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Abstract
Composition operators and multiplication operators between two Orlicz function
spaces are investigated. First, necessary and sufficient conditions for their continuity
are presented in several forms. It is shown that, in general, the Radon-Nikodým

derivative d(μ◦τ –1)
dμ (s) need not belong to L∞(�) to guarantee the continuity of the

composition operator cτ x(t) = x(τ (t)) from L�(�) into L� (�). Next, the problem of
compactness of these operators is considered. We apply a compactness criterion in
Orlicz spaces which involves compactness with respect to the topology of local
convergence in measure and equi-absolute continuity in norm of all the elements of
the set under consideration. In connection with this, we state some sufficient
conditions for equi-absolute continuity of the composition operator cτ and the
multiplication operatorMw from one Orlicz space into another. Also the problem of
necessary conditions is discussed.
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1 Introduction
Since the early s composition operators have been a subject of study of many mathe-
maticians or physicists. At the beginning they were used to solve problems in mathemat-
ical physics and classical mechanics [, ], or to study ergodic transformations [, ]. Up
until now many Ph.D. theses have been defended (for instance: Boyd [], Gupta [], Ridge
[], Schwartz [], Singh [], Swanton [], Veluchamy []), numerous books published
[, ], and innumerable papers printed on the composition operator or the weighted
composition operator in various function spaces, e.g., Lp spaces ([–], and others), Or-
licz spaces ([–], and others), Musielak-Orlicz spaces [, ], Musielak-Orlicz spaces
of Bochner type ([] or []), Orlicz-Lorentz spaces [–], Hilbert spaces [–] and
many other types of spaces (for instance: [–]). The multiplication operator has also
been a subject of research of many mathematicians (see for instance: [–]). For more
details as regards the historical background we refer the reader to [].

Let (�,�,μ) be a non-atomic, σ -finite and complete measure space and let τ : � → �

be a measurable function, i.e., a mapping such that τ–(A) ∈ � if and only if A ∈ � for any
A ⊂ �, where τ–(A) is the counterimage of A. In the whole paper we will assume that τ

is non-singular, that is, μ(τ–(A)) =  provided μ(A) = . The last assumption guarantees
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that the measure μ ◦ τ– defined for any A ∈ � by the formula

μ ◦ τ–(A) = μ
(
τ–(A)

)

is absolutely continuous with respect to the measure μ (what is usually denoted by
μ ◦ τ– � μ). Then the Radon-Nikodým theorem implies the existence of a non-negative
locally integrable function hτ on � such that μ◦τ–(A) =

∫
A hτ (s) dμ(s) for any A ∈ �. The

function hτ (s) = d(μ◦τ–)
dμ

(s) is called the Radon-Nikodým derivative of the measure μ ◦ τ–

with respect to the measure μ. Let us remark that even if the Radon-Nikodým derivative
is unbounded, the corresponding composition operator acting from an Orlicz space onto
itself can still be continuous (see []).

Let L(�) = L(�,�,μ) be the space of all (abstract classes of ) �-measurable functions
from � into R with respect to the equivalence relation: x ∼ y if and only if x(t) = y(t) for
μ-a.e. t ∈ �.

With the help of a non-singular and measurable mapping τ : � → � one defines on L

the composition operator

(cτ x)(t) := x
(
τ (t)

)

for any t ∈ � and any x ∈ L(�).
Let w ∈ L(�,�,μ) be a strictly positive function. We define the multiplication operator

Mw : L → L by the formula

(Mwx)(t) := w(t)x(t)

for any t ∈ � and any x ∈ L(�).
It is obvious that cτ x ∈ L(�) and Mwx ∈ L(�) if x ∈ L(�).

Remark . We do not assume, if not specifically stated otherwise, that the mapping τ is
a surjection, i.e., τ (�) = �.

A function � : R → R+ = [,∞) is said to be an Orlicz function if � is convex, even,
continuous, vanishing only at .

The complementary function in the sense of Young to an Orlicz function � is defined
to be the function �∗ : [,∞) → [,∞] such that �∗(u) = supv>{uv – �(v)}.

A function ϕ from � × R into R+ such that ϕ(t, ·) is an Orlicz function for μ-a.e. t ∈
� and ϕ(·, u) is a �-measurable function for every u ∈ R is called a generalized Orlicz
function or a Musielak-Orlicz function. The Musielak-Orlicz space Lϕ = Lϕ(�,�,μ) is the
space of all (equivalence classes of ) �-measurable functions x : � → R such that

Iϕ(λx) =
∫

�

ϕ
(
t,λx(t)

)
dμ < ∞

for some λ >  depending on x. The Musielak-Orlicz space equipped with the Luxemburg
norm

‖x‖ϕ = inf

{
λ >  : Iϕ

(
x
λ

)
≤ 

}
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is a Banach space (cf. [, ], and in the case of Orlicz spaces also [–]). It is obvious
that Orlicz functions are Musielak-Orlicz functions, and consequently, Orlicz spaces are
Musielak-Orlicz spaces. For instance, an Orlicz weighted space L�

h (�) is the Musielak-
Orlicz space Lϕ(�) generated by ϕ(t, u) = �(u)h(t) for any t ∈ � and any u ∈R.

Throughout the paper, we will make use of Ishii’s theorem from [].

Theorem . For Musielak-Orlicz spaces Lϕ(�) and Lψ (�) over a non-atomic measure
space � = (�,�,μ), the inclusion Lϕ(�) ⊂ Lψ (�) holds if and only if there exist k, K > 
and c(·) ∈ L(�) such that

ψ(t, kξ ) ≤ Kϕ(t, ξ ) + c(t)

for all ξ ≥  and a.e. t ∈ �.

For any A ∈ �, by I�(x, A) we mean the value of the modular I� at x in the Orlicz space
L�(A) generated by the Orlicz function � over the measure space (A,� ∩ A,μ|A). In the
case when A = �, we will write I�(x) instead of I�(x,�).

2 Continuity of the composition operator cτ from L� into L� and from L�

onto L�

We are interested in finding necessary and sufficient conditions for the continuity of the
composition operator cτ from the Orlicz space L�(�) = L�(�,�,μ) equipped with the
Luxemburg norm into the Orlicz space L� (�) = L� (�,�,μ) endowed with the corre-
sponding Luxemburg norm. The following fact will be very helpful.

Fact . For an arbitrary function x ∈ L(�), we have cτ x ∈ L� (�) if and only if x ∈
L�

h (τ (�)), where L�
h (τ (�)) = L�

h (τ (�),� ∩ τ (�),μ|�∩τ (�)) is a weighted Orlicz space with
the weight function h(s) = dμ◦τ–

dμ
(s).

Proof For any x ∈ L(�), we have

I� (cτ x,�) =
∫

�

�
(
cτ x(t)

)
dμ(t)

=
∫

�

�
(
x
(
τ (t)

))
dμ(t)

=
∫

τ (�)
�

(
x(s)

)
dμ ◦ τ–(s)

=
∫

τ (�)
�

(
x(s)

)
h(s) dμ(s)

= I� ,h
(
x, τ (�)

)
. �

Theorem . If the quadruple �, � , h, τ satisfies the condition

∃
K>

∃
A∈�∩τ (�)

μ(A)=

∃
g∈L

+(τ (�))
∀

s∈τ (�)\A
∀

u≥
�(u)h(s) ≤ �(Ku) + g(s), ()

or, equivalently, L�(τ (�)) ⊂ L�
h (τ (�)), then the composition operator cτ acts continuously

from L�(�) into L� (�).
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Moreover, if μ(�\τ (�)) = , then condition () is necessary for the continuity of the com-
position operator cτ from L�(�) into L� (�).

Proof We will show that if condition () is satisfied then cτ x ∈ L� (�) whenever x ∈ L�(�),
i.e., x ∈ L�

h (τ (�)) whenever x ∈ L�(�) (see Fact .).
Assume that x ∈ L�(�). Applying condition () and Fact ., we obtain

I�
(

cτ x
K( + ‖g‖L(τ (�)))‖x‖�

,�
)

≤ 
 + ‖g‖L(τ (�))

I�
(

cτ x
K‖x‖�

,�
)

=


 + ‖g‖L(τ (�))
I� ,h

(
x

K‖x‖�

, τ (�)
)

≤ I�( x
‖x‖�

, τ (�)) + ‖g‖L(τ (�))

 + ‖g‖L(τ (�))

≤ 
 + ‖g‖L(τ (�))

(
 + ‖g‖L(τ (�))

)
= ,

which shows that cτ acts from L�(�) into L� (�) and

‖cτ x‖� ≤ K
(
 + ‖g‖L(τ (�))

)‖x‖�,

which finishes the proof of the first part of the theorem.
Now assume that μ(�\τ (�)) = . If the inclusion in the assumption of the theorem fails

to hold, then there exists a function x belonging to L�(τ (�)) = L�(�) but not belonging
to L�

h (τ (�)). In virtue of Fact ., we obtain x ∈ L�(�) and, simultaneously, cτ x /∈ L� (�),
hence cτ does not even act from L�(�) into L� (�). �

The preceding theorem can be formulated in a different language, which in some situa-
tions might be more useful.

Theorem . The composition operator cτ : L�(�) → L� (�) is continuous if the following
simple condition is satisfied:

∫

τ (�)
χ

(
h(s)

)
dμ(s) < ∞, ()

where h = dμ◦τ–

dμ
and χ is the function complementary in the sense of Young to the function

� ◦ K�–, with K being the constant from condition () of Theorem .. If μ(�\τ (�)) = ,
then condition () is necessary for the continuity of cτ .

Proof It is not too difficult to see that �, � , and h satisfy condition () if and only if

sup
u≥

[
�(u)h(s) – �(Ku)

] ∈ L
+
(
τ (�)

)
.

But

sup
u≥

[
�(u)h(s) – �(Ku)

]
= sup

v≥

[
vh(s) – �

(
K�–(v)

)]

= χ
(
h(s)

)
. �
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Remark . Notice that if b(χ ) := sup{u ≥ : χ (u) < ∞} < ∞ then condition () implies
that ‖h‖L∞(τ (�)) ≤ b(χ ) < ∞, that is, the Radon-Nikodým derivative h = dμ◦τ–

dμ is es-
sentially bounded. Moreover, it is easy to see that the integral () can be finite for some
h /∈ L∞(τ (�)) if and only if the function χ has only finite values (for the case when � = �

see []; the proof in the case when � �= � is similar).
The next theorem states a necessary and sufficient condition in order that χ is such a

function.

Theorem . The function χ = (� ◦ K�–)∗, with K > , assumes only finite values (i.e.,
b(χ ) = ∞) if and only if lim inft→∞ �(Kt)

�(t) = ∞.

Proof Sufficiency. Let lim inft→∞ �(Kt)
�(t) = ∞. Then limt→∞ �(Kt)

�(t) = ∞ and so

limt→∞ �(K�–(t))
t = ∞. Take an arbitrary v > . In virtue of the last equality, there exists

uv >  such that for all u ≥ uv the inequality

�(K�–(u))
u

≥ v

holds. Hence

χ (v) := sup
u≥

{
uv – �

(
K�–(u)

)}
= sup

u≥

{
u
(

v –
�(K�–(u))

u

)}

= sup
u∈[,uv]

{
uv – �

(
K�–(u)

)}
< ∞

as a supremum of a continuous function on a compact interval.
Necessity. Assume that lim inft→∞ �(Kt)

�(t) < ∞ for K > . Then lim inft→∞ �(K�–(t))
t < ∞

for K > , and so there exist c >  and a sequence of positive numbers (un)∞n= such that
un → ∞ as n → ∞ and limn→∞ �(K�–(un))

un
= c. Consequently, c′ ∈ (c,∞) can be found

such that for n ∈N large enough we have

�
(
K

(
�–(un)

)) ≤ c′un.

Therefore, taking v > c′, we get

unv – �
(
K�–(un)

) ≥ unv – c′un = un
(
v – c′)

for n ∈N large enough, whence

sup
u≥

{
uv – �

(
K�–(u)

)} ≥ sup
n∈N

{
unv – �

(
K�–(un)

)}

≥ (
v – c′) sup

n∈N
un = ∞,

which finishes the proof of the theorem. �

Now we show that if the function χ from Theorem . assumes only finite values, i.e.,
b(χ ) = ∞, then it may happen that the composition operator cτ from L�(�) into L� (�) is
continuous despite the fact that h = dμ◦τ–

dμ
/∈ L∞(τ (�)).
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Example . Let � = (, ], (�,�,μ) be the Lebesgue measure space and An = ( 
n+ , 

n ] for
every n ∈ N. Then

⋃∞
n= An = �. Let χ be the function from Theorem ., let b(χ ) = ∞

and un >  be such that χ (un) =
√

n for every n ∈N. Since un ↗ ∞ as n → ∞, there exists
m ∈N such that un ≥  for any n > m. Define τ : (, ] → (, ] by the formula

τ (t) =

⎧
⎨

⎩
t, for t ∈ An with n ≤ m,

t
un

, for t ∈ An, where n > m.

Let us denote vn =  if n ≤ m and vn = un if n > m. Then τ– : τ (�) → � is defined by the
formula τ–(s) = vns for any s ∈ τ (An). Consequently, for any A ∈ � ∩ τ (�), we have

μ ◦ τ–(A) := μ
(
τ–(A)

)
= μ

( ∞⋃

n=

τ–(A ∩ τ (An)
)
)

=
∞∑

n=

μ
(
τ–(A ∩ τ (An)

))

=
∞∑

n=

μ

(
vn

(
A ∩ 

vn
(An)

))

=
∞∑

n=

μ(vnA ∩ An). ()

Let us define

h(s) =
∞∑

n=

vn1 
un An

(s). ()

Then, for any A ∈ � ∩ τ (�),

∫

A
h(s) dμ(s) =

∫

⋃∞
n= A∩τ (An)

h(s) dμ(s) =
∞∑

n=

∫

A∩ 
vn (An)

vn dμ(s)

=
∞∑

n=

vnμ

(
A ∩ 

vn
An

)
=

∞∑

n=

μ(vnA ∩ An). ()

By inequalities () and (), we get

μ ◦ τ–(A) =
∫

A
h(s) dμ(s), ∀A ∈ � ∩ τ (�),

which means that h = d(μ◦τ–)
dμ

. By formula () and the definition of vn, we have

∫

τ (�)
χ

(
h(s)

)
=

∞∑

n=

χ (vn)μ
(


vn

An

)

=
m∑

n=

μ(An) +
∞∑

n=m+

√
nμ

(

vn

An

)
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≤  +
∞∑

n=m+

√
nμ(An)

≤  +
∞∑

n=m+

√
n

n(n + )

<  +
∞∑

n=


n/ < ∞.

In virtue of Theorem ., we conclude that the composition operator cτ from L�(�) into
L� (�) is continuous. However, since un → ∞ as n → ∞, we have ‖h‖L∞(τ (�)) = ∞.

Theorem . The composition operator cτ acts continuously from L�(�,�,μ) onto
L� (�,�,μ) if and only if μ(�\τ (�)) =  and the following two conditions are jointly sat-
isfied:

(i) ∃K> ∃A∈�∩�
μ(A)=

∃g∈L
+(�)∀s∈�\A∀u≥�(u)h(s) ≤ �(Ku) + g(s);

(ii) ∃K> ∃A∈�∩�
μ(A)=

∃p∈L
+(�)∀s∈�\A∀u≥�(u) ≤ �(Ku)h(s) + p(s),

where h(s) = dμ◦τ–

dμ
(s) for μ-a.e. s ∈ �.

Proof Obviously, the condition μ(�\τ (�)) =  is necessary for cτ (L�(�)) = L� (�), so in
the further part of the proof we assume this condition holds. Therefore, by Fact ., we
know that cτ acts from L�(�) onto L� (�) if and only if L�(�) = L�

h (�). Equivalently, this
holds if and only if we have two inclusions: L�(�) ⊂ L�

h (�) and L�
h (�) ⊂ L�(�). The first

inclusion holds if and only if condition (i) is satisfied and the reverse inclusion holds if and
only if condition (ii) is satisfied (see [] and []), and this finishes the proof. �

It is interesting and profitable to observe that the preceding theorem can be written in
the following form.

Theorem . The composition operator cτ acts continuously from L�(�) onto L� (�) if
and only if μ(�\τ (�)) =  and for some K >  the following two conditions are jointly sat-
isfied:

()
∫
�

χ (h(s)) dμ(s) < ∞;
()

∫
�

h(s)q( 
h(s) ) dμ(s) < ∞,

where χ is the function complementary in the sense of Young to the function � ◦ K�–, q is
the function complementary in the sense of Young to the function � ◦ K�–, and h(s) =
dμ◦τ–

dμ
(s) for μ-a.e. s ∈ �.

Proof In the proof of Theorem . we already showed that condition (i) from Theorem .
is equivalent to condition (). So, the proof will be finished if we show that condition ()
is equivalent to condition (ii) from Theorem ..

It is easy to see that condition (ii) is equivalent to the fact that q ∈ L
+(�), where

q(s) = sup
u≥

[
�(u) – �(Ku)h(s)

]
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for all s ∈ �. Since h(s) �=  for μ-a.e. s ∈ �, we have

q(s) = h(s) sup
u≥

[
�(u)
h(s)

– �(Ku)
]

= h(s) sup
v≥

[
v

h(s)
– �

(
K�–(v)

)]

= h(s)
(
� ◦ K�–)∗

(


h(s)

)

for μ-a.e. s ∈ �, where (� ◦ K�–)∗ is the complementary function to the function � ◦
K�–, which finishes the proof. �

3 Continuity of the multiplication operator Mw from L� into L� and from L�

onto L�

We will state criteria in order that Mw map L�(�,�,μ) into L� (�,�,μ), where � and
� are distinct Orlicz functions. Note that Mwx ∈ L� (�,�,μ) means that there is λ > 
such that I� (λw(t)x(t)) =

∫
�

�(λw(t)x(t)) dμ(t) < ∞. This is equivalent to the fact that x ∈
L�w (�,�,μ), where L�w (�,�,μ) is a Musielak-Orlicz space generated by the Musielak-
Orlicz function �w(t, u) := �(w(t)u). Let us begin with the following.

Theorem . The multiplication operator Mw maps L�(�,�,μ) into L� (�,�,μ) if and
only if

∫
�

χK (t, ) dμ(t) < ∞ for some K > , where χK (t, u) is, for fixed t ∈ �, the function
complementary in the sense of Young to the function � ◦ K

w(t)�
– with respect to u.

Proof The fact that Mw : L�(�,�,μ) → L� (�,�,μ) means that L�(�,�,μ) ⊂ L�w (�,
�,μ), which, by Theorem ., holds if and only if there are A ∈ � with μ(A) = , a constant
K > , and a function h ∈ L

+(�,�,μ) such that the inequality

�
(
w(t)u

) ≤ �(Ku) + h(t) ()

holds for all t ∈ � \ A and all u ∈ R. It is easy to see that this is equivalent to the fact that
for some K >  the function h̃K defined by the formula

h̃K (t) = sup
u∈R

[
�

(
w(t)u

)
– �(Ku)

]
= sup

u≥

[
�

(
w(t)u

)
– �(Ku)

]
()

is integrable over �. In fact, h̃K is the smallest function such that condition () holds with
h̃K in place of h. Setting in () u = �–(v)

w(t) , we get

h̃K (t) = sup
v>

[
v – �

(
K

w(t)
�–(v)

)]
= χK (t, ),

where χK (t, u) is the function complementary in the sense of Young to �◦ K
w(t)�

–. There-
fore, the fact that Mw maps continuously L�(�,�,μ) into L� (�,�,μ) is equivalent to the
fact that

∫
�

χK (t, ) dμ(t) < ∞. �

Theorem . The multiplication operator Mw maps L�(�,�,μ) onto the whole of
L� (�,�,μ) if and only if the following two conditions are jointly satisfied:
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(i)
∫
�

χK (t, ) dμ(t) < ∞ for some K > , where χK (t, u) is the function defined in
Theorem .;

(ii)
∫
�

UK (t, ) dμ(t) < ∞ for some K > , where UK (t, u) is, for fixed t ∈ �, the function
complementary in the sense of Young, with respect to u, to the function
(� ◦ Kw(·)�–)(t, u) = �(Kw(t)�–(u)).

Proof It is obvious that Mw maps L�(�,�,μ) onto L� (�,�,μ) if and only if μ(�\ supp w) =
 and {w(t)x(t) : x ∈ L�} = L� (�,�,μ). The space on the left-hand side of the last
equality is the Musielak-Orlicz space L�w (�), where �w(t, u) = �( u

w(t) ). Observe that
L�w (�,�,μ) = L� (�,�,μ) is equivalent to L�(�,�,μ) = L�w (�,�,μ), where �w(t, u) =
�(w(t)u). Therefore, the assumption that Mw maps L�(�,�,μ) onto L� (�,�,μ) means
that L�(�,�,μ) = L�w (�,�,μ), that is, the inclusions L�(�) ⊂ L�w (�) and L�w (�) ⊂
L�(�) hold. The preceding theorem established that the first inclusion is equivalent to
condition (i). We need only to prove that the reverse inclusion is equivalent to (ii). How-
ever, by Ishii’s theorem, the inclusion L�w (�) ⊂ L�(�) holds if and only if there is a con-
stant K > , a set A ∈ � with μ(A) = , and g ∈ L

+(�,�,μ), such that

�(u) ≤ �
(
Kw(t)u

)
+ g(t)

for all t ∈ � \ A and u ≥ . The last condition is equivalent to the condition

sup
u≥

[
�(u) – �

(
Kw(t)u

)] ∈ L
+(�,�,μ).

But note that

sup
u≥

[
�(u) – �

(
Kw(t)u

)]
= sup

v≥

[
v – �

(
Kw(t)�–(v)

)]

= UK (t, ),

where UK (t, u) is, for fixed t ∈ �, the function complementary in the sense of Young, with
respect to u, to the function M(t, u) = �(Kw(t)�–(u)). This finishes the proof. �

4 Compactness of the composition operator cτ from one Orlicz space into
another

We begin with some notions that will be useful in the following. Let (�,�,μ) be a non-
atomic, complete and σ -finite measure space. We say that functions in a set A contained
in the Musielak-Orlicz space L�(�) have equi-absolutely continuous norms if for any real
number ε >  there exist a set Bε ∈ � with μ(Bε) < ∞ and a real number δ = δ(ε) >  such
that for any function x ∈ A we have ‖xχ�\Bε‖� < ε and ‖xχB‖� < ε whenever B ∈ � ∩ Bε

and μ(B) < δ.
Let L�(�) = L�(�,�,μ) and L� (�) = L� (�,�,μ) be distinct Orlicz spaces. We say that

the operator T : L�(�) → L� (�) is equi-absolutely continuous if for any bounded set A ⊂
L�(�) all functions of the set T(A) ⊂ L� (�) have equi-absolutely continuous norms.

We will make use of the following theorem which gives necessary and sufficient condi-
tions for the relative compactness of a set of functions in a Musielak-Orlicz space.
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Theorem . (Theorem . in []) Let (�,�,μ) be a non-atomic σ -finite measure space
and let ϕ be a Musielak-Orlicz function. If the functions in a set A ⊂ Lϕ(�) all have equi-
absolutely continuous norms and A is relatively compact with respect to local convergence
in measure, then A is relatively compact in Eϕ(�), the subspace of absolutely continuous
functions in Lϕ(�).

Conversely, if a set A ⊂ Eϕ(�) is relatively compact, then all the functions in A have equi-
absolutely continuous norms and A is relatively compact with respect to local convergence
in measure.

In the proof of the forthcoming theorem we will need the following.

Lemma . (Lemma . in []) Let the measure μ be atomless and let a sequence {αi} of
positive numbers and a sequence {ai} of measurable, finite, non-negative functions in � be
given, satisfying the inequalities

∫

�

ai(t) dμ ≥ iαi for i = , , . . . .

Then there exist an increasing sequence {ik} of positive integers and a sequence {Ak} of
pairwise disjoint sets from � such that

∫

Ak

aik (t) dμ = αik for k = ,  . . . .

The following theorem will be of great importance in proving necessary and sufficient
conditions for the compactness of the composition operator cτ : L�(�) → L� (�).

Theorem . Let (�,�,μ) be a finite or infinite but σ -finite non-atomic and complete
measure space and τ be such that μ(τ–(A)) < ∞ whenever μ(A) < ∞ for any A ∈ � ∩τ (�).
Then the composition operator cτ : L�(�) → L� (�) is equi-absolutely continuous whenever
the following condition is satisfied:

∀
σ>

∃
A∈�∩τ (�)

μ(A)=

∃
gσ ∈L

+(τ (�))
∀

s∈τ (�)\A
∀

u≥
�(u)h(s) ≤ �(σu) + gσ (s). ()

Condition () is necessary for the equi-absolute continuity of cτ if μ(�) < ∞.

Proof Sufficiency. First we prove that for any ε >  there exists a set D ∈ � with μ(�\D) <
∞ such that all the functions in the set {cτ x : x ∈ S(L�)}, where S(L�) is the unit sphere
of L�, satisfy the condition ‖(cτ x)χD‖� < ε.

Let σ >  be a number such that ( + σ )σ < ε and let gσ be a function from condition
() corresponding to σ . Since gσ ∈ L

+(τ (�)), there exists a set C ∈ � ∩ τ (�) such that
‖gσ χC‖� < σ and μ(τ (�)\C) < ∞. Defining D = τ–(C), we have for any function x ∈ S(L�)

I�
(

cτ x
σ

χD

)
=

∫

�

�

(
cτ x(t)

σ
χD(t)

)
dμ(t)

=
∫

D
�

(
x(τ (t))

σ

)
dμ(t)
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=
∫

τ (D)
�

(
x(s)
σ

)
dμ ◦ τ–(s)

=
∫

C
�

(
x(s)
σ

)
h(s) dμ(s)

≤
∫

C
�

(
x(s)

)
dμ(s) +

∫

C
gσ (s) dμ(s)

≤  + σ . ()

By () we get

I�
(

(cτ x)χD

( + σ )σ

)
≤ 

 + σ
I�

(
cτ x
σ

χD

)
≤ 

 + σ
( + σ ) = 

for any x ∈ S(L�). Consequently, ‖(cτ x)χD‖� ≤ ( + σ )σ < ε for any x ∈ S(L�), which fin-
ishes the first part of the proof.

Now we show the following implication:

∀
σ>

∃
δ=δ(ε)

∀
B⊂τ (�)\D

∀
x∈S(L�)

μ(B) < δ �⇒ ∥
∥(cτ x)χB

∥
∥

�
< ε,

where D is the set from the first part of this proof.
Take any x ∈ S(L�). Since gσ ∈ L

+(τ (�)), it is obvious that there is δ = δ(σ ) >  such that,
if C ∈ � ∩ (τ (�) \ D) and μ(C) < δ, then

∫
C gσ (s) dμ(s) < σ . Let B = τ–(C). Then applying

condition (), we get

I�
(

cτ x
σ

χB

)
=

∫

�

�

(
cτ x(t)

σ
χB(t)

)
dμ(t)

=
∫

B
�

(
x(τ (t))

σ

)
dμ(t)

=
∫

τ (B)
�

(
x(s)
σ

)
dμ ◦ τ–(s)

=
∫

C
�

(
x(s)
σ

)
h(s) dμ(s)

≤
∫

C
�

(
x(s)

)
dμ(s) +

∫

C
gσ (s) dμ(s)

≤  + σ . ()

Now, by convexity of the modular I� and the fact that I� vanishes at zero we have I� (λx) ≤
λI� (x) for any x ∈ L� (�) and λ ∈ [, ]. From this fact and from (), we get

I�
(

(cτ x)χB

( + σ )σ

)
≤ 

 + σ
I�

(
cτ x
σ

χB

)
≤ 

 + σ
( + σ ) = .

Hence ‖(cτ x)χB‖� ≤ ( + σ )σ < ε. Since σ depends only on ε, δ = δ(σ ) depends only on ε,
and so the proof of sufficiency is finished.

Necessity. Assume that μ(�) < ∞ and for any σ >  define the function

hσ (s) = sup
u≥

{
�(u)h(s) – �(σu)

}
.
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hσ (s) is a non-negative (since for u = , we have �()h(s) – �(σ) = ) measurable func-
tion.

Suppose condition () is not satisfied. Then there is σ >  such that

∫

τ (�)
hσ (s) dμ(s) = +∞.

Let {ri}∞i= be a sequence of all non-negative rational numbers with r = . By the continuity
of the Orlicz functions � and � , we have

hσ (s) = sup
i=,,...

{
�(ri)h(s) – �(σri)

}
.

Let us write

hσ,n(s) = max
≤i≤n

{
�(ri)h(s) – �(σri)

}
.

It is obvious that hσ,n ≥  and hσ,n are measurable functions such that hσ,n ↗ hσ as
n → +∞ μ-a.e. in τ (�). By Beppo Levi’s theorem, we have

∫

τ (�)
hσ,n(s) dμ(s) ↗

∫

τ (�)
hσ (s) dμ(s).

Hence there exists a subsequence {hσ,nk } ⊂ {hσ,n} satisfying

∫

τ (�)
hσ,nk (s) dμ(s) ≥ k .

Without loss of generality we may assume that
∫
τ (�) hσ,n(s) dμ(s) ≥ n for each n ∈ N∪

{}. It is clear that for each s ∈ τ (�) and each n ∈N∪{} there exists r̃n(s) ∈ {r, r, r, . . . , rn}
such that

hσ,n(s) = �
(
r̃n(s)

)
h(s) – �

(
σ̃rn(s)

)
.

Hence

∫

τ (�)
�

(
r̃n(s)

)
h(s) dμ(s) =

∫

τ (�)
hσo ,n(s) dμ(s) +

∫

τ (�)
�

(
σ̃rn(s)

)
dμ(s) ≥ n.

Applying Lemma ., we conclude that there is a sequence of sets {�k} ⊂ τ (�) with �i ∩
�j = ∅ for i �= j such that

∫

�n

�
(
r̃n(s)

)
h(s) dμ(s) = .

Let r̄n(s) = r̃n(s)χ�n (s). Since r̄n are bounded measurable functions and h ∈ L(supp r̄n),
we get r̄n ∈ E�

h (�) with ‖r̄n‖� ,h =  and r̄n ∈ L�(�) for any n ∈N∪ {}.
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Since, by assumption, μ(�) < ∞, we have
∑∞

n= μ(�n) = μ(
⋃∞

n= �n) ≤ μ(�) < ∞,
whence limn→∞ μ(�n) = . This means that {r̄n}+∞

n= does not have equi-absolutely contin-
uous norms in E�

h (�). Yet, using the fact that gσ,n ≥  (n ∈N∪ {}), we get the following:

�
(
r̄n(s)

)
h(s) ≥ �

(
σr̄n(s)

)
, n ∈ N∪ {}.

So I�(σr̄n) ≤ , that is, ‖r̄n‖� ≤ 
σ

, which means that the operator cτ : L�(�) → L� (�) is
not equi-absolutely continuous. Hence we proved that condition () is necessary for the
equi-absolutely continuity of cτ . �

From Theorem ., applying Theorem . and the definition of a compact operator, we
directly get the following.

Theorem . If (�,�,μ) is a non-atomic complete finite or infinite but σ -finite measure
space and τ satisfies the assumption from Theorem ., then the composition operator cτ

from L�(�) into L� (�) is compact whenever the set cτ (S(L�)) is relatively compact with
respect to local convergence in measure and condition () from Theorem . is satisfied.

Under the assumption that μ(�) < ∞, if the composition operator cτ from L�(�) into
E� (�) is compact then the set cτ (S(L�)) is relatively compact with respect to convergence
in measure and condition () is satisfied.

In the case when � has infinite measure, we were unable to show that () is a necessary
condition for the equi-absolute continuity of the composition operator cτ . Instead, we can
deduce a slightly different (and weaker) condition, as the following theorem states.

Theorem . Assume that μ(�) = ∞ and μ(�\τ (�)) = . If the composition operator
cτ : L�(�) → L� (�) is equi-absolutely continuous, then the condition

∀
λ>

∃
A∈�

μ(A)=

∃
Kλ>

∃
gλ∈L

+(�)
∀

s∈�\A
∀

u≥
�(λu)h(s) ≤ Kλ�(u) + gλ(s) ()

is satisfied.

Proof We can assume without loss of generality that τ (�) = �. First, notice that if �, � ,
and h satisfy condition () then L�(�) ⊂ E�

h (�), where

E�
h (�) =

{
x ∈ L(�) : ∀

λ>
I� ,h(λx) =

∫

�

�
(
λx(t)

)
h(t) dμ(t) < ∞

}

is the subspace of absolutely continuous elements of L�
h (�). The inclusion results from the

assumption that cτ is an equi-absolutely continuous operator, i.e., for any bounded set A ⊂
L�(�), the functions of the set cτ (A) ⊂ L� (�) all have equi-absolutely continuous norms,
and the observation that, for any x ∈ L�(�), the singleton set {x} is bounded, and thus x
has an equi-absolutely continuous norm, which means that x is an absolutely continuous
element of L�

h (�), i.e., x ∈ E�
h (�).

Further, observe that

L�(�) =
⋃

λ>

L�λ ,∗(�), E�
h (�) =

⋂

λ>

L�λ ,∗
h (�),
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where for any λ >  we define �λ(u) = �(u) and L�,∗(�) = {x ∈ L(�) : I�(x) < ∞} is a
Musielak-Orlicz class (�λ and L� ,∗

h (�) are defined analogously). Hence the inclusion
L�(�) ⊂ E�

h (�) can be expressed as

⋃

λ>

L�λ ,∗(�) ⊂
⋂

λ>

L�λ ,∗
h (�).

This means that, for any λ > , the Musielak-Orlicz class L�λ ,∗(�) is contained in all of
L�λ ,∗

h (�) (λ > ). In particular, taking λ = , we see that L�,∗(�) is contained in all the
Musielak-Orlicz classes L�λ ,∗

h (�) (λ > ). By Theorem . in [], this is equivalent to

∀
λ>

∃
A∈�

μ(A)=

∃
Kλ>

∃
gλ∈L

+(�)
∀

s∈�\A
∀

u≥
�(λu)h(s) ≤ Kλ�(u) + gλ(s),

which finishes the proof. �

From the preceding theorem, applying Theorem ., we can deduce the following nec-
essary condition for the compactness of the composition operator cτ :

Theorem . Assume that μ(�) = ∞ and μ(�\τ (�)) = . If the composition operator
cτ : L�(�) → E� (�) is compact then the following conditions are jointly satisfied:

() the set cτ (S(L�)) is relatively compact with respect to local convergence in measure;
() the functions � and � satisfy condition ().

Remark . If there exists ε >  such that the set

Bε :=
{

t ∈ τ (�) : ∀
u≥

�(u)h(t) > �(εu)
}

has positive measure, then no composition operator cτ : L�(�) → L� (�) over a non-
atomic measure space (�,�,μ) is compact.

Proof of Remark . Assume that there exists ε >  such that the measure of the set Bε is
positive. Then in the set Bε we can find a sequence of measurable and pairwise disjoint
sets {Bn} in τ (�) having positive and finite measure. Define

xn =
χBn

‖χBn‖�

= �–
(


μ(Bn)

)
χBn .

Obviously, I�(xn) = , so ‖xn‖� =  for all n ∈N. We have

I�
(

εxn

‖xn ◦ τ‖�

,�
)

=
∫

τ (�)
�

(
εxn(t)

‖xn ◦ τ‖�

)
dμ(t)

<
∫

τ (�)
�

(
xn(t)

‖xn ◦ τ‖�

)
h(t) dμ(t)

=
∫

�

�

(
(xn ◦ τ )(t)
‖xn ◦ τ‖�

)
dμ(t) = I�

(
cτ xn

‖cτ xn‖�

,�
)

≤ .
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Therefore,
∥∥
∥∥

εxn

‖xn ◦ τ‖�

∥∥
∥∥

�

≤ ,

i.e., ‖cτ xn‖� ≥ ε‖xn‖� = ε because ‖xn‖� = . Since the supports of xn are pairwise dis-
joint, for all n, m ∈N, m �= n we get

‖cτ xn – cτ xm‖� =
∥∥cτ (xn – xm)

∥∥
�

≥ max
{‖cτ xn‖� ,‖cτ xm‖�

} ≥ ε.

Hence the sequence {cτ xn}∞n= has no Cauchy subsequence, that is, cτ (S(L�(�))) is not rel-
atively compact. Consequently, no composition operator cτ from L�(�) into L� (�) over
a non-atomic measure space (�,�,μ) is compact. �

5 Compactness of the multiplication operator Mw from one Orlicz space into
another

We state a sufficient condition for the compactness of the multiplication operator Mw :
L�(�) → L� (�).

Theorem . Let (�,�,μ) be a non-atomic complete, finite or infinite but σ -finite measure
space and let �, � be two Orlicz functions and w ∈ L

+(�,�,μ). If the triple �, � , w satisfies
the condition

∀
σ>

∃
Aσ ∈�

μ(Aσ )=

∃
gσ ∈L

+(�)
∀

t∈�\A
∀

u≥
�

(
w(t)u

) ≤ �(σu) + gσ (t) ()

then the multiplication operator Mw from L�(�) into L� (�) is equi-absolutely continuous.

Proof First we show that given ε >  there exists a set B ∈ � with μ(B) < ∞ such that
‖xχ�\B‖� < ε for any function x ∈ S(L�(�)).

Take ε >  and let σ >  be such that σ ( + σ ) < ε. Let gσ be a function from condition
() corresponding to σ . Since gσ ∈ L

+(�), there exists B ∈ � with μ(B) < ∞ such that
‖gσ χ�\B‖L(�) < σ . Then

I�
(

Mwx
σ

χ�\B

)
≤ I�(xχ�\B) +

∫

�\B
gσ (t) dμ(t) ≤  + σ ,

whence

I�
(

Mwx
σ ( + σ )

χ�\B

)
≤ 

 + σ
I�

(
Mwxχ�\B

σ

)
≤ 

 + σ
( + σ ) = ,

that is, ‖Mwxχ�\B‖� ≤ σ ( + σ ) < ε.
Next, we show that for ε >  there exists δ = δ(ε) >  such that for any D ⊂ B and any

function x ∈ S(L�), if μ(D) < δ then ‖MwxχD‖� < ε.
Let ε >  and let σ >  be such that σ ( + σ ) < ε. By the absolute continuity of gσ in

L(� ∩ B), there exists δ = δ(σ ) such that ‖gσ χC‖L(�) < σ whenever C ⊂ B and μ(C) < δ.
Then, by condition (),

I�
(

Mwx
σ

χC

)
≤ I�(xχC) + ‖gσ χC‖L(�) ≤  + σ ,
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whence

I�
(

Mwx
σ ( + σ )

χC

)
≤ 

 + σ
I�

(
MwxχC

σ

)
≤ ,

and so ‖Mwx‖� ≤ σ ( + σ ) < ε, which finishes the proof. �

Remark . Let us note that in the case when � = � , Theorem . can only hold when
� ∈ �(∞).

Indeed, if Theorem . holds, then the operator Mw acts, in fact, from L�(�) into E�(�).
However, if we assume that � /∈ �(∞) and w /∈ L∞(�,�,μ), then defining the set

A =
{

t ∈ � : w(t) ≥ 
}

,

we have μ(A) > . Therefore, we can build x ∈ L�(�) such that supp x ⊂ A, I�(x) ≤ , and
I�(λx) = ∞ for any λ >  (see [] and []). Hence I�(Mwx) ≥ I�(x) = ∞, which means
that Mwx /∈ E�(�), so Mw does not act from L�(�) into E�(�).

Applying Theorem ., we directly get from Theorem . and the definition of a compact
operator the following.

Theorem . If (�,�,μ) is a non-atomic complete finite or infinite but σ -finite measure
space, then the multiplication operator cτ form L�(�) into L� (�) is compact whenever
the set Mw(S(L�)) is relatively compact with respect to local convergence in measure and
condition () from Theorem . is satisfied.

Theorems . and . resemble closely the sufficiency part of Theorems . and . for
the composition operator. Similarly, we will formulate necessary conditions for the equi-
absolute continuity of the multiplication operator: one in the case when μ(�) < ∞ and
the other in the case when μ(�) = ∞. The respective proofs proceed along the lines of the
proofs for the composition operator, and therefore will be omitted.

Theorem . If (�,�,μ) is a finite non-atomic and complete measure space and the mul-
tiplication operator Mw : L�(�) → L� (�) is equi-absolutely continuous then the following
condition is satisfied:

∀
σ>

∃
A∈�

μ(A)=

∃
gσ ∈L

+(�)
∀

t∈�\A
∀

u≥
�

(
w(t)u

) ≤ �(σu) + gσ (t).

Theorem . If (�,�,μ) is an infinite but σ -finite non-atomic and complete measure
space and the multiplication operator Mw : L�(�) → L� (�) is equi-absolutely continuous,
then the following condition is satisfied:

∀
λ>

∃
A∈�

μ(A)=

∃
Kλ>

∃
gλ∈L

+(�)
∀

t∈�\A
∀

u≥
�

(
w(t)λu

) ≤ Kλ�(u) + gλ(t).

The respective necessary conditions for the compactness of the multiplication operator
are analogous to the ones for the composition operator from Theorems . and ..
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