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Abstract
Let (μ,�) be a probability measure space. We consider the so-called ‘Jensen gap’

J(ϕ ,μ, f ) =
∫

�

ϕ(f (s))dμ(s) – ϕ
(∫

�

f (s)dμ(s)
)

for some classes of functions ϕ . Several new estimates and equalities are derived and
compared with other results of this type. Especially the case when ϕ has a Taylor
expansion is treated and the corresponding discrete results are pointed out.
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1 Introduction
Let (�,μ) be a probability measure space i.e. μ(�) =  and let f be a μ-measurable function
on �. If ϕ is convex, then Jensen’s inequality

ϕ

(∫
�

f (s) dμ(s)
)

≤
∫

�

ϕ
(
f (s)

)
dμ(s) (.)

holds. This inequality can be traced back to Jensen’s original papers [, ] and is one of the
most fundamental mathematical inequalities. One reason for that is that in fact a great
number of classical inequalities can be derived from (.), see e.g. [] and the references
given therein. The inequality (.) cannot in general be improved since we have equality
in (.) when ϕ(x) ≡ x. However, for special cases of functions (.) can be given in a more
specific form e.g. by giving lower estimates of the so-called ‘Jensen gap’

J(ϕ,μ, f ) =
∫

�

ϕ
(
f (s)

)
dμ(s) – ϕ

(∫
�

f (s) dμ(s)
)

,

thus obtaining refined versions of (.).
We give a few examples of such results.

Example  (see []) Let ϕ be a superquadratic function i.e. ϕ : [,∞) → R is such that
there exists a constant C(x), x ≥ , such that

ϕ(y) ≥ ϕ(x) + C(x)(y – x) + ϕ
(|y – x|)

© 2016 Abramovich and Persson. This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://dx.doi.org/10.1186/s13660-016-0985-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-0985-4&domain=pdf
mailto:larserik@ltu.se


Abramovich and Persson Journal of Inequalities and Applications  (2016) 2016:39 Page 2 of 9

for y ≥ . For such functions we have the following estimate of the Jensen gap:

J(ϕ,μ, f ) ≥
∫

�

ϕ

(∣∣∣∣f (s) –
∫

�

f (s) dμ(s)
∣∣∣∣
)

dμ(s).

Example  (see [] and []) We say that a function K(x) in γ -superconvex if ϕ(x) :=
x–γ K(x) is convex. If ϕ is a differentiable convex, increasing function and ϕ() =
limz→+ zϕ′(z) = , then we have the following estimate of the Jensen gap:

J(K ,μ, f ) ≥ ϕ(z)
∫

�

((
f (s)

)γ – zγ
)

dμ(s) + ϕ′(z)
∫

�

(
f (s)

)γ (
f (s) – z

)
dμ(s) ≥ ,

for z =
∫
�

f (s) dμ(s) >  and f ≥ , f γ when γ ≥  are integrable functions on the proba-
bility measure space (�,μ).

Remark  By using the results in Examples  and  it is possible to derive Hardy-type
inequalities with other ‘breaking points’ (the point where the inequality reverses) than the
usual breaking point p = . See [, , ] and [].

Remark  In the recent paper [] it was proved that the notion of γ -superconvexity has
sense also for the case – ≤ γ ≤  and in fact this was used even to derive there some new
two-sided Jensen type inequalities.

Example  (see []) In his paper Walker studied the Jensen gap for the special case f ≡ 
i.e. for J(ϕ,μ) := J(ϕ,μ, ) and found an estimate of the type

J(ϕ,μ) ≥ 


C(ϕ,μ)
(∫

�

s dμ(s) –
(∫

�

s dμ(s)
))

,

where the positive constant C = C(ϕ,μ) is easily computed.

In his paper it was assumed that ϕ admits a Taylor power series representation ϕ(x) =∑∞
n= anxn, an ≥ , n = , , , . . . ,  < x ≤ A < ∞. In another recent paper Dragomir []

derived some other Jensen integral inequalities for this power series case. A comparison
between these two results and our results is given in our concluding remarks.

Inspired by these results, we derive some new results of the same type. In Theorem  we
get an estimate like that of Walker in [] but for the general case of J(ϕ,μ, f ). In Theorem 
we prove another complement of the Walker result by considering the Jensen functional

Jα
(
tα ,μ

)
=

∫
�

yα dμ(y) –
(∫

�

y dμ(y)
)α

, α ≥ ,

and get an estimate for this Jensen gap which even reduces to equality for α = N , N =
, , . . . . By using this result it is possible to derive a similar equality for the Jensen gap
whenever it can be represented by a Taylor power series (see Theorem ).

In Section  we show that our lower bound of the Jensen gap is better than the lower
bound in [] when the function that we deal with has a Taylor series expansion with non-
negative coefficients. Moreover, we prove that by our technique we can in such cases derive
also upper bounds and not only lower bounds as in [].
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2 The main results
Our first main result reads as follows.

Theorem  Let φ : [, A) →R have a Taylor power series representation on [, A),  < A ≤
∞ : φ(x) =

∑∞
n= anxn.

Let ϕ be a convex increasing function on [, A) that is related to φ by

ϕ(x) =
φ(x) – φ()

x
=

∞∑
n=

an+xn.

(a) If f ≥  and f , f , and φ ◦ f are integrable functions on �, z =
∫
�

f dμ > , where μ is
a probability measure on �, then

∫
�

φ(f ) dμ – φ(z) ≥
(

φ(z) – φ()
z

)′(∫
�

f  dμ – z
)

≥ .

In other words,

J(φ,μ, f ) =
∫

�

φ(f ) dμ – φ(z)

=
∞∑

n=

an+

∫
�

f n+ dμ –
∞∑

n=

an+zn+

≥
∞∑

n=

(n + )an+zn
(∫

�

f  dμ – z
)

≥ .

(b) For x =
∑m

i= αixi,
∑m

i= αi = ,  ≤ αi ≤ ,  ≤ xi < A, i = , . . . , m, it yields

m∑
i=

αiφ(xi) – φ(x) ≥
(

φ(x) – φ()
x

)′( m∑
i=

αix
i – x

)
≥ .

In other words,

m∑
i=

∞∑
n=

αian+xn+
i –

∞∑
n=

an+xn+ ≥
∞∑

n=

(n + )an+xn

( m∑
i=

αix
i – x

)
≥ .

Proof For φ(x) =
∑∞

n= anxn,  ≤ x < A, by denoting the function ψ : [, A) → R+ ψ(x) =
φ(x) – φ() =

∑∞
n= an+xn+,  ≤ x < A, and ϕ(x) = ψ(x)

x ⇔ xϕ(x) = ψ(x),  ≤ x < A, we see
that ψ(x) is -quasiconvex function (see []), ϕ(x) =

∑∞
n= an+xn,  ≤ x < A, and ϕ′(x) =∑∞

n=(n + )an+xn.
The functions φ, ψ , ϕ, and ϕ′ are differentiable functions on [, A). From the convexity

of ϕ(x) we have

ϕ(y) – ϕ(x) > ϕ′(x)(y – x), x, y ∈ [, A),

and, therefore,

ψ(y) – ψ(x) = yϕ(y) – xϕ(x) ≥ ϕ(x)(y – x) + ϕ′(x)y(y – x), x, y ≥ .
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Since ψ(x) = φ(x) – φ() we get

φ(y) – φ(x) = ψ(y) – ψ(x) ≥ ϕ(x)(y – x) + ϕ′(x)y(y – x).

Now using this inequality with x = z, y = f , and integrating, we find that

∫
�

φ(f ) dμ – φ(z)

≥ ϕ(z)
(∫

�

f dμ –
∫

�

z dμ

)
+ ϕ′(z)

(∫
�

f  dμ – z
)

=  +
(

φ(z) – φ()
z

)′(∫
�

f  dμ – z
)

≥ .

In the last inequality we have used z =
∫
�

f dμ >  and ϕbeing convex increasing, where
ϕ(z) = φ(z)–φ()

z .
Hence (a) is proved and since (b) is just a special case of (a), the proof is complete. �

For the proof of our next main result we need the following lemma, which is also of
independent interest.

Lemma  Let ϕ be a differentiable function on I ⊂R, and let x, y ⊆ I . Then, for N = , , . . . ,

ϕ(x)
(
yN– – xN–) + ϕ′(x)yN–(y – x)

=
(
xN–ϕ(x)

)′(y – x) + (y – x)
N–∑
k=

yk–(xN–k–ϕ(x)
)′. (.)

In particular, for N =  we have

ϕ(x)(y – x) + ϕ′(x)y(y – x) =
(
xϕ(x)

)′(y – x) + ϕ′(x)(y – x). (.)

Proof A simple calculation shows that (.) holds, i.e., that (.) holds for N = . For N = 
(.) reads

ϕ(x)
(
y – x) + ϕ′(x)y(y – x) =

(
xϕ(x)

)′(y – x) + (y – x)((xϕ(x)
)′ + yϕ′(x)

)
. (.)

Moreover, it is easy to verify the identity

ϕ(x)
(
y – x) + ϕ′(x)y(y – x) = ϕ′(x)y(y – x) + xϕ(x)(y – x) +

(
xϕ(x)

)′y(y – x). (.)

By using (.) together with (.) and making some straightforward calculations we obtain
(.). The general proof follows in the same way using induction and the more general
(than (.)) identity

ϕ(x)
(
yN– – xN–) + ϕ′(x)yN–(y – x)

–
[(

xϕ(x)
)(

yN– – xN–) +
(
xϕ(x)

)′yN–(y – x)
]

= ϕ′(x)yN–(y – x), N = , , , . . . . �
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Now we are ready to state our next main result.

Theorem  Let μ be a probability measure on � = (,∞), z =
∫
�

y dμ(y) > , and N =
, , . . . . Then the refined Jensen-type inequality

∫
�

yα dμ(y) – zα ≥
∫

�

(y – z)
N–∑
k=

(α – k)xk–zα–k– dμ, y ≥ , (.)

holds for any α ≥ N . Moreover, for N –  < α ≤ N (.) holds in the reversed direction. In
particular, for α = N we have equality in (.).

Proof A convex differentiable function on ϕ(x) is characterized by

ϕ(y) – ϕ(x) ≥ ϕ′(x)(y – x)

and this inequality holds in the reversed direction if ϕ(x) is concave. For ϕ(x) = x we have
equality. Therefore, when ϕ(x) is convex it yields

ϕ(y)yN– – ϕ(x)xN– ≥ ϕ(x)
(
yN– – xN–) + ϕ′(x)yN–(y – x), x, y ≥ .

Hence in view of Lemma  we find that

ϕ(y)yN– – ϕ(x)xN– ≥ (
xN–ϕ(x)

)′(y – x) + (y – x)
N–∑
k=

yk–(xN–k–ϕ(x)
)′.

By using this inequality with the convex function ϕ(x) = xα–N+, x ≥ , α ≥ N , we obtain

yα – xα ≥ αxα–(y – x) + (y – x)
N–∑
k=

(α – k)yk–xα–k–.

By now choosing x = z, integrating over �, and using the fact that
∫
�

(y – z) dμ(y) = 
we obtain (.). For the reversed inequality we use the concave function ϕ(x) = xα–N+,
(N – ) < α ≤ N , and all inequalities above reverse. For α = N we get an equality, so the
proof is complete. �

Corollary  Let xi ≥ , αi ≥ , i = , , . . . , m,
∑m

i= αi = , and x =
∑m

i= αixi. Then, for N =
, , . . . ,

m∑
i=

αixα
i – xα ≥

m∑
i=

αi(xi – x)
N–∑
k=

(α – k)xk–
i xα–k– (.)

holds for any α ≥ N . Moreover, for N –  < α ≤  (.) holds in the reversed direction. In
particular, for α = N , (.) reduces to an equality.

Our final main result reads as follows.
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Theorem  Let  < A ≤ ∞ and let φ : (, A] → R have a Taylor expansion φ(x) =∑∞
n= anxn, on (, A]. If μ is a probability measure on (, A] and z =

∫ A
 x dμ(x) > , then

∫
�

φ(x) dμ – φ(z) =
∞∑

n=

an

∫ A


(x – z)

n–∑
k=

(n – k)xk–zn–k– dμ. (.)

Proof We note that

∫ A


φ(x) dμ – φ(z) =

∫ A



∞∑
n=

an
(
xn – zn)dμ =

∞∑
n=

an

∫ A



(
xn – zn)dμ.

Obviously,
∫ A

 (xn – zn) dμ = , for n = , , and hence (.) follows from the equality cases
in (.) in Theorem , i.e. when α = N = , , . . . .

The proof is complete. �

Corollary  Let  < A ≤ ∞ and let φ : [, A) have a Taylor expansion φ(x) =
∑∞

n= anxn,
on [, A). If x =

∑m
i= αixi,

∑m
i= αi = ,  ≤ αi ≤ ,  ≤ xi ≤ A, i = , , . . . , m, then

J =
m∑

i=

αiφ(xi) – φ(x) =
∞∑

n=

an

( m∑
i=

αix
i – x

) n–∑
k=

(n – k)xk–xn–k–.

Corollary  Let  < a < b < ∞, and μ be a probability measure on (a, b). Then we have the
following estimate of the Jensen gap JN :=

∫ b
a xN dμ – (

∫ b
a x dμ)N , N = , , . . . :

N(N – )


aN–J ≤ JN ≤ N(N – )


bN–J. (.)

Proof We use Theorem  with α = N and find that

JN =
∫ b

a
(x – z)

N–∑
k=

(N – k)xk–zN–k– dμ.

We note that if a < x < b, then a < z < b so that aN– ≤ xk–zN–k– ≤ bN–. Moreover,∑N–
k= (N – k) = N(N–)

 and

∫ b

a
(x – z) dμ =

∫ b

a
x dμ –

(∫ b

a
x dμ

)

= J,

so (.) is proved. �

Remark  For the case N =  both inequalities in (.) reduce to equalities. Moreover, for
the discrete case we have: If  < a < xi < b, αi ≥ , i = , , . . . , m,

∑m
i= αi = , x =

∑m
i= αixi,

then, for N = , , . . . ,

N(N – )


aN–

( m∑
i=

aix
i – x

)

≤
m∑

i=

aixN
i – xN ≤ N(N – )


bN–

( m∑
i=

aix
i – x

)
. (.)
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3 Final remarks and examples
In this section we present some recent interesting results of Dragomir [] and Walker
[]. Moreover, we point out the corresponding special cases of our results and compare
these results with those of [] and [].

Example  In Dragomir’s paper [], Theorem , it was proved that for

φ(x) =
∞∑

n=

anxn, an ≥ , (.)

which converges on  < x < R ≤ ∞, the following lower bound of the Jensen gap holds:

∫
�

φ ◦ f dμ – φ

(∫
�

f dμ

)

≥ 


[∫
�

f  dμ –
(∫

�

f dμ

)]φ′(
∫
�

f dμ) – φ′()∫
�

f dμ
, (.)

when (�,μ) is a probability measure space, f ≥ , and f , f , and φ ◦ f are integrable on �

and
∫
�

f dμ > .

Example  In Theorem  we proved that for convex increasing functions we get the in-
equalities

∫
�

φ ◦ f dμ – φ

(∫
�

f dμ

)

≥
[∫

�

f  dμ –
(∫

�

f dμ

)](
φ(

∫
�

f dμ) – φ()∫
�

f dμ

)′
≥ . (.)

A function that satisfies (.) is convex increasing and therefore Theorem  holds, which
means that we get the inequalities in (.).

Remark  It is easily computed that when φ is of the form (.), then




φ′(
∫
�

f dμ) – φ′()∫
�

f dμ
≤

(
φ(

∫
�

f dμ) – φ()∫
�

f dμ

)′
(.)

holds, and from this we conclude that our bound in (.), when (.) is satisfied, is stronger
than Dragomir’s (.). Indeed,




φ′(z) – φ′()
z

=
∞∑

n=




(n + )an+zn

and

(
φ(

∫
�

f dμ) – φ()∫
�

f dμ

)′
=

∞∑
n=

(n + )an+zn,

and our claim is obvious.
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Example  In Theorem . in Walker’s paper [], a lower bound for the Jensen gap is
given for a function φ that satisfies (.):

∫
�

φ(s) dμ(s) – φ

(∫
�

dμ(s)
)

≥ μ(, R)τ



∞∑
n=

ann(n – )

where

τ =
∫

�

s dμ(s) –
(∫

�

s dμ(s)
)

when μ is a probability measure defined on � = (, R) and μ is μ restricted and normal-
ized to (, R).

More generally, in Section  in [], μ(, R) was replaced by μ(a, R) and we have

∫
�

φ(s) dμ(s) – φ

(∫
�

dμ(s)
)

≥ μ(a, R)τ



∞∑
n=

anann(n – ), (.)

where

τ =
∫

�

s dμa(s) –
(∫

�

s dμa(s)
)

,

when μa is μ restricted and normalized to � = (a, R).

From Corollary  and Remark  we easily get the following.

Example  Let  < A ≤ ∞ and let φ : (, A] →R have Taylor expansion φ(x) =
∑∞

n= anxn,
an ≥ , n = , , . . . , on (, A]. If μ is a probability measure on (, A],  ≤ a < b ≤ A, and
z =

∫ A
 x dμ(x) > , then

∞∑
n=

an
n(n – )


an–J ≤ J(φ,μ) ≤

∞∑
n=

an
n(n – )


bn–J. (.)

Moreover, for the discrete case we have: If  < a < xi < b, αi ≥ , i = , , . . . , m,
∑m

i= ai = ,
x =

∑m
i= αixi, then, for n = , , . . . ,

∞∑
n=

an
n(n – )


an–

( m∑
i=

αix
i – x

)

≤
m∑

i=

αi
(
φ(xi) – φ(x)

) ≤
∞∑

n=

an
n(n – )


bn–

( m∑
i=

αix
i – x

)
.

Remark  The lower bound in (.) coincides with that in (.) when a = . The lower
bound in (.) is better than that in (.) when a < , but Walker’s bound (.) is better
than (.) for a > . It seems not to be possible to derive an upper bound like that in (.)
by using the method in [].
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