounded sets to equicontinuous sets of C([–τ , b], X).
Let t, t ∈ [, b], t < t, and let Bk = {x ∈ C([–τ , b], X),‖x‖[–τ ,b] ≤ k} be a bounded set

of C([–τ , b], X). For each x ∈ Bk and ρ ∈ Bx, there exists f ∈ NF ,x such that

ρ(t) =
∫ t


(t – s)q–

Tq(t – s)f (s) ds.

Then,

∣
∣ρ(t) – ρ(t)

∣
∣ =

∣
∣
∣
∣

∫ t


(t – s)q–

Tq(t – s)f (s) ds –
∫ t


(t – s)q–

Tq(t – s)f (s) ds
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t

t

(t – s)q–
Tq(t – s)f (s) ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t



[
(t – s)q– – (t – s)q–]

Tq(t – s)f (s) ds
∣
∣
∣
∣
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+
∣
∣
∣
∣

∫ t


(t – s)q–[

Tq(t – s) – Tq(t – s)
]
f (s) ds

∣
∣
∣
∣

= I + I + I,

where

I =
∣
∣
∣
∣

∫ t

t

(t – s)q–
Tq(t – s)f (s) ds

∣
∣
∣
∣,

I =
∣
∣
∣
∣

∫ t



[
(t – s)q– – (t – s)q–]

Tq(t – s)f (s) ds
∣
∣
∣
∣,

I =
∣
∣
∣
∣

∫ t


(t – s)q–[

Tq(t – s) – Tq(t – s)
]
f (s) ds

∣
∣
∣
∣.

By using a similar argument as that used in (.), we can conclude that

I ≤ qM
�( + q)

(
M

( + a)–q
(t – t)(+a)(–q) +

rk(t – t)q

q

)

,

I ≤ qM
�( + q)

[(∫ t



(
(t – s)q– – (t – s)q–) 

–q ds
)–q

‖m‖
L


q [,t]

+ rk

∫ t


(t – s)q– – (t – s)q– ds

]

≤ qM
�( + q)

[

M

(∫ t



(
(t – s)a – (t – s)a)ds

)–q

+ rk

(
(t – t)q

q
–

tq

q

+
tq

q

)]

=
qM

�( + q)

(
M

( + a)–q

(
t+a
 – t+a

 + (t – t)+a)–q +
rk

q
(
(t – t)q – tq

 + tq

)
)

≤ MM

�( + q)

(
M

( + a)–q
(t – t)(+a)(–q) +

rk

q
(t – t)q

)

.

Hence, limt→t I =  and limt→t I =  independently of x ∈ Bk .
On the other hand,

I ≤
∫ t


(t – s)q–∥∥Tq(t – s) – Tq(t – s)

∥
∥
∣
∣f (s)

∣
∣ds.

Hypothesis (H) and Lemma . imply that Tq(t) is continuous for t > . Then we get
that I tends to  independently of x ∈ Bk as t → t.

Consequently, |ρ(t) – ρ(t)| →  independently of x ∈ Bk as t → t, which means that
B(Bk ) is equicontinuous.

Step . For each t ∈ [, b], V (t) = {(Bx)(t), x ∈ Bk} is relatively compact in X.
Obviously, V () = {} is relatively compact in X. Let  < t ≤ b be fixed. For x ∈ Bk and

ρ ∈ Bx, there exists f ∈ NF ,x such that

ρ(t) =
∫ t


(t – s)q–

Tq(t – s)f (s) ds.
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For arbitrary ε ∈ (, t) and δ > , define the operator �ε,δ on Bk by

(�ε,δx)(t) = q
∫ t–ε



∫ ∞

δ

θ (t – s)q–ξq(θ )T
(
(t – s)qθ

)
f (s) dθ ds

= q
∫ t–ε



∫ ∞

δ

θ (t – s)q–ξq(θ )T
(
εqδ

)
T

(
(t – s)qθ – εqδ

)
f (s) dθ ds

= T
(
εqδ

)
q
∫ t–ε



∫ ∞

δ

θ (t – s)q–ξq(θ )T
(
(t – s)qθ – εqδ

)
f (s) dθ ds.

According to the compactness of T(t), t > , we get that the set Vε,δ(t) = {(�ε,δx)(t), x ∈ Bk}
is relatively compact in X for all ε ∈ (, t) and δ > . Moreover, for every x ∈ Bk , we have

∣
∣(Bx)(t) – (�ε,δx)(t)

∣
∣

=
∣
∣
∣
∣q

∫ t



∫ δ


θ (t – s)q–ξq(θ )T

(
(t – s)qθ

)
f (s) dθ ds

+ q
∫ t



∫ ∞

δ

θ (t – s)q–ξq(θ )T
(
(t – s)qθ

)
f (s) dθ ds

– q
∫ t–ε



∫ ∞

δ

θ (t – s)q–ξq(θ )T
(
(t – s)qθ

)
f (s) dθ ds

∣
∣
∣
∣

≤ q
∣
∣
∣
∣

∫ t



∫ δ


θ (t – s)q–ξq(θ )T

(
(t – s)qθ

)
f (s) dθ ds

∣
∣
∣
∣

+ q
∣
∣
∣
∣

∫ t

t–ε

∫ ∞

δ

θ (t – s)q–ξq(θ )T
(
(t – s)qθ

)
f (s) dθ ds

∣
∣
∣
∣

≤ qM
∫ t


(t – s)q–∣∣f (s)

∣
∣ds

∫ δ


θξq(θ ) dθ

+ qM
∫ t

t–ε

(t – s)q–∣∣f (s)
∣
∣ds

∫ ∞


θξq(θ ) dθ .

In view of (.), we have

∣
∣(Bx)(t) – (�ε,δx)(t)

∣
∣

≤ qM
∫ δ


θξq(θ ) dθ

(
M

( + a)–q
b(+a)(–q) +

rkbq

q

)

+
qM

�( + q)

[(∫ t

t–ε

(t – s)
q–

–q ds
)–q

‖m‖
L


q [t–ε,t]

+ rk

∫ t

t–ε

(t – s)q– ds
]

≤ qM
∫ δ


θξq(θ ) dθ

(
M

( + a)–q
b(+a)(–q) +

rkbq

q

)

+
qM

�( + q)

(
M

( + a)–q
ε(+a)(–q) +

rkε
q

q

)

.

From limδ→
∫ δ

 θξq(θ ) dθ =  we conclude that there exist relatively compact sets arbitrar-
ily approximating the sets V (t), t > . Hence, the sets V (t) are relatively compact in X for
all t > .
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Step . B has a closed graph.
Let xn → x∗, ρn ∈ Bxn, and ρn → ρ∗ as n → ∞. We shall prove that ρ∗ ∈ Bx∗. Since

ρn ∈ Bxn, there exists fn ∈ NF ,xn such that

ρn(t) =
∫ t


(t – s)q–

Tq(t – s)fn(s) ds, t ∈ [, b].

We need to prove that there exists f∗ ∈ NF ,x∗ such that

ρ∗(t) =
∫ t


(t – s)q–

Tq(t – s)f∗(s) ds, t ∈ [, b].

Consider the continuous operator T : L([, b], X) → C([, b], X) defined by

(T f )(t) =
∫ t


(t – s)q–

Tq(t – s)f (s) ds.

We can easily obtain that T is continuous. On the other hand,

∣
∣ρn(t) – ρ∗(t)

∣
∣ ≤ ‖ρn – ρ∗‖ →  as n → ∞.

From Theorem . it follows that T ◦ NF is a closed graph operator. Moreover, we have
that

ρn ∈ T (NF ,xn ).

Since xn → x∗, by Theorem . there exists f∗ ∈ NF ,x∗ such that

ρ∗(t) =
∫ t


(t – s)q–

Tq(t – s)f∗(s) ds, t ∈ [, b].

This implies that ρ∗ ∈ Bx∗.
Therefore, the multivalued map B is completely continuous and u.s.c. with convex

closed values.
Step . The set U = {u ∈ C([–τ , ], X)|u ∈ λAu + λBu,  < λ < } is bounded.
Let x ∈ U , then x ∈ λ�x for some  < λ < . Thus, there exists f ∈ NF ,x such that for

t ∈ [, b],

x(t) = λ

(

Sq(t)
[
φ() – g(,φ)

]
+ g(t, xt) +

∫ t


(t – s)q–ATq(t – s)g(s, xs) ds

+
∫ t


(t – s)q–

Tq(t – s)f (s) ds
)

.

By (H) and (H), for each t ∈ [, b], we have

∣
∣x(t)

∣
∣ = λ

∣
∣
∣
∣Sq(t)

[
φ() – g(,φ)

]
+ g(t, xt) +

∫ t


(t – s)q–ATq(t – s)g(s, xs) ds

+
∫ t


(t – s)q–

Tq(t – s)f (s) ds
∣
∣
∣
∣
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≤ ∥
∥Sq(t)

∥
∥
∣
∣φ() – g(,φ)

∣
∣ +

∥
∥A–β

∥
∥
∣
∣Aβg(t, xt)

∣
∣

+
∫ t


(t – s)q–∥∥A–β

Tq(t – s)
∥
∥
∣
∣Aβg(s, xs)

∣
∣ds

+
∫ t


(t – s)q–∥∥Tq(t – s)

∥
∥
∣
∣f (s)

∣
∣ds

≤ M
(∣
∣φ()

∣
∣ +

∣
∣g(,φ)

∣
∣
)

+
∥
∥A–β

∥
∥
(
L‖xt‖[–τ ,] + L

)

+
∫ t


(t – s)q– qC–β�( + β)

(t – s)q(–β)�( + qβ)
(
L‖xs‖[–τ ,] + L

)
ds

+
qM

�( + q)

∫ t


(t – s)q–∣∣f (s)

∣
∣ds

≤ M
(∣
∣φ()

∣
∣ +

∣
∣g(,φ)

∣
∣
)

+
∥
∥A–β

∥
∥
(
L‖xt‖[–τ ,] + L

)

+
qLC–β�( + β)

�( + qβ)

∫ t


(t – s)qβ–‖xs‖[–τ ,] ds

+
qLC–β�( + β)

�( + qβ)

∫ t


(t – s)qβ– ds

+
qM

�( + q)

∫ t


(t – s)q–m(s) ds +

qM
�( + q)

∫ t


(t – s)q–r(s)‖xs‖[–τ ,] ds

≤ M
(∣
∣φ()

∣
∣ +

∣
∣g(,φ)

∣
∣
)

+
∥
∥A–β

∥
∥
(
L‖xt‖[–τ ,] + L

)

+
qLC–β�( + β)

�( + qβ)

∫ t


(t – s)qβ–‖xs‖[–τ ,] ds +

LC–βbqβ�( + β)
β�( + qβ)

+
qMM

( + a)–q�( + q)
b(+a)(–q) +

qMr
�( + q)

∫ t


(t – s)q–‖xs‖[–τ ,] ds.

Consider the function

μ(t) = max
{∣
∣x(s)

∣
∣ : s ∈ [–τ , t]

}
, t ∈ [, b].

Let t∗ ∈ [–τ , t] be such that μ(t) = |x(t∗)|. If t∗ ∈ [, t], then for t ∈ [, b], we have

μ(t) ≤ M
(∣
∣φ()

∣
∣ +

∣
∣g(,φ)

∣
∣
)

+
∥
∥A–β

∥
∥
(
Lμ(t) + L

)

+
qLC–β�( + β)

�( + qβ)

∫ t∗



(
t∗ – s

)qβ–
μ(s) ds +

LC–βbqβ�( + β)
β�( + qβ)

+
qMM

( + a)–q�( + q)
b(+a)(–q) +

qMr
�( + q)

∫ t∗



(
t∗ – s

)q–
μ(s) ds.

Since μ(t) is nondecreasing, for t∗ ∈ [, t], we have

∫ t∗



(
t∗ – s

)q–
μ(s) ds =

∫ t∗


sq–μ

(
t∗ – s

)
ds

≤
∫ t


sq–μ(t – s) ds =

∫ t


(t – s)q–μ(s) ds.
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Therefore,

μ(t) ≤ M
(∣
∣φ()

∣
∣ +

∣
∣g(,φ)

∣
∣
)

+
∥
∥A–β

∥
∥
(
Lμ(t) + L

)

+
qLC–β�( + β)

�( + qβ)

∫ t


(t – s)qβ–μ(s) ds +

LC–βbqβ�( + β)
β�( + qβ)

+
qMM

( + a)–q�( + q)
b(+a)(–q) +

qMr
�( + q)

∫ t


(t – s)q–μ(s) ds.

If t∗ ∈ [–τ , ], then μ(t) = ‖φ‖[–τ ,].
Therefore,

μ(t) ≤ ‖φ‖[–τ ,] + M
(∣
∣φ()

∣
∣ +

∣
∣g(,φ)

∣
∣
)

+
∥
∥A–β

∥
∥
(
Lμ(t) + L

)

+
qLC–β�( + β)

�( + qβ)

∫ t


(t – s)qβ–μ(s) ds +

LC–βbqβ�( + β)
β�( + qβ)

+
qMM

( + a)–q�( + q)
b(+a)(–q) +

qMr
�( + q)

∫ t


(t – s)q–μ(s) ds.

From ‖A–β‖L <  we get that

μ(t) ≤ 
 – ‖A–β‖L

(

‖φ‖[–τ ,] + M
(∣
∣φ()

∣
∣ +

∣
∣g(,φ)

∣
∣
)

+ L
∥
∥A–β

∥
∥

+
LC–βbqβ�( + β)

β�( + qβ)
+

qMM

( + a)–q�( + q)
b(+a)(–q)

)

+
qLC–β�( + β)

( – ‖A–β‖L)�( + qβ)

∫ t


(t – s)qβ–μ(s) ds

+
qMr

( – ‖A–β‖L)�( + q)

∫ t


(t – s)q–μ(s) ds

= C + G
∫ t


(t – s)qβ–u(s) ds + K

∫ t


(t – s)q–u(s) ds,

where

C =


 – ‖A–β‖L

(

‖φ‖[–τ ,] + M
(∣
∣φ()

∣
∣ +

∣
∣g(,φ)

∣
∣
)

+ L
∥
∥A–β

∥
∥

+
LC–βbqβ�( + β)

β�( + qβ)
+

qMM

( + a)–q�( + q)
b(+a)(–q)

)

,

G =
qLC–β�( + β)

( – ‖A–β‖L)�( + qβ)
, K =

qMr
( – ‖A–β‖L)�( + q)

.

Then by Theorem . we have

μ(t) ≤ C +
∫ t



∞∑

n=

n∑

k=

Ck
n

(G�(qβ))k(K�(q))n–k

�(kqβ + (n – k)q)
(t – s)kqβ+(n–k)q–C ds

≤ C + C
∞∑

n=

n∑

k=

Ck
n

(G�(qβ))k(K�(q))n–kbkqβ+(n–k)q

(kqβ + (n – k)q)�(kqβ + (n – k)q)
.
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Therefore, we obtain that

‖x‖[–τ ,b] = μ(b) ≤ C + C
∞∑

n=

n∑

k=

Ck
n

(G�(qβ))k(K�(q))n–kbkqβ+(n–k)q

(kqβ + (n – k)q)�(kqβ + (n – k)q)
.

This shows that U is bounded.
As a result of Theorem ., we obtain that � has a fixed point, which is the mild solution

of system (.). This completes the proof. �

5 An example
As an application, we consider the following fractional differential inclusions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂q

∂tq [u(t, z) –
∫ π

 U(z, y)ut(ς , y) dy]

∈ ∂

∂z u(t, z) + G(t, ut(ς , z)), z ∈ [,π ], t ∈ [, b],

u(t, ) = u(t,π ) = , t ∈ [, b],

u(ς , z) = φ(ς , z), z ∈ [,π ],ς ∈ [–τ , ],

(.)

where  < q < , b > , the function U(z, y), z, y ∈ [,π ] satisfies some conditions, G :
[, b] × C([–τ , ], R) → P(C([–τ , ], R)) satisfies assumptions (H), and ut(ς , z) = u(t +
ς , z), t ∈ [, b], ς ∈ [–τ , ].

Consider X = L([,π ]; R) and the operator A : X → X defined by Aw = –w′′ with the
domain

D(A) =
{

w ∈ X, w, w′ are absolutely continuous, w′′ ∈ X, w() = w() = 
}

.

Then –A generates a strongly continuous semigroup {T(t)}t≥, which is compact, analytic,
and self-adjoint. Furthermore, –A has a discrete spectrum: the eigenvalues are –n, n ∈ N,
with the corresponding normalized eigenvectors vn(z) = ( 

π
) 

 sin(nz). We have the next
three properties.

(i) For each w ∈ X , T(t)w =
∑∞

n= e–nt〈w, vn〉vn. In particular, T(·) is uniformly stable,
and ‖T(t)‖ ≤ et .

(ii) For each w ∈ X , A– 
 w =

∑∞
n=


n 〈w, vn〉vn, and ‖A– 

 ‖ = .
(iii) The operator A 

 is given by

A

 w =

∞∑

n=

n〈w, vn〉vn

on the space D(A 
 ) = {w(·) ∈ X,

∑∞
n= n〈w, vn〉vn ∈ X}.

Then the operator A satisfies (.), (.), and (H).
Hence, system (.) can be reformulated as

⎧
⎨

⎩

Dq(x(t) – g(t, xt)) ∈ –Ax(t) + F(t, xt), t ∈ [, b],

x(t) = φ(t), t ∈ [–τ , ],

where x(t)(z) = u(t, z), F(t, xt)(z) = G(t, ut(θ , z)), g(t, xt)(z) =
∫ π

 U(z, y)ut(θ , y) dy, and
φ(t)z = φ(t, z).
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The following conditions are also assumed to be true.
(i) The function U(z, y), z, y ∈ [,π ] is measurable, and

∫ π



∫ π


U(z, y) dy dz < ∞.

(ii) The function ∂

∂z U(z, y) is measurable, U(, y) = U(π , y) = , and

(∫ π



∫ π



(
∂

∂z U(z, y)
)) 


< ∞.

From [] we have that condition (H) of Theorem . holds with β = 
 .

Take q = 
 and assume that F satisfies (H). According to Theorem ., problem (.)

admits a mild solution, provided that (.) holds.
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