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1 Introduction
Diophantine inequalities with integer or prime variables have been considered by many
scholars. Recently, Yang and Li in [1] proved that the inequality

1 1
)\le + Azxg + Agx‘; + A4xi -p- 3 < 3
has infinite solutions with natural numbers x;, x5, x3, x4 and prime p. Using the Davenport-
Heilbronn method, we establish our result as follows.

Theorem 1.1 Let Ay, Ay, A3, Aa, A5 be nonzero real numbers not all of the same sign, 1 is
real, 0 <o < %, and at least one of the ratios X;/\; (1 < i< j <5) is irrational, then the

inequality

[ap1 + haps + Asp + hapy + Aspl + 17| < (max l/,)
1<j<5

has infinite solutions with primes p1, p2, P3, Pa, Ps-

2 Notation and outline of the proof

Throughout, we use p to denote a prime number. We denote by § a sufficiently small posi-
tive number and by ¢ an arbitrarily small positive number, not necessarily the same at dif-
ferent occurrences. Constants, both explicit and implicit, in Landau or Vinogradov sym-
bols may depend on A;, Ay, A3, A4, As, and 1. We write e(x) = €27, We take X to be the
basic parameter, a large real integer. Since at least one of the ratios A;/A; (1 <i<j <5) is
irrational, without loss of generality we may assume that A;/A;, is irrational. For the other
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cases, the only difference is in the following intermediate region, and we may deal with
the same method in Section 4.

Since A1/Ay is irrational, there are infinitely many pairs of integers g, a with [A/A; —
alql <q72, (a,q) =1,q>0,and a # 0. We choose g to be large in terms of A1, Ay, A3, A4, As,
n and make the following definitions:

1

%
N =42, L=1ogN, O<a<3—2<%,v:N_", =N, (2.1)

P=NL",  Q=(ml™+ Dol N, T =TI=TE=T{=TZ=N3. (22)

Let u be a positive real number, we define

. 2
1<M(a):<““””“> @#0), K. (0)=1, (2.3)
F@)= > e(mupta)logp, k=1,2,3,4,5, (2.4)
(5N)1/kSpSNl/k
Nk
I(o) = / e(hyfa)dy, k=1,2,3,4,5, (2.5)
(8N)1/k
Je@) =Y > m P e(pan), k=1,2,3,4,5, (2.6)
|[Y|<Tx SN<n<N
p=3

where p = B + iy (B, y real) is a typical non-trivial zero of the Riemann Zeta function.
It follows from (2.3) that

K,(o) < min (s, || 7?), /+<>0 e(oy)Ky () da = max (0, u — |yl). 2.7)

o]

From (2.7) it is clear that

+o0 5
1= [ T]B@etant.@)da

(o] j=1

< (logN) > 1
|MpL+A2p3 +h3p3 +haps +hspE+n|<y
(ON)VKk <pp <Nk k=1,2,3,4,5

=: (log N)° N'(N).
Thus we have
N(N) > (logN)™J.

To estimate J, we split the range of infinite integration into three sections, traditional
named the neighborhood of the origin € = {« € R: |a| < t}, the intermediate region ® =
{o e R: 7 <|a| <P}, the trivial region ¢ = {& € R: |a| > P}.

To prove Theorem 1.1, we shall establish that

J(@) > 2N, (D)= o(va%), J(c) = o(va%)
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in Sections 3, 4, and 5, respectively. Thus
N(N) > v2(log N) PN,
and Theorem 1.1 can be established.

3 The neighborhood of the origin
We let

Bi(@) = Fo(@) - I(@) + Ji(@), k=1,2,3,4,5. (3.1)

We use C to denote a positive absolute constant, not necessarily the same one on each

occurrence.
Lemma 3.1 We have

Bila) < NFLE(1+[a|N), k=1,2,3,4,5. (3.2)
This is Lemma 7 of Vaughan [2].

Lemma 3.2 Fork=1,2,3,4,5, we have

Ii(e) < Nt min(1, N"a™), (3.3)
% 2 2, _1

/1 i(e)|” do < N* ' exp(-2L75), (3.4)
2
%

/1 |I(e)[* do < NE7, (3.5)
)

/ |Bk(ot)|2da <<N%_lexp(—2L_é), (3.6)

/ |Fe(@)|* da < NF . (3.7)

Proof The inequality (3.6) follows from (2.1) and Lemma 3.1. The others are similar to
Lemma 8 of Vaughan [2]. O

Lemma 3.3 We have

J

Proof Note that

5 5

HFi(Ol) - l_[Ii(a)

i=1 i=1

K (a)da <« VNG exp(—L‘é). (3.8)

5 5
[ [Fide) - ] Hite)

i=1 i=1
5

5
= (Fi(e) - L(a)) HFi(Ol) + 1 (o) (Fa () — () HFi(Ol)

i=2 i=3
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3
+ L)L () (Fs(or) — I3()) Faer)Fs(a) + l_[fi(a)(FzL(Ol) —Iy())Fs(a)
i=1

4
+ l_[fi(a)(F5(a) - Is(a)).

Then by (2.7), (3.1), Lemma 3.2,

J

) da

5
(Fue) - h(@) [ [ Ei@) K (e
i=2

<N [ |(Bile) - @) Fae)| da

<IN (/TI(Bl(m —h(a))izda)i (/rle(wlzda)?

A 2 2 :
<N | [ (|Bu@)] + |[h(@)]) de
< V2N & exp(—L’%).
The other cases are similar, and the proof of Lemma 3.3 is completed. O

Lemma 3.4 We have

5

J..

i=1

L(@)|K, (@) do < v2EN 4, (3.9)

It follows from (2.7) and (3.3).

Lemma 3.5 We have

+00 D
/ Hl(a e(an)K, (@) da > vENH0. (3.10)

Proof To prove (3.10), we write the left side as

N N% N +00
/ / A / N / e<a<n+2)»])/ )K )dadyldyz - dys,
N Jenz  Jenys 1

which, by (2.7), is

N
/ / L / , max| 0,v -
SN )2 (6N)5

We let z; = yi, k =1,2,3,4,5, then the integral (3.11) can be written as

4
z"z"z zgmax 0,v—
o [ [ttt

) dyrdys -+ dys. (3.11)

5
n+ YAy
j=1

5
n+ Z)\.ij

j-1

) dz; - - dzs. (3.12)
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Since A1, A2, A3, A4, and A5 are not all of the same sign, we may assume without loss of
generality that A; < 0, A; > 0. Consider the region

B ={(22,23,24,25) : 63N < 2, < 263N, 6N < z; < 2N (j = 3,4,5)}.
Then, for § sufficiently small and large N, whenever (z;, z3,24,25) € B one has
a1
20N < —(hazp + A3zz + Aaza + Asz5)A] < EN

and so every z; with [Az1+-- -+ Asz5 + | < %v satisfies SN < z; < N. Therefore the integral
(3.12) is greater than

1

1.2 3 _&
—vz/ 2y%23°2, 25 ° dzp dz3 dza dzs > VN6,
480
This completes the proof of Lemma 3.5. O

Together with Lemmas 3.3, 3.4, 3.5, we have
> 77
J(@)= / [ [E@e(@nK () da > v>Ne. (313)
j=1

4 The intermediate region
Lemma 4.1 We have

+00 o o
f B@)| K@) dee < NT7, j=2,3,4,5, (4.1)
—00
+00 5
/ |Fi(et)|"Ky (o) dor < NL. (4.2)
-00
Proof By (2.7), we have
+00 4
/ |F2(oc)| K, (o) da
—00
4
= > [ [logpimax(0,v - |12(p} + p3 - 3 - p3) )
(«W)% <p1.p2.p3.p4<N 3
< L* Z max(0,v - [A2(p} +p3 - P3 - P3)|)-

(SN)% =p1p2.p3.p4<N 2
Since N is large, [A2(p? + p5 — p3 — p3)| < v if and only if p? + p3 = p? + p3. Thus, by Hua’s

inequality,

/ IE>(@)[*K (o) dot & vN™*.

oe]

The proofs of the cases j = 3,4,5 and (4.2) are similar. O
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Lemma 4.2 We have

/ - |Ex(@) [P Fale)| 'Ky (o) da < vN2. (4.3)

Proof By (2.7), we have

[ R e d

«r 2 max (0, v — [22(p} —p3) = ha(p3 + Vi~ P5 - P5) )
(5N)%Sp1.p251\1%

1 1
(BN) % <p3,pa.ps.pe<N %

<K VL®R(N),
where R(N) is the number of the solutions of the equation

A (P2 - p3) = ha(ps + P — Pt - Pe),

I

1 1 1
(6N)? <p1,p2 <N?2, (6N)* < p3,pa,p5,p6 <N?2.

Then we have

)s

1
1 4 4 4 4
R(N) <« N2 E 1+ E d(|p3 +P,—Ps —P¢
1 1 1 1
(8N) % <p3.pa.ps.pe<N % (6N) % <p3,pa.p5,p6<N %
Pa+pi-pE-pE=0 Py +p}-pE-pE0

where d(n) is the divisor function. Now (4.3) follows from [3], (2.1). O

Lemma 4.3 ([4]) Suppose that (a,q) =1, |a —alq| < g2, then

Z (logp)e(par) <« (logX)5 (Xl/qu/z + X415 +Xq‘”2).
1<p=<X

Lemma 4.4 ([5]) Suppose that (a,q) =1, |a —alq| < g%, ¢(x) = axF + o x* 1+ -+ g2 +

oy (k> 2), then
41k

> (logple(p(p)) < X' (g7 + X7V + gX7¥)

1<p=<X
Lemma 4.5 For 1 < |a| < P, we have

Via) := min(Fl(a),Fz(ot)z) < N5+,
Proof Lett < |a| < P,we choose aj, q; (j = 1,2) so that |Ajo —a;/qj| < Q‘lqj’1 with (a,¢;) =1

and 1 < g; < Q. By the method of Davenport and Heilbronn (see Lemma 11 of [6]), we have
max(qi,q>) > P. Then Lemma 4.5 follows from Lemmas 4.3 and 4.4. d



Ge and Li Journal of Inequalities and Applications (2016) 2016:33 Page 7 of 8

Lemma 4.6 We have

5
J(®)= /@ [T5 etk (@) da < v2N &G0, (4.4)
j=1

Proof By Lemmas 4.1, 4.2, 4.5, and Holder’s inequality, we have

J

5
[ [Ei@et@nk,(@)

j=1

da

+00

5
(Fu@) B Ex(@) + Fi(@)Fy(@)F) [ [ F@)|Ku(@) de

j=3

< V(Ol)% </+OO|F1((X)|2K\;(06)C1(X> ” (/+OO|F2((X)|4I(V(01) doe) ;

(o] (o ¢]

x(/ |F2(a)2F4(a)4|Kv(a)da)4(/ |1D3(o¢){81<v(o¢)da)8

(0] —00

x ( / +°°|F5(a) 321C,(oz)da> ¥ Vb ( / +OO|F1(01)}21<V(0[) doz) ’

x ( / +OO|F2(01)|4KV(01) da) * ( / - |Fa()*Fa(e)*|K () da) '

< V()i /

—00

+00 3 % +00 39 %
X (/ |F3(oz)| Ku(a)da) (/ |F5(a)| I(v(a)doz)
K UN -5+ & 2N (F-o)e, O

5 The trivial region
Lemma5.1 Let G(o) =Y e(af (x1,...,%m)), wheref is any real function and the summation
is over any finite set of values of x1,...,%,. Then, for any A > 4, we have

/| A]G(a)\zzg(a)da < ;/mo‘G(a)’sz(a)da.

This is Lemma 2 of [7].

Lemma 5.2 We have
> 77
J() = / [ [B@elank, (@) da < v2N w00,
¢ jm1
Proof By Lemmas 4.1, 4.2, 5.1, and Holder’s inequality, we have

da

i

1 +00 5
<3 / ) Lﬂa(a)u@(a)da

5
[ [B@e(enK, (@)
j=1
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1

< lmax(|F5(a)|)</+w|ﬂ(a)|21<v(a) doz>7 (/+°O|F2(a)|41<v(a) doz>g

P {o¢] o0
1 1
+00 i +00 8 g
X (/ |F2(a)2F4(a)4|Kv(oz) dOl) (/ |F3(Ol)| K, () dOl)
-0 -0
< vN%—@hs < VZN%—(G—U)H‘. 0
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