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Abstract
This paper is mainly concerned with the upper semicontinuity, closedness, and the
lower semicontinuity of the set-valued solution mapping for a parametric
lexicographic equilibrium problem where both two constraint maps and the
objective bifunction depend on both the decision variable and the parameters. The
sufficient conditions for the upper semicontinuity, closedness, and the lower
semicontinuity of the solution map are established. Many examples are provided to
ensure the essentialness of the imposed assumptions.
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1 Introduction
Equilibrium problems first considered by Blum and Oettli [] have been playing an impor-
tant role in optimization theory with many striking applications particularly in transporta-
tion, mechanics, economics, etc. Equilibrium models incorporate many other important
problems such as: optimization problems, variational inequalities, complementarity prob-
lems, saddlepoint/minimax problems, and fixed points. Equilibrium problems with scalar
and vector objective functions have been widely studied. The crucial issue of solvability
(the existence of solutions) has attracted most considerable attention of researchers; see,
e.g., [–].

With regard to vector equilibrium problems, most of the existing results correspond to
the case when the order is induced by a closed convex cone in a vector space. Thus, they
cannot be applied to lexicographic cones, which are neither closed nor open. These cones
have been extensively investigated in the framework of vector optimization; see, e.g., [–
]. For instance, Konnov and Ali [] studied sequential problems, especially exploiting its
relation with regularization methods. Bianchi et al. in [] analyzed lexicographic equilib-
rium problems on a topological Hausdorff vector space, and their relationship with some
other vector equilibrium problems. They obtained the existence results for the tangled
lexicographic problem via the study of a related sequential problem.

As a unified model of vector optimization problems, vector variational inequality prob-
lems, variational inclusion problems and vector complementarity problems, vector equi-
librium problems have been intensively studied. The stability analysis of the solution map-

© 2016 Wangkeeree et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-016-0979-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-0979-2&domain=pdf
mailto:rabianw@nu.ac.th


Wangkeeree et al. Journal of Inequalities and Applications  (2016) 2016:44 Page 2 of 14

ping for these problems is an important topic in vector optimization theory. Recently,
a great deal of research has been devoted to the semicontinuity of the solution mapping
for a parametric vector equilibrium problem. Based on the assumption of the (strong) C-
inclusion property of a function, Anh and Khanh [] obtained the upper and lower semi-
continuity of the solution set map of parametric multivalued (strong) vector quasiequilib-
rium problems. Anh and Khanh [] obtained the semicontinuity of a class of parametric
quasiequilibrium problems by a generalized concavity assumption and a closedness of the
level set of functions. Wangkeeree et al. [] established the continuity of the efficient
solution mappings to a parametric generalized strong vector equilibrium problem involv-
ing a set-valued mapping under the Holder relation assumption. Recently, Wangkeeree et
al. [] obtained the sufficient conditions for the lower semicontinuity of an approximate
solution mapping for a parametric generalized vector equilibrium problem involving set-
valued mappings. By using a scalarization method, they obtained the lower semicontinuity
of an approximate solution mapping for such a problem without the assumptions of mono-
tonicity and compactness. For other qualitative stability results on parametric generalized
vector equilibrium problems, see [–] and the references therein.

It is well known that partial order plays an important role in vector optimization theory.
The vector optimization problems in the previous references are studied in the partial or-
der induced by a closed or open cone. But in some situations, the cone is neither open nor
closed, such as the lexicographic cone. On the other hand, since the lexicographic order
induced by the lexicographic cone is a total order, it can refine the optimal solution points
to make it smaller in the theory of vector optimization. Thus, it is valuable to investigate
the vector optimization problems in the lexicographic order. To the best of our knowledge,
the first lower stability results of the solution set map based on the density of the solution
set mapping for a parametric lexicographic vector equilibrium problem have been estab-
lished by Shi-miao et al. []. Recently, Anh et al. [] established the sufficient conditions
for the upper semicontinuity, closedness, and continuity of the solution maps for a para-
metric lexicographic equilibrium problem. However, to the best of our knowledge, there is
no work to study the stability analysis for a parametric lexicographic equilibrium problem
where both two constraint maps and the objective bifunction depend on both the decision
variable and the parameters. We observe that quasiequilibrium models are the important
general models including as special cases quasivariational inequalities, complementarity
problems, vector minimization problems, Nash equilibria, fixed-point and coincidence-
point problems, traffic networks, etc. A quasioptimization problem is more general than
an optimization one as constraint sets depend on the decision variable as well.

Motivated by the mentioned works, this paper is devoted to the study of closedness up-
per and lower of the solution map for a parametric lexicographic equilibrium problem
where both two constraint maps and the objective bifunction depend on both the deci-
sion variable and the parameters. The sufficient conditions for the upper semicontinuity,
closedness, and the lower semicontinuity of the solution map are established. Many ex-
amples are provided to ensure the essentialness of the imposed assumptions.

The paper is organized as follows. In Section , we first introduce the parametric lexico-
graphic equilibrium problem where both two constraint maps and the objective bifunction
depend on both the decision variable and the parameters, and we recall some basic defini-
tions on semicontinuity of set-valued maps. Section  establishes the sufficient conditions
for the upper semicontinuity and closedness of the solution map. Many examples are pro-
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vided to ensure the essentialness of the imposed assumptions. Section  establishes the
sufficient conditions for the lower semicontinuity of the solution map. Furthermore, we
give also many examples ensuring the essentialness of the imposed assumptions.

2 Preliminaries
Throughout this paper, if not otherwise specified, let X and � be Hausdorff topological
vector spaces. Let A ⊆ X be nonempty. Let K, K : A × � → X be two multivalued con-
straint maps and f := (f, f, . . . , fn) : A × A × � → R

n a vector-valued function where, for
each i ∈ In := {, , . . . , n}, fi : A × A ×� →R is a real valued function. We assume that, for
every x ∈ X and i ∈ In, fi(x, x,λ) = , i.e., fi is an equilibrium function. Set R = (–∞, +∞),
R+ = [, +∞), R– = –R+ and R̄ := R∪ {+∞}. For a subset A of X, int A, cl A and bd A stand
for the interior, closure, and boundary of A, respectively. For any given α ∈ R, the upper
α-level set and the lower α-level set of the function f : X → R̄ are denoted, respectively, by

lev≥α f :=
{

x ∈ X|f (x) ≥ α
}

and

lev≤α f :=
{

x ∈ X|f (x) ≤ α
}

.

Recall that the lexicographic cone of Rn, denoted by CL, is defined as

CL := {} ∪ {
x ∈R

n|∃i ∈ In : xi > ,∀j < i, xj = 
}

.

We observe that it is neither closed nor open. Indeed, when comparing with the cone
C := {x ∈R

n|x ≥ }, we have

int C � CL � C, int CL = int C and cl CL = C.

However, it is worth noticing that the lexicographic cone is convex, pointed, and total
(‘total’ means that CL ∪ (–CL) = R

n). The lexicographic order, ≥L, in CL is defined by

x ≥L y ⇐⇒ x – y ∈ CL.

This is a total (called also linear) order, i.e., any pair of elements is comparable. In [],
it was shown that, for a fixed orthogonal base, the lexicographic order is the unique total
order. We will see later that this causes difficulties in studies of many topics related to
ordering cones.

Next, we shall introduce and study a problem where both the two constraint maps and
the bifunction depend on parameters. For a given λ ∈ �, the parametric generalized lexi-
cographic quasiequilibrium problem, denoted by GLQEPλ, is

(GLQEPλ)

{
finding x̄ ∈ K(x̄,λ) such that, for all y ∈ K(x̄,λ),
f (x̄, y,λ) ≥L .
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Remark . When K = K := K : � → X , the (GLQEPλ) collapses to the lexicographic
vector quasiequilibrium problem (LEPλ): for each λ ∈ �,

(LEPλ)

{
finding x̄ ∈ K(λ) such that
f (x̄, y,λ) ≥L ,∀y ∈ K(λ).

The stability analysis of the set-valued solution mapping for (LEPλ) are studied in Anh et
al. [] and Shi-miao et al. [].

Let the set-valued mappings E : � → X and Sf : � → X be defined by

E(λ) =
{

x ∈ A : x ∈ K(x,λ)
}

and

Sf (λ) =
{

x ∈ E(λ) : f(x, y,λ) ≥ ,∀y ∈ K(x,λ)
}

.

Furthermore, let a mapping Z : Sf (λ) × � → X be given by

Z(x,λ) :=
{

y ∈ K(x,λ) | f(x, y,λ) = 
}

.

For the sake of simplicity, we consider the case n = , since the general case is similar. Then
GLQEPλ collapses to: find x̄ ∈ K(x̄,λ) such that

⎧
⎨

⎩
f(x̄, y,λ) ≥ , ∀y ∈ K(x̄,λ),

f(x̄, z,λ) ≥ , ∀z ∈ Z(x̄,λ).

Thus, GLQEPλ can be rewritten as

find x̄ ∈ Sf (λ) such that f(x̄, y,λ) ≥ , for all y ∈ Z(x̄,λ). (.)

The solution mapping for GLQEPλ is denoted by Sf . We denote the whole family of prob-
lems, say of GLQEPλ, for λ ∈ �, by (GLQEPλ)λ∈�. We first observe some basic facts
about lexicographic equilibrium problems. The lexicographic cone CL contains clearly all
pointed closed and convex cones C included in the closed half space {x ∈ R

n : x ≥ }.
Then, for an ordering cone C, we consider some kinds of parametric equilibrium prob-
lems: the parametric generalized quasiequilibrium problem [], denoted by GQEPλ, is

(GQEPλ)

{
finding x̄ ∈ K(x̄,λ) such that, for all y ∈ K(x̄,λ),
f (x̄, y,λ) ∈ C.

The solution mapping for GQEPλ is denoted by SGQEP . Therefore, for any pointed closed
and convex cones C included in the closed half space {x ∈ R

n : x ≥ }, we can get the
following fact: SGQEP ⊆ CL. Hence, the existence results of solutions for GLQEP can be
obtained by the nonemptiness of SGQEP . Next, we need to recall some well-known defini-
tions.
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Definition . [] Let {An} be a sequence of subsets of X. Then
(i) the upper limit or outer limit of the sequence {An} is a subset of X given by

lim sup
n→∞

An =
{

x ∈ X
∣∣ lim inf

n→∞ dist(x, An) = 
}

;

(ii) the lower limit or inner limit of the sequence {An} is a subset of X given by

lim inf
n→∞ An =

{
x ∈ X

∣∣ lim
n→∞ dist(x, An) = 

}
;

(iii) if lim supn→∞ An = lim infn→∞ An, then we say that the limit of {An} exist and

lim
n→∞ An = lim sup

n→∞
An = lim inf

n→∞ An.

Consequently, we have the following result.

Proposition . Let {An} be a sequence of subsets of X. Then
(i) lim supn→∞ An = {x ∈ A|xnk ∈ Ank : xnk → x};

(ii) lim infn→∞ An = {x ∈ A|xn ∈ An : xn → x}.

Definition . [] Let X and Y be Hausdorff topological vector spaces and S : X → Y

a given set-valued map.
(i) S is said to be upper semicontinuous (usc, for short) at x ∈ X iff for any open set

V ⊂ Y , where S(x) ⊂ V , there exists a neighborhood U ⊂ X of x such that

S(x) ⊂ V , ∀x ∈ U .

The map S(·) is said to be u.s.c. on X if it is u.s.c. at every x ∈ X .
(ii) S is said to be lower semicontinuous (lsc, for short) at x ∈ X iff for any open set

V ⊂ Y such that S(x) ∩ V �= ∅, there exists a neighborhood U ⊂ X of x such that

S(x) ∩ V �= ∅, ∀x ∈ U .

The map S(·) is said to be l.s.c. on X if S(·) is l.s.c. at every x ∈ X .
(iii) S is said to be closed at x if from (xn, yn) in the graph

gr S := {(x, y) ∈ X × Y | y ∈ S(x)} of S and tends to (x, y) it follows that
(x, y) ∈ gr S.

We will often use the well-known fact: if S(x) is compact, then S is usc at x if and only if
for any sequence {xn} in X converging to x and yn ∈ Q(xn), there is a subsequence of {yn}
converging to a point y ∈ Q(x). Next we give equivalent forms of the lower semicontinuity
of S.

For a set-valued map Q : X → Y between two linear spaces, Q is called concave [] on
a convex subset A ⊆ X if, for each x, x ∈ A and t ∈ [, ],

Q
(
( – t)x + tx

) ⊆ tQ(x) + ( – t)Q(x).
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Lemma . Let S : X → Y be a given set-valued map. The following are equivalent:
(i) S is lsc at x;

(ii) if {xn} is any sequence such that xn → x and V ⊂ Y an open subset such that
S(x) ∩ V �= ∅, then

∃N ≥  : S(xn) ∩ V �= ∅, ∀n ≥ N ;

(iii) if {xn} is a sequence such that xn → x and y ∈ S(x) arbitrary, then there is a
sequence {yn} with yn ∈ S(xn) such that yn → y as n → ∞.

From Proposition . and Lemma . we can obtain the following lemma immediately.

Lemma . Let S : X → Y be a given set-valued map. Then S is lsc at x iff for any se-
quence {xn} ⊆ X converging to x,

S(x) ⊂ lim inf
n→∞ S(xn).

The following relaxed continuity properties are also needed and can be found in [].

Definition . ([]) Let X be a topological space and g : X → R̄ be a function on X.
(i) g is said to be (sequentially) upper pseudocontinuous at x ∈ X if for any sequence

{xn} in X converging to x and for each x ∈ X such that g(x) > g(x),

g(x) > lim sup
n→∞

g(xn).

(ii) g is called (sequentially) lower pseudocontinuous at x ∈ X if for any sequence {xn}
in X converging to x and for each x ∈ X such that g(x) < g(x),

g(x) < lim inf
n→∞ g(xn).

(iii) g is pseudocontinuous at x ∈ X if it is both lower and upper pseudocontinuous at
this point.

The class of the pseudocontinuous functions strictly contains that of the semicontinuous
functions as shown by the following.

Example . The function g : R →R defined by

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

, if x > ,

, if x = ,

–, if x < ,

is pseudocontinuous, but neither upper nor lower semicontinuous at .

Lemma . ([]) Let X be a topological space. Then g : X →R is pseudocontinuous in X
if and only if, for all sequences {xn} and {yn} in X such that xn → x and yn → y as n → ∞
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and g(y) < g(x),

lim sup
n→∞

g(yn) < lim inf
n→∞ g(xn).

The following important definition can be found in [].

Definition . Let g : X × Z → R and � ⊂ R, where int� �= ∅. g is called generalized
�-concave in a convex set A ⊂ Z, if for each x ∈ X and z, z ∈ A satisfying g(x, z) ∈ � and
g(x, z) ∈ int�, it follows that, for all t ∈ (, ),

g
(
x, ( – t)z + tz

) ∈ int�.

3 The upper semicontinuouity and closedness of Sf

In this section, we discuss the upper semicontinuity and closedness of the solution map-
ping Sf . Since there have been a number of contributions to existence issues, focusing
on stability we always assume that Sf (λ) and Sf (λ) are nonempty for all λ in a neighbor-
hood of the considered point λ̄. First of all, we shall establish the upper semicontinuity
and closedness of the solution mapping Sf .

Lemma . For (GLQEPλ)λ∈� assume that
(i) E is usc at λ̄ and E(λ̄) is compact;

(ii) K is lsc in K(A,�) × {λ̄};
(iii) lev≥ fi(·, ·, λ̄) is closed in K(A,�) × K(A,�) × {λ̄} for i = , .

Then the solution map Sf is both usc and closed at λ̄.

Proof We first prove that the solution map Sf is usc at λ̄. Suppose on the contrary that
there exists an open set U ⊇ Sf (λ̄) such that for any neighborhood N(λ̄) of λ̄, there exists
λ ∈ N(λ̄) such that Sf (λ) � U . In particular, for each n ∈ N, there exist sequences {λn} ⊆ �

converging to λ̄ and {xn} ⊆ Sf (λn) ⊆ E(λn) with xn /∈ U . By the upper semicontinuity of E
and the compactness of E(λ̄), one can assume that xn → x, for some x ∈ E(λ̄). Next, we
claim that x ∈ Sf (λ̄). Again suppose on the contrary that there exists y ∈ K(x, λ̄) such
that f(x, y, λ̄) < . The lower semicontinuity of K at (x, λ̄), by Lemma ., implies that
there exists a sequence {yn} in K(xn,λn) such that yn → y as n → ∞. For each n ∈ N,
since xn ∈ Sf (λn), we have

f(xn, yn,λn) ≥ .

It follows from the closedness of lev≥ fi(·, ·, λ̄) that f(x, y, λ̄) ≥ , which leads to a con-
tradiction. Therefore, x ∈ Sf (λ̄) ⊆ U , again a contradiction, since xn /∈ U for all n. Thus,
Sf is usc at λ̄.

Next, we prove that Sf is closed at λ̄. We suppose on the contrary that Sf is not closed
at λ̄, i.e., there a sequence {λn} converging to λ̄ and {xn} ⊆ Sf (λn) with xn → x but x /∈
Sf (λ̄). The same argument as above ensures that x ∈ Sf (λ̄), which gives a contradiction.
Therefore, we can conclude that Sf is closed at λ̄. �

Now, we are in the position to discuss the upper semicontinuity and closedness of the
solution mapping Sf .
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Theorem . For (GLQEPλ)λ∈� assume that
(i) E is usc at λ̄ and E(λ̄) is compact;

(ii) K is lsc in K(A,�) × {λ̄};
(iii) lev≥ fi(·, ·, λ̄) is closed in K(A,�) × K(A,�) × {λ̄} for i = , ;
(iv) Z is lsc in Sf (λ̄) × {λ̄}.

Then the solution map Sf is both usc and closed at λ̄.

Proof We first claim that the solution map Sf is usc at λ̄. Suppose there exist an open set
U ⊇ Sf (λ̄), {λn} → λ̄, and {xn} ⊆ Sf (λn) such that xn /∈ U for all n. By the upper semicon-
tinuity of Sf at λ̄ and the compactness of Sf (λ̄), without loss of generality we can assume
that xn → x as n → ∞ for some x ∈ Sf (λ̄). If x /∈ Sf (λ̄), there exists y ∈ Z(x, λ̄) such
that f(x, y, λ̄) < . The lower semicontinuity of Z in turn yields yn ∈ Z(xn,λn) tending
to y. Notice that for each n ∈ N, f(xn, yn,λn) ≥ . This together with the closedness of
lev≥ f(·, ·, λ̄) in K(A,�) × K(A,�) ×{λ̄} implies that f(x, y, λ̄) ≥ , which gives a con-
tradiction. If x ∈ Sf (λ̄) ⊆ U , one has another contradiction, since xn /∈ U for all n. Thus,
Sf is usc at λ̄.

Now we prove that Sf is closed at λ̄. Suppose on the contrary that there exists a se-
quence {(λn, xn)} converging to (λ̄, x) with xn ∈ Sf (λn) but x /∈ Sf (λ̄). Then f(x, y, λ̄) < 
for some y ∈ Z(x, λ̄). Due to the lower semicontinuity of Z, there is yn ∈ Z(xn,λn) such
that yn → y. Since xn ∈ Sf (λn), f(xn, yn,λn) ≥ . By the closedness of the set lev≥ f,
f(x, y, λ̄) ≥ , which is impossible since f(x, y, λ̄) < . Therefore, Sf is closed at λ̄. �

Corollary . For GLQEP, suppose that the conditions (i), (ii), and (iv) given in Theo-
rem . are satisfied. Further, for each i = , , assume that fi is upper pseudocontinuous
in K(A,�) × K(A,�) × {λ̄}. Then the solution map Sf is both usc and closed at λ̄.

Proof It is suffice to derive the condition (iii) that given in Theorem .. For i = , ,
suppose {(xn, yn,λn)} is any sequence in lev≥ fi(·, ·, λ̄) such that (xn, yn,λn) → (x̄, ȳ, λ̄) as
n → ∞. Assume that on the contrary that (x̄, ȳ, λ̄) /∈ lev≥ fi(·, ·, λ̄), which implies that
fi(x̄, ȳ, λ̄) <  = fi(x̄, x̄, λ̄). The upper pseudocontinuity of fi at (x̄, ȳ, λ̄) implies that

 = fi(x̄, x̄, λ̄) > lim sup
n→∞

fi(xn, yn,λn) ≥ ,

which gives a contradiction. Hence, we can conclude that (x̄, ȳ, λ̄) ∈ lev≥ fi(·, ·, λ̄). Now,
the closedness of lev≥ fi(·, ·, λ̄) is proved. Applying Theorem ., we get the desired result.

�

The following examples show that all assumptions imposed in Theorem . are very
essential and cannot be relaxed.

Example . (The upper semicontinuity and compactness in (i) are crucial) Let A = X =
R, � = [, ], λ̄ = . Define the mappings K, K, and f by

K(x,λ) = (λ,  + λ] and K(x,λ) = (, ]

and

f (x, y,λ) =
(
x(x – y)( + λ), λ+xyx(x – y)

)
.
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Then we have

E() = (, ] and E(λ) = (λ,  + λ], ∀λ ∈ (, ].

Hence, E() is not compact and E is not usc. Indeed, we choose an open set U := (, /) ⊇
E() = (, ]. We observe that, for any ε > , we can choose λ′ = –ε/ ∈ N(, ε) such that

E
(
λ′) = (–ε/, ε/] � U .

Clearly, the conditions (ii) and (iii) are all satisfied. Easy calculations yield

Sf (λ) =

⎧
⎨

⎩
(, ], if λ = ,

(λ,  + λ], if λ �= ,

and Z(x,λ) = {x}. Hence, assumption (iv) is satisfied. Direct computations give

Sf (λ) =

⎧
⎨

⎩
(, ], if λ = ,

(λ,  + λ], if λ �= .

It is evident that Sf is neither usc nor closed at λ̄ = . This is caused by the fact that E is
neither upper semicontinuous nor compact-valued at λ̄ = .

Example . (The lower semicontinuity of K in K(A,�)×{λ̄} is essential) Let A = X = R,
� = [, ], λ̄ = . Define the mappings K, K, and f by

K(x,λ) = K(x,λ) =

⎧
⎨

⎩
[–, ], if λ = ,

[ – 
 , ], if λ �= ,

and

f (x, y,λ) =
(
( + λ)(y – x), λy(y – x)

)
.

Then we have

E(λ) =

⎧
⎨

⎩
[–, ], if λ = ,

[ – 
 , ], if λ �= ,

which shows that E is usc at  and E() is compact, that is, (i) is satisfied. Clearly, the
condition (iii) in Theorem . is satisfied. Furthermore, easy calculations yield

Sf (λ) =

⎧
⎨

⎩
{–}, if λ = ,

{– 
 }, if λ �= ,

and Z(x,λ) = {x}, which is lsc in Sf (λ̄) × {λ̄}. Direct calculation gives

Sf (λ) =

⎧
⎨

⎩
{–}, if λ = ,

{– 
 }, if λ �= .
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It is evident that Sf is neither usc nor closed at λ̄ = . This is caused by the fact that K is
not lsc at λ̄ = . Indeed, we observe that (, ) ∈ K(A,�) × {} and {( 

n , 
n )} → (, ). We

choose y := – ∈ K(, ) = [–, ] such that there is not any sequence {yn} in K( 
n , 

n ) =
[– 

 , ] converging to y.

Example . (The lower semicontinuity of Z in Sf (λ̄) × {λ̄} are crucial) Let A = X = R,
� = [, ], λ̄ = . Define the mappings K, K, and f by

K(x,λ) = K(x,λ) = [, ]

and

f (x, y,λ) =
(
λ(x – y), λy(y – x)

)
.

Hence Conditions (i), (ii), and (iii) clearly hold. By direct calculations, we can get

Sf (λ) =

⎧
⎨

⎩
[, ], if λ = ,

{}, if λ �= ,

Z(x,λ) =

⎧
⎨

⎩
[, ], if λ = ,

{x}, if λ �= .

Hence Z is not lsc in [, ] × {}. Further

Sf (λ) =

⎧
⎨

⎩
{}, if λ = ,

{}, if λ �= .

It is evident that Sf is neither usc nor closed at λ̄ = .

4 The lower semicontinuouity of Sf

For investigation the lower semicontinuity of the solution mapping Sf , as an auxiliary
problem we consider, for a given λ ∈ �, an auxiliary parametric generalized lexicographic
quasiequilibrium problem, denoted by AGLQEPλ:

(AGLQEPλ)

{
finding x̄ ∈ K(x̄,λ) such that
f(x̄, y,λ) > , for all y ∈ K(x̄,λ).

Let the set-valued mappings E : � → X and SAGQEP : � → X be defined by

E(λ) =
{

x ∈ A : x ∈ K(x,λ)
}

,

and the solution mapping for AGLQEPλ is denoted by SAGLQEP(λ), i.e.

SAGQEP(λ) =
{

x ∈ E(λ) : f(x, y,λ) > ,∀y ∈ K(x,λ)
}

.

First, we establish the lower semicontinuity of the solution mapping SAGQEP .
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Lemma . For AGLQEP, assume that the following conditions are satisfied:
(i) E is lsc at λ̄;

(ii) K is usc and compact-valued in K(A,�) × {λ̄};
(iii) lev≤ f(·, ·, λ̄) is closed in K(A,�) × K(A,�) × {λ̄}.

Then the solution map SAGQEP is lsc at λ̄.

Proof Suppose to the contrary that SAGQEP is not lsc at λ̄, i.e., there a sequence {λn} ⊆ �

with λn → λ̄ and there exists x̄ ∈ SAGQEP(λ̄) ⊆ E(λ̄) such that,

for all sequence {yn} ⊆ SAGQEP(λn) ⊆ E(λn), yn � x̄. (.)

Since E is lsc at λ̄, there exists a sequence {xn} in E(λn) with xn → x̄ as n → ∞. It follows
from (.) that there exists {xnk } of {xn} such that xnk /∈ SAGQEP (λnk ) for all k ∈ N. This
implies that there ynk ∈ K(xnk ,λnk ) satisfying

f(xnk , ynk ,λnk ) ≤ , for each k ∈N.

As K is usc at (x̄, λ̄) and K(x̄, λ̄) is compact, there exists ȳ ∈ K(x̄, λ̄) such that

ynk → ȳ as k → ∞ (taking a subsequence if necessary).

It follows from the closedness of lev≤ f(·, ·, λ̄) that f(x̄, ȳ, λ̄) ≤ , which is impossible since
x̄ ∈ SAGQEP(λ̄). The proof is completed. �

Now, we establish the lower semicontinuity of the solution mapping Sf .

Theorem . For (GLQEP) let the following conditions be satisfied:
(i) E is lsc at λ̄ and E(λ̄) is convex;

(ii) K(·, λ̄) is usc and compact-valued in K(A,�) × {λ̄}; K(·, λ̄) is concave in E(λ̄);
(iii) lev≤ f(·, ·, λ̄) is closed in K(A,�) × K(A,�) × {λ̄};
(iv) f(·, ·, λ̄) is generalized R+-concave in E(λ̄) × K(A, λ̄).

Then the solution map Sf is lsc at λ̄.

Proof First, we notice that Sf (λ̄) ⊆ cl SAGLQEP(λ̄). Indeed, let x̄ ∈ Sf (λ̄) be arbitrary. For any
x̄A ∈ SAGLQEP(λ̄) and t ∈ (, ), define xt = ( – t)x̄ + tx̄A. Clearly, xt → x̄ as t ↓  and by the
virtue of the convexity of E(λ̄), xt ∈ K(xt , λ̄). Further, for all y ∈ K(xt , λ̄), the concavity
of K(·, λ̄) implies that there exist ȳ ∈ K(x̄, λ̄) and ȳA ∈ K(x̄A, λ̄) such that y = ( – t)ȳ +
tȳA. It is clear that f(x̄, ȳ, λ̄) ≥  and f(x̄A, ȳA, λ̄) > . It follows from the generalized R+-
concavity of f(·, ·, λ̄) that f(xt , y, λ̄) > , i.e., xt ∈ SAGQEP(λ̄). Therefore, we conclude that x̄ ∈
cl SAGQEP(λ̄), which shows that Sf (λ̄) ⊆ cl SAGQEP(λ̄). Next, for any sequence {λn} satisfying
λn → λ̄ as n → ∞, by the lower semicontinuity of SAGQEP at λ̄ given in Lemma ., we have

Sf (λ̄) ⊆ cl SAGQEP(λ̄) ⊆ cl lim inf
n→∞ SAGQEP(λn) ⊆ cl lim inf

n→∞ Sf (λn),

which gives the lower semicontinuity of Sf at λ̄ since Lemma .. The proof is com-
pleted. �
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Corollary . For GLQEP, suppose that the conditions (i), (ii), and (iv) given in Theo-
rem . are satisfied. Further, assume that f is lower pseudocontinuous in K(A,�) ×
K(A,�) × {λ̄}. Then the solution map Sf is lsc at λ̄.

Proof It is suffice to derive the condition (iii) that imposed in Theorem .. Let {(xn, yn,λn)}
be any sequence in lev≤ f(·, ·, λ̄) such that (xn, yn,λn) → (x̄, ȳ, λ̄) as n → ∞. Assume that on
the contrary that (x̄, ȳ, λ̄) /∈ lev≤ f, which implies that f(x̄, ȳ, λ̄) >  = f(x̄, x̄, λ̄). It follows
from the lower pseudocontinuity of f at (x̄, ȳ, λ̄) that

 = f(x̄, x̄, λ̄) < lim inf
n→∞ f(xn, yn,λn) ≤ ,

which gives a contradiction. Hence, we can conclude that (x̄, ȳ, λ̄) ∈ lev≤ f. Now, the
closedness of lev≤ f(·, ·, λ̄) is proved. Applying Theorem . we obtain the desired re-
sult. �

The following example illustrates that the lower semicontinuity assumption for the set
E cannot be relaxed in Theorem ..

Example . (The lower semicontinuity of E at λ̄ is crucial) Let A = X = R, � = [, ],
λ̄ = . Define the mappings K, K, and f by

K(x,λ) =

⎧
⎨

⎩
[–, ], if λ = ,

[ – , ] ∪ {}, if λ �= ,
K(x,λ) = [–, ],

and

f (x, y,λ) =
(
( + λ)(x – y), λy(x – y)

)
.

Hence conditions (ii)-(iv) clearly hold. However, E is not lsc at λ̄ = . Indeed, we choose
a sequence {/n} ⊆ � such that /n →  and / ∈ E() = [–, ]. We can see that, for all
sequences {yn} ⊆ E(/n) := [–, ] ∪{}, yn � / as n → ∞. By direct calculations, we can
get

SAGQEP(λ) = Sf (λ) =

⎧
⎨

⎩
(, ], if λ = ,

{}, if λ �= .

Hence Sf is not lsc at λ̄ = , indeed, we choose λn = 
n →  and 

 ∈ Sf () but we cannot
find a sequence in Sf ( 

n ) which converges to 
 .

The next example indicates the essential role of the upper semicontinuity assumption
for the set K in Theorem ..

Example . (The upper semicontinuity of K is crucial) Let A = X = R, � = [, ], λ̄ = .
Define the mappings K, K, and f by

K(x,λ) = [, ], K(x,λ) =

⎧
⎨

⎩
{– 

 } ∪ [, ], if λ = ,

[ – 
 , 

 ], if λ �= ,
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and

f (x, y,λ) = (x + y, x – y).

It is clear that the upper semicontinuity of K is not satisfied. Indeed, for each n ∈ N, we
choose

(xn,λn) =
(


n

,

n

)
and yn = –




∈ K(xn,λn).

It is obvious that there is not any subsequence of {yn} converging to an element in {– 
 } ∪

[, ] := K(, ). However, all conditions (i), (iii)-(v) of Theorem . are satisfied. By direct
calculations, we have

SAGQEP(λ) = Sf (λ) =

⎧
⎨

⎩
( 

 , ], if λ = ,

( 
 , ], if λ �= .

Hence Sf is not lsc at λ̄ = . The cause is that (ii) is not fulfilled.

5 Conclusion
We presented the upper semicontinuity, closedness, and the lower semicontinuity of the
set-valued solution mapping for a parametric lexicographic equilibrium problem where
both two constraint maps and the objective bifunction depend on both the decision vari-
able and the parameters. The sufficient conditions for the upper semicontinuity, closed-
ness, and the lower semicontinuity of the solution map are established. Many examples
are provided to ensure the essentialness of the imposed assumptions.
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