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Abstract
In this paper, a hybrid splitting method is proposed for solving a smoothing Tikhonov
regularization problem. At each iteration, the proposed method solves three
subproblems. First of all, two subproblems are solved in a parallel fashion, and the
multiplier associated to these two block variables is updated in a rapid sequence.
Then the third subproblem is solved in the sense of an alternative fashion with the
former two subproblems. Finally, the multiplier associated to the last two block
variables is updated. Global convergence of the proposed method is proven under
some suitable conditions. Some numerical experiments on the discrete ill-posed
problems (DIPPs) show the validity and efficiency of the proposed hybrid splitting
method.
Keywords: Tikhonov regularization; augmented Lagrangian method; parallel
splitting method; alternative direction method of multipliers

1 Introduction
In this paper, we consider a smoothing Tikhonov regularization problem, which is an un-
constrained minimization of the form []

min‖Ax – b‖ + δ‖�x‖ + η‖x‖p
p, (.)

where A ∈ Rm×n, b ∈ Rm, and x ∈ X ⊂ Rn, and ‖ · ‖ denotes the Euclid norm. The param-
eters δ ≥  and η ≥  are used to control the smoothness and size of the approximate
solution. Matrix � is a (tridiagonal, Toeplitz) matrix, �x represents a measure of the vari-
ation or smoothness of x, where

� = n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 –   · · ·    
  –  · · ·    
   – · · ·    
...

...
...

...
...

...
...

...
    · · · –   
    · · ·  –  
    · · ·   – 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R(n–)×n. (.)

The smoothing regularization problem (.) has numerous applications in many fields, in-
cluding mathematical programs with vanishing constraints [], maximum-likelihood es-
timation problem [], language modeling [], and so on.
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The last term of the problem (.), η‖x‖p
p, is a regularization term. As a common reg-

ularization method, � regularization (p = ) problem has many good properties since it
is a convex programming problem. In recent years, there has been an increasing inter-
est in the � regularizer. The � regularization model can reconstruct the original signal
with less observed signals, when the original signal is spare or the observed signal contains
noise. Especially, the � formulation suits significantly better for denoising data containing
so-called outliers, i.e., observations containing large measurement errors []. Therefore,
mathematical models and large-scale fast algorithms associated with � regularization can
be seen everywhere in compressed sensing, signal/image processing, machine learning,
statistics, and many other fields [–].

By � regularization, the problem (.) reduces to

min‖Ax – b‖
 + δ‖�x‖

 + η‖x‖. (.)

It is identical to a separable convex minimization of the form

⎧⎪⎨
⎪⎩

min 
‖Ax – b‖ + 

δ‖�y‖ + η‖z‖,
s.t. x – y = ,

y – z = .
(.)

The augmented Lagrangian function associated to the problem (.) is

L(x, y,λ, z,μ) =


‖Ax – b‖ +



δ‖�y‖ – λT (x – y) +

β


‖x – y‖

– μT (y – z) + η‖z‖ +
ρ


‖y – z‖. (.)

Indeed, there are many methods for solving the problem (.) in the literature. Among
these methods, the parallel splitting augmented Lagrangian method and the alternating
direction method of multipliers are two power tools. The recent research indicates that,
due to the separable convex optimization with three block variables, the direct extension of
the alternating direction method of multipliers is not necessarily convergent []. Thus,
some hybrid splitting methods can be found in the literature. For example, see He [],
Peng and Wu [], and Glowinski and Le Tallec [].

The saddle point of a Lagrange function associated to the convex optimization problem
(.), w∗ = (x∗, y∗,λ∗, z∗,μ∗) ∈W , satisfies the following variational inequalities:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(x′ – x∗)T [AT (Ax∗ – b) – λ∗] ≥ ,
(y′ – y∗)T [δ�T�y∗ + λ∗ – μ∗] ≥ ,
(λ′ – λ∗)T (x∗ – y∗) ≥ ,
η‖z′‖ – η‖z∗‖ + (z′ – z∗)T [μ∗] ≥ ,
(μ′ – μ∗)T (y∗ – z∗) ≥ ,

∀w′ =
(
x′, y′,λ′, z′,μ′) ∈W , (.)

where

W = X ×X × Rn ×X × Rn ⊂ R×n.

In this paper, we will propose a new splitting method to solve the separable convex pro-
gramming problem (.) as well as the structured variational inequalities (.). The pro-
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posed method, referred to as the hybrid splitting method (HSM), will combine a parallel
splitting (augmented Lagrangian) method and an alternating directions method of mul-
tipliers. In the HSM, the predictor of the new iterate, w̃k = (x̃k , ỹk , λ̃k , z̃k , μ̃k), is got in the
following way: find (x̃k , ỹk) in a parallel manner, and update λ̃k . Then compute z̃k alter-
nately with (x̃k , ỹk), and update μ̃k at the last. The new iterate is produced by a correct
operator. The global convergence of the HSM is proven under some wild assumptions.

The rest of this paper is organized as follows. In Section , we describe the proposed
hybrid splitting method. Section  is devoted to showing that the sequence {wk} generated
by the HSM is Fejér monotone with respect to the solution set. Then, the convergence of
the HSM is proved. In Section , some preliminary numerical results are presented which
indicate the feasibility and efficiency of the proposed method. Finally, some concluding
remarks are made in Section .

2 The hybrid splitting method
In this section, we first propose a hybrid splitting method for the problem (.), and then
we give some remarks on the described method.

Algorithm . (The hybrid splitting method (HSM)) For a given wk = (xk , yk ,λk , zk , uk) ∈
W , βk > , and ρk > , the HSM produces the new iterate wk+ = (xk+, yk+,λk+, zk+, uk+) ∈
W by the following scheme:

S. Produce w̃k = (x̃k , ỹk , λ̃k , z̃k , μ̃k) by s. to s..
s.. Find x̃k ∈X (with fixed yk , λk , zk , μk , βk , ρk) such that

(
x′ – x̃k){AT(

Ax̃k – b
)

– λk + βk
(
x̃k – yk)} ≥ , ∀x′ ∈X . (.)

s.. Find ỹk ∈X (with fixed xk , λk , zk , μk , βk , ρk) such that

(
y′ – ỹk){δ�T�ỹk +λk –μk –βk

(
xk – ỹk)+ρk

(
ỹk –zk)} ≥ , ∀y′ ∈X . (.)

s.. Update λ̃k via

λ̃k = λk – βk
(
x̃k – ỹk). (.)

s.. Find z̃k ∈X (with fixed x̃k , ỹk , λ̃k , μk , βk , ρk) such that

η
∥∥z′∥∥

 – η
∥∥z̃k∥∥

 +
(
z′ – z̃k){μk – ρk

(
ỹk – z̃k)} ≥ , ∀z′ ∈X . (.)

s.. Update μ̃k via

μ̃k = μk – ρk
(
ỹk – z̃k). (.)

S. Convergence verification: for a given small ε > , if ‖wk – w̃k‖∞ < ε then stop, and
accept wk to be the approximate solution. Else, go to S.

S. Produce the new iterate by

wk+ = wk – αkd
(
wk , w̃k), (.)
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where

αk = γα∗
k , γ ∈ (, ), (.)

α∗
k =

ϕ(wk , w̃k)
‖d(wk , w̃k)‖

G
, (.)

and

ϕ
(
wk , w̃k) =

∥∥wk – w̃k∥∥
G, d

(
wk , w̃k) = M

(
wk – w̃k), (.)

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

βk
    
 βk +ρk

   
  

βk
 

   ρk
 

    
ρk

⎞
⎟⎟⎟⎟⎟⎟⎠

, M =

⎛
⎜⎜⎜⎜⎜⎜⎝

βk    
 βk + ρk – ρk

  
 – ρk



βk

 
   ρk 
    

ρk

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Remark . The parameters βk and ρk are updated in the same style as proposed in He
et al. []. By Remark . in [], the sequences {βk} and {ρk} are bounded and finally
constants. Thus, there is a κ >  such that ‖M‖

G :=
∑‖M(:, j)‖

G ≤ κ .

Remark . It is easy to show, ‖M(w – w̃)‖
G ≤ ‖M‖

G · ‖w – w̃‖
G. Thus by (.) we have

α∗
k ≥ 

‖M‖
G

≥ 
κ

, ∀k. (.)

For convenience in the analysis, the following notations are useful:

F(w) =

⎛
⎜⎜⎜⎜⎜⎜⎝

AT (Ax – b) – λ

σ�T�y + λ – μ

x – y
μ

y – z

⎞
⎟⎟⎟⎟⎟⎟⎠

, H =

⎛
⎜⎜⎜⎜⎜⎜⎝

I    
 I   
  I  
   I 
    I

⎞
⎟⎟⎟⎟⎟⎟⎠

,

g(w, w̃) =

⎛
⎜⎜⎜⎜⎜⎜⎝

β(x – x̃) – β(y – ỹ)
–β(x – x̃) + β(y – ỹ) + ρ(y – ỹ) – ρ(z – z̃)


ρ(z – z̃) – ρ(y – ỹ)



⎞
⎟⎟⎟⎟⎟⎟⎠

.

By these notations, the variational inequalities (.) can be rewritten in a compact form:
find w∗ ∈W such that

(
w′ – w∗)T F

(
w∗) ≥ , ∀w′ ∈W . (.)

In the HSM, (.)-(.) can be written in the compact form: find w̃k ∈W such that

η
∥∥z′∥∥

 –η
∥∥z̃k∥∥

 +
(
w′ – w̃k)T[

F
(
w̃k)+ g

(
wk , w̃k)– M

(
wk – w̃k)] ≥ , ∀w′ ∈W . (.)
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3 The convergence
To prove the convergence of the HSM, we will show first in this section that the sequence
{wk} generated by the HSM is Fejér monotone with respect to the solution set W∗ of the
problem (.).

Due to (.), multiplying both sides of the third inequality by , and multiplying both
sides of the last inequality by , respectively, we get

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(x′ – x∗)T [AT (Ax∗ – b) – λ∗] ≥ ,
(y′ – y∗)T [δ�T�y∗ + λ∗ – μ∗] ≥ ,
 × (λ′ – λ∗)T (x∗ – y∗) ≥ ,
η‖z′‖ – η‖z∗‖ + (z′ – z∗)T [μ∗] ≥ ,
 × (μ′ – μ∗)T (y∗ – z∗) ≥ ,

∀w′ =
(
x′, y′,λ′, z′,μ′) ∈W , (.)

and (.) can be written as

(
w′ – w∗)T HF

(
w∗) ≥ , ∀w′ ∈W . (.)

Lemma . For a given wk = (xk , yk ,λk , zk ,μk), if w̃k = (x̃k , ỹk , λ̃k , z̃k , μ̃k) is generated by
(.)-(.), then we have

(
w̃k – w∗)T F

(
w̃k) ≥  (.)

and

(
w̃k – w∗)T HF

(
w̃k) ≥ , (.)

where w∗ = (x∗, y∗,λ∗, z∗,μ∗) ∈W∗ is a solution.

Proof It is easy to show that F(w) is linear and consequently monotone. Indeed, let

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

AT A  –I  
 δ�T� I  –I
I –I   
    I
 I  –I 

⎞
⎟⎟⎟⎟⎟⎟⎠

and e =

⎛
⎜⎜⎜⎜⎜⎜⎝

–AT b





⎞
⎟⎟⎟⎟⎟⎟⎠

,

then F(w) = Qw + e. By the monotonicity of F and HF we have

(
w̃k – w∗)T(

F
(
w̃k) – F

(
w∗)) ≥ 

and

(
w̃k – w∗)T(

HF
(
w̃k) – HF

(
w∗)) ≥ ,

respectively, which results in (by (.))

(
w̃k – w∗)T F

(
w̃k) ≥ (

w̃k – w∗)T F
(
w∗) ≥ ,
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and by (.)

(
w̃k – w∗)T HF

(
w̃k) ≥ (

w̃k – w∗)T HF
(
w∗) ≥ . �

Lemma . For a given wk = (xk , yk ,λk , zk ,μk), if w̃k = (x̃k , ỹk , λ̃k , z̃k , μ̃k) is generated by
(.)-(.), then we have

(
w̃k – w∗)T[

HF
(
w̃k) + g

(
wk , w̃k)]

≥ (
λk – λ̃k)T(

xk – x̃k) –
(
λk – λ̃k)T(

yk – ỹk)

+
(
μk – μ̃k)T(

yk – ỹk) –
(
μk – μ̃k)T(

zk – z̃k). (.)

Proof By a direct computation, we get

(
w̃k – w∗)T[

HF
(
w̃k) + g

(
wk , w̃k)]

=
(
w̃k – w∗)T HF

(
w̃k) +

(
w̃k – w∗)T g

(
wk , w̃k)

≥ (
w̃k – w∗)T g

(
wk , w̃k)

=
(
x̃k – x∗)T

βk
(
xk – x̃k) –

(
x̃k – x∗)T

βk
(
yk – ỹk) –

(
ỹk – y∗)βk

(
xk – x̃k)

+
(
ỹk – y∗)T

βk
(
yk – ỹk) +

(
ỹk – y∗)ρk

(
yk – ỹk) –

(
ỹk – y∗)ρk

(
zk – z̃k)

+
(
z̃k – z∗)ρk

(
zk – z̃k) –

(
z̃k – z∗)ρk

(
yk – ỹk)

=
[(

x̃k – ỹk) –
(
x∗ – y∗)]T

βk
(
xk – x̃k) –

[(
x̃k – ỹk) –

(
x∗ – y∗)]T

βk
(
yk – ỹk)

+
[(

ỹk – z̃k) –
(
y∗ – z∗)]T

ρk
(
yk – ỹk) –

[(
ỹk – z̃k) –

(
y∗ – z∗)]T

ρk
(
zk – z̃k).

Substituting x∗ – y∗ = , y∗ – z∗ =  into the last equation, we get

(
w̃k – w∗)T[

HF
(
w̃k) + g

(
wk , w̃k)]

≥ (
x̃k – ỹk)βk

(
xk – x̃k) –

(
x̃k – ỹk)βk

(
yk – ỹk)

+
(
ỹk – z̃k)ρk

(
yk – ỹk) –

(
ỹk – z̃k)ρk

(
zk – z̃k). (.)

By (.) and (.), we get

(
x̃k – ỹk) =


βk

(
λk – λ̃k), (.)

(
ỹk – z̃k) =


ρk

(
μk – μ̃k). (.)

Substituting (.) and (.) into the right-hand side of (.), we obtain

(
w̃k – w∗)T[

HF
(
w̃k) + g

(
wk , w̃k)]

≥ (
λk – λ̃k)(xk – x̃k) –

(
λk – λ̃k)(yk – ỹk)

+
(
μk – μ̃k)(yk – ỹk) –

(
μk – μ̃k)(zk – z̃k). �
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Lemma . For a given wk = (xk , yk ,λk , zk ,μk), if w̃k = (x̃k , ỹk , λ̃k , z̃k , μ̃k) is generated by
(.)-(.), then we have

η
∥∥z′∥∥

 – η
∥∥z̃k∥∥

 +
(
w′ – w̃k)T[

HF
(
w̃k) + g

(
wk , w̃k) – d

(
wk , w̃k)]

≥ , ∀z′ ∈X , w′ ∈W . (.)

Proof Combining (.)-(.) together, we have

η
∥∥z′∥∥

 – η
∥∥z̃k∥∥

 +
(
w′ – w̃k)T

⎛
⎜⎜⎜⎜⎜⎜⎝

AT (Ax̃k – b) – λk + βk(x̃k – yk)
δ�T�ỹk + λk – μk – βk(xk – ỹk) + ρk(ỹk – zk)

(x̃k – ỹk) – 
βk

(λk – λ̃k)
μk – ρk(ỹk – z̃k)

(ỹk – z̃k) – 
ρk

(μk – μ̃k)

⎞
⎟⎟⎟⎟⎟⎟⎠

≥ .

By a manipulation, we get

η
∥∥z′∥∥

 – η
∥∥z̃k∥∥

 +
(
w′ – w̃k)T

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

AT (Ax̃k – b) – λ̃k

δ�T�ỹk + λ̃k – μ̃k

(x̃k – ỹk)
μ̃k

(ỹk – z̃k)

⎞
⎟⎟⎟⎟⎟⎟⎠

+ g
(
wk , w̃k) – M

(
wk – w̃k)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

≥ . (.)

The assertion (.) is just a compact form of (.). �

Theorem . For a given wk = (xk , yk ,λk , zk ,μk), if w̃k = (x̃k , ỹk , λ̃k , z̃k , μ̃k) is generated by
(.)-(.), then for any w∗ = (x∗, y∗,λ∗, z∗,μ∗) ∈W∗ we have

(
w̃k – w∗)T[

HF
(
w̃k) + g

(
wk , w̃k)] ≥ ϕ

(
wk , w̃k) –

(
wk – w̃k)T d

(
wk , w̃k). (.)

Proof Note d(wk , w̃k) = M(wk – w̃k), by (.) we get

(
w̃k – w∗)T[

HF
(
w̃k) + g

(
wk , w̃k)] +

(
wk – w̃k)T d

(
wk , w̃k)

≥ (
λk – λ̃k)T(

xk – x̃k) –
(
λk – λ̃k)T(

yk – ỹk)

+
(
μk – μ̃k)T(

yk – ỹk) –
(
μk – μ̃k)T(

zk – z̃k)

+ βk
∥∥xk – x̃k∥∥ + βk

∥∥yk – ỹk∥∥ + ρk
∥∥yk – ỹk∥∥

–


ρk

(
yk – ỹk)T(

zk – z̃k) +

βk

∥∥λk – λ̃k∥∥

–
ρk


(
zk – z̃k)T(

yk – ỹk) + ρk
∥∥zk – z̃k∥∥ +


ρk

∥∥μk – μ̃k∥∥

≥ (
λk – λ̃k)T(

xk – x̃k) –
(
λk – λ̃k)T(

yk – ỹk)
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+
(
μk – μ̃k)T(

yk – ỹk) –
(
μk – μ̃k)T(

zk – z̃k)

– ρk
(
yk – ỹk)T(

zk – z̃k) + βk
∥∥xk – x̃k∥∥

+ βk
∥∥yk – ỹk∥∥ + ρk

∥∥yk – ỹk∥∥ + ρk
∥∥zk – z̃k∥∥

+

βk

∥∥λk – λ̃k∥∥ +

ρk

∥∥μk – μ̃k∥∥

=
[



βk

∥∥xk – x̃k∥∥ +
(
λk – λ̃k)T(

xk – x̃k) +


βk

∥∥λk – λ̃k∥∥
]

+
[



βk

∥∥yk – ỹk∥∥ +
(
λk – λ̃k)T(

yk – ỹk) +


βk

∥∥λk – λ̃k∥∥
]

+
[




ρk
∥∥yk – ỹk∥∥ +

(
μk – μ̃k)T(

yk – ỹk) +

ρk

∥∥μk – μ̃k∥∥
]

+
[




ρk
∥∥zk – z̃k∥∥ +

(
μk – μ̃k)T(

zk – z̃k) +

ρk

∥∥μk – μ̃k∥∥
]

+
[



ρk

∥∥yk – ỹk∥∥ – ρk
(
yk – ỹ

)T(
zk – z̃k) +

ρk


∥∥zk – z̃k∥∥

]

+


βk

∥∥xk – x̃k∥∥ +


βk

∥∥yk – ỹk∥∥ +



ρk
∥∥yk – ỹk∥∥

+

βk

∥∥λk – λ̃k∥∥ +



ρk
∥∥zk – z̃k∥∥ +


ρk

∥∥μk – μ̃k∥∥

=



[√
βk

∥∥xk – x̃k∥∥ +
√
βk

∥∥λk – λ̃k∥∥
]

+



[√
βk

∥∥yk – ỹk∥∥ –
√
βk

∥∥λk – λ̃k∥∥
]

+
[√

ρk


∥∥yk – ỹk∥∥ +

√
ρk

∥∥μk – μ̃k∥∥
]

+
[√

ρk


∥∥zk – z̃k∥∥ –

√
ρk

∥∥μk – μ̃k∥∥
]

+


[√

ρk
∥∥yk – ỹk∥∥ –

√
ρk

∥∥zk – z̃k∥∥]

+


βk

∥∥xk – x̃k∥∥ +


βk

∥∥yk – ỹk∥∥ +



ρk
∥∥yk – ỹk∥∥

+

βk

∥∥λk – λ̃k∥∥ +



ρk
∥∥zk – z̃k∥∥ +


ρk

∥∥μk – μ̃k∥∥

≥ 

βk

∥∥xk – x̃k∥∥ +


βk

∥∥yk – ỹk∥∥ +



ρk
∥∥yk – ỹk∥∥ +


βk

∥∥λk – λ̃k∥∥

+



ρk
∥∥zk – z̃k∥∥ +


ρk

∥∥μk – μ̃k∥∥

=
(
wk – w̃k)T G

(
wk – w̃k),

where

G =

⎛
⎜⎜⎜⎜⎜⎜⎝


βk

βk +ρk



βk


ρk


ρk

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Thus, we have

(
w̃k – w∗)T[

HF
(
w̃k) + g

(
wk , w̃k)] +

(
wk – w̃k)T d

(
wk , w̃k)

≥ (
wk – w̃k)T G

(
wk – w̃k) =

∥∥wk – w̃k∥∥
G := ϕ

(
wk , w̃k). (.)

This theorem follows from (.) directly. �

Lemma . If w̃k = (x̃k , ỹk , λ̃k , z̃k , μ̃k) is generated by (.)-(.) from a given wk = (xk , yk ,
λk , zk ,μk), then for any w∗ = (x∗, y∗,λ∗, z∗,μ∗) ∈W∗, we have

(
wk – w∗)T Gd

(
wk , w̃k) ≥ ϕ

(
wk , w̃k). (.)

Proof We omit the proof of Lemma . here. A similar proof can be found in []. �

Theorem . For a given wk = (xk , yk ,λk , zk ,μk), if w̃k = (x̃k , ỹk , λ̃k , z̃k , μ̃k) is generated by
(.)-(.), then for any w∗ = (x∗, y∗,λ∗, z∗,μ∗) ∈W∗ we have

∥∥wk+ – w∗∥∥
G ≤ ∥∥wk – w∗∥∥

G – γ ( – γ )

κ

∥∥wk – w̃k∥∥
G, (.)

where  < γ < , κ > .

Proof By the iterative formula (.), and Lemma ., we have

∥∥wk+ – w∗∥∥
G =

∥∥wk – w∗ – αkd
(
wk , w̃k)∥∥

G

=
∥∥wk – w∗∥∥

G – αk
〈
wk – w∗, Gd

(
wk , w̃k)〉 + α

k
∥∥d

(
wk , w̃k)∥∥

G

≤ ∥∥wk – w∗∥∥
G – αkϕ

(
wk , w̃k) + α

k
∥∥d

(
wk , w̃k)∥∥

G.

Following from (.) and (.), we have

∥∥wk+ – w∗∥∥
G ≤ ∥∥wk – w∗∥∥

G – γα∗
k

∥∥d
(
wk , w̃k)∥∥

G + γ α∗
k

∥∥d
(
wk , w̃k)∥∥

G

=
∥∥wk – w∗∥∥

G – γ ( – γ )α∗
k

∥∥d
(
wk , w̃k)∥∥

G

=
∥∥wk – w∗∥∥

G – γ ( – γ )α∗
k
∥∥wk – w̃k∥∥

G

≤ ∥∥wk – w∗∥∥
G – γ ( – γ )


κ

∥∥wk – w̃k∥∥
G.

The last inequality follows from (.). �

Theorem . claims the Fejér monotonicity of the sequence {wk} generated by the HSM.
Adding (.) from  to ∞ with respect to k yields

γ ( – γ )

κ

∞∑
k=

∥∥wk – w̃k∥∥
G ≤ ∥∥w – w∗∥∥

G – lim
k→∞

∥∥wk+ – w∗∥∥
G ≤ ∥∥w – w∗∥∥

G < ∞.

Thus we have

lim
k→∞

∥∥wk – w̃k∥∥
G = , (.)
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which results in both {wk} and {w̃k} being bounded sequences and having cluster points.
Let w∞ be a cluster point of {w̃k} and {w̃kj} be a subsequence converging to w∞.

By the HSM, w̃kj is a solution of (.), thus

η
∥∥z′∥∥

 – η
∥∥z̃kj

∥∥
 +

(
w′ – w̃kj

)T[
F
(
w̃kj

)
+ g

(
wkj , w̃kj

)
– M

(
wkj – w̃kj

)]

≥ , ∀w′ ∈W . (.)

The limit (.) also results in limkj→∞ g(wkj , w̃kj ) =  and limkj→∞ d(wkj , w̃kj ) = M(wkj –
w̃kj ) =  by positive-definiteness of G and M. Taking the limit on both sides of (.) we
have

η
∥∥z′∥∥

 – η
∥∥z∞∥∥

 +
(
w′ – w∞)T F

(
w∞) ≥ , ∀w′ ∈W , (.)

which implies w∞ is a solution of the problem (.) by the optimality condition (.).
Note that (.) holds for all solutions of (.), we get

∥∥wk+ – w∞∥∥
G ≤ ∥∥wk – w∞∥∥

G, ∀k. (.)

Since w̃kj → w∞ and ‖wkj – w̃kj‖
G →  as kj → ∞, for ∀ε > , there exists an integer kl > 

such that for all k and kj larger than kl , we have

∥∥w̃kj – w∞∥∥
G <

ε


,

∥∥wk – w̃kj
∥∥

G <
ε


. (.)

It follows from (.) and (.) that

∥∥wk – w∞∥∥
G =

∥∥wk – w̃kj + w̃kj – w∞∥∥
G ≤ ∥∥wk – w̃kj

∥∥
G +

∥∥w̃kj – w∞∥∥
G < ε.

Thus, the sequence {wk} converges to w∞, which is a solution of (.), or equivalently, of
the problem (.).

4 Numerical results
The main computational cost of the HSM is in solving the subproblems (.)-(.) and
(.). For generality of the HSM, we ignore the special structure of the matrices A and
�, and employ the existing efficient method to solve those subproblems. In this paper,
the subproblems (.) and (.) are solved by the projected Barzilai-Borwein method
proposed by Dai and Fletcher [], and the subproblem (.) is solved by a shrinkage-
thresholding algorithm []. The test problems are discrete ill-posed problems selected
from Hansen []. All tests are done on a laptop with Core(TM) i M@D, . GHz,
 GB RAM and Matlab Ra.

A classical example of an ill-posed problem is a Fredholm integral equation of the first
kind with a square integrable kernel, which has the form

∫ b

a
K(s, t)f (t) dt = g(s), s ∈ [c, d], (.)

where the right-hand side g and the kernel K are given, and f is unknown.
The following examples are used to test our algorithm.
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(a) Result on Example .(a) (b) Result on Example .(b)

(c) Result on Example .(c) (d) Result on Example .(d)

Figure 1 Numerical results on Example 4.1: ‘∗’ is the true solution and ‘◦’ denotes the approximate
solution.

Example . The kernel K is given by

K(s, t) = e–st ,

and the integration interval is [,∞). The true solution f and the right-hand side g are
given by

(a) f (t) = e– t
 , g(s) =


s + .

,

(b) f (t) =  – e– t
 , g(s) =


s

–


s + .
,

(c) f (t) = t × e– t
 , g(s) =


(s + .) ,

(d) f (t) =

{
, t ≤ ,
, t > ,

g(s) =
e–s

s
.

The numerical results are displayed in Figure .

Example . Shaw test problem: one-dimensional image restoration model. We have the
kernel K and the solution f , which are given by

K(s, t) =
(
cos(s) + cos(t)

) × (
sin(u)/u

)
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(a) Result on Example . (b) Result on Example .

Figure 2 Numerical results on Examples 4.2 and 4.3: ‘∗’ is the true solution and ‘◦’ denotes the
approximate solution.

and

f (t) = a × exp
(
–c × (t – t)) + a × exp

(
–c × (t – t)),

where u = π × (sin(s) + sin(t)). Both K and f are discretized by simple quadrature to pro-
duce A and x. Then the discrete right-hand side is produced as b = Ax. In our test, the
constants are assigned as follows: a = , c = , t = .; a = , c = , t = –.. The nu-
merical result is displayed in Figure (a).

Example . Baart test problem: the kernel K and right-hand side g of the discretization
of a first-kind Fredholm integral equation are given by

K(s, t) = exp
(
s × cos(t)

)
, g(s) =  × sinh(s)

s
,

where s ∈ [,π/], t ∈ [,π ]. The solution is given by f (t) = sin(t). The numerical result is
displayed in Figure (b).

We can draw the conclusion from the above computational results: the proposed hybrid
splitting method is valid and efficient for the smoothing Tikhonov regularization problem.

5 Conclusions
We have proposed a hybrid splitting method for solving the smoothing Tikhonov regu-
larization problem, which is to minimize the sum of three convex functions over a simple
closed convex set. The problem can be reformulated as a convex minimization problem
with three separable block variables, and we get the variational inequalities formulation
by the KKT conditions of the separable convex minimization problem. By the convexity of
the problem, the solution of the resulting variational inequalities is the same as the solu-
tion of the convex minimization problem. At each iteration of the proposed method, three
subproblems are solved and two multipliers are updated. The former two subproblems are
first solved in a parallel fashion, and immediately, the multipliers associated to these are
updated; then the third subproblem is solved in the sense of an alternative fashion with the
former two subproblems, and the multipliers associated to the last two block variables are
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updated. The proposed method is essentially to a hybrid splitting method since it com-
bines the parallel splitting method and the alternating direction method, which are two
power tools for the convex optimization problem with a separable structure. Under suit-
able assumptions, the global convergence of the hybrid splitting method is proved. The
numerical results on the discrete ill-posed problems show that the proposed method has
validity and efficiency.
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