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Abstract

In this paper, we present the best possible parameters p and g such that the double
inequality

Mp(a,b) < V(a,b) < My(a,b)

holds for all g, b > 0 with a # b, where M,(a,b) = [(@ + 6")/2]"" (r #0) and Mo(a, b) =
Vab is the rth power mean and V(a,b) = (a - b)/[v/2 sinh ™" ((a - b)/~/2ab)] is the
second Yang mean.
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1 Introduction
For r € R, the rth power mean M, (a,b) of two distinct positive real numbers a and b is
defined by

r 7
(55 0,

Mr(d,b): ﬁ 0
avo, r=~9.

(1.1)

It is well known that M,(a, b) is continuous and strictly increasing with respect to r € R
for fixed a, b > 0 with a # b. Many classical means are special cases of the power mean, for
example, M_;(a, b) = 2ab/(a + b) = H(a, b) is the harmonic mean, M(a, b) = Vab = G(a, b)
is the geometric mean, M;(a, b) = (a+ b)/2 = A(a, b) is the arithmetic mean, and My(a, b) =
\/m = Q(a, b) is the quadratic mean. The main properties for the power mean are

given in [1].

Let
_b 1/ ga\ V@b b
L(a,b) = ai, I(a,b) = _(ﬂ_b) , P(a,b) = a.ib’
loga —logb e\b 2arcsin(%})
-b 2 /2
U(a,b) = 77 — T*(a,b) = = / Va2 cos? 0 + b sin®0do,
\/Earctan(m) 7 Jo
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-b

NS(a,b) = .“flﬂ_b, X(a,b) = A(a, b)eC@h/Pab-1
2sinh™ (%)
-b
T(a,b) = d—b’ B(a,b) = Q(a, b)eA(”’b)/T(”’b)_l,
2 arctan(Z7;)
and

-b

Vi) = (1.2)

I w1 a=b \
/2sinh («/%)

be, respectively, the logarithmic mean, identric mean, first Seiffert mean [2], first Yang
mean [3], Toader mean [4], Neuman-Sdndor mean [5, 6], Sdndor mean [7], second Seif-
fert mean [8], Sindor-Yang mean [3], and second Yang mean [3] of two distinct positive
real numbers a and b, where sinh™ (x) = log(x + V%% +1) is the inverse hyperbolic sine
function.

Recently, the bounds for certain bivariate means in terms of the power mean have at-
tracted the attention of many mathematicians. Radé [9] (see also [10—12]) proved that the

double inequalities

My(a,b) < L(a,b) < My(a,b),
M, (a,b) <I(a,b) < M,(a,b)

hold for all a,b > 0 with a #b ifand only if p <0, g >1/3, A <2/3, and p > log 2.
In [13-16], the authors proved that the double inequality

My(a,b) < T*(a, b) < My(a, b)

holds for all a,b > 0 with a # b if and only if p < 3/2 and g > log2/(logw —log?2).

Jagers [17], Hasto [18, 19], Yang [20], and Costin and Toader [21] proved that p; =
log2/logm, q1 = 2/3, p> =log2/(logw —1og2), and ¢, = 5/3 are the best possible parame-
ters such that the double inequalities

My, (a,b) < Pla,b) < My, (a, b), 1.9
1.4
My, (a,b) < T(a,b) < My,(a, b)

hold for all ¢, b > 0 with a # b.
In [21-26], the authors proved that the double inequalities

M, (a,b) < NS(a,b) < M, (a,b),
M)\z (ﬂ’ b) < u(ﬂ) b) < M/l.z (ﬂ, b);

M)Lg (ﬂ; b) < X(ﬂ, b) < M/Ag (61, b):

hold for all a,b > 0 with a # b if and only if A; <log2/log[2log(1 + ﬁ)], 1> 4/3, kg <
2log2/(2logm —log2), my > 4/3, A3 <1/3, and u3 >1log2/(1 +log2).
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Very recently, Yang and Chu [27] showed that p = 4log2/(4 + 2log2 — ) and g = 4/3
are the best possible parameters such that the double inequality

My(a, b) < Bla,b) < My(a, b)

holds for all @, b > 0 with a # b.
The main purpose of this paper is to present the best possible parameters p and g such
that the double inequality

Mpy(a,b) < V(a,b) < My(a,b)
holds for all @, b > 0 with a # b.

2 Lemmas
In order to prove our main results we need three lemmas, which we present in this sec-
tion.

Lemma 2.1 Lett>0,p € R, and

f(t,p) = 2sinh[2(p - 1)¢] + sinh[2(p + 1)¢] + sinh[2(p — 2)¢]

+ psinh(4¢) — sinh(2¢). (2.1)

Then the following statements are true:
(i) f(t,p)>0 forallt>0 ifand only if p > 2/3;
(i) f(t,p) <0 forallt>0 ifand only ifp <O.

Proof 1t follows from (2.1) that

af (t,p)
at

= sinh(4t) + 4t cosh[2(p - l)t] + 2t cosh[Z(p + l)t] +2t cosh[2(p - 2)t]

>0 (2.2)

forallt>0and p e R.
(i) Iff(¢,p) > 0 for all £ > 0, then (2.1) leads to

i 22120

t—0% 3

which gives p > 2/3.
If p > 2/3, then (2.1) and (2.2) lead to the conclusion that

f(t,p) zf(t, %) = % sinh(4t) — sinh(2¢) — 2 sinh(%t) - sinh(%t) + sinh(gt)

8 . 42 2 o f 2 2
= —sinh’| =¢ ) cosh{ =t || 8cosh“| =¢ ) +6¢cosh|{ =t | -3[>0
3 3 3 3 3

forall £ > 0.
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(ii) If f (¢, p) < O for all £ > 0, then from part (i) we know that p < 2/3. We assert that p <0
otherwise 0 < p < 2/3 and (2.1) leads to

AGY))
t—>+00 et
_ —2sinh[2(1 - p)¢t] + sinh[2(1 + p)t] — sinh[2(2 — p)¢] + p sinh(4¢) — sinh(2¢)
B t%u;-noo e4t
= p >0,
2

which contradicts with f (¢, p) < 0 for all £ > 0.
If p <0, then from (2.1) and (2.2) we have

F(t,p) <f(t,0) = —2sinh(2¢) — sinh(4¢) < 0

forall £ > 0.
Lemma 2.2 The double inequality

up /2 sinh(¢) /g
[cosh(pt ] —smh’l[ V2 sinh (0] < [cosh(qt)] (2.3)

holds for all t > 0 if and only if p <0 and q > 2/3. Here

1/p . Up
[cosh(pt)] |p=0 = ;1_{% [cosh(pt)] .
Proof Lett >0, p € R and F(t,p) be defined by

_ /2 sinh(z) 1
F(t,p) = log[m} — ; log[COSh(pt)] (24)

Then making use of the power series formulas

3 tS

t o t2}’l+1
sinh(f) =t+ —+ =+ = =
®) = 3! 5! 7‘ Z (2m +1)!
n=0
2 o0 t2n
cosh(f) =1+ — + — + — +-
(&)= 21 4l 6! ;

1 £ 1x3 ¢ 1x3x5 ¢
sinh™(f) =t - = x — + X

— __7X_+...
2 3 2x4 5 2x4x6 7

e ((D)"(@2n)?

we get
V/2sinh(¢) s ) 1 1,
Og[—sinhl(«/ﬁsinh(t))} =3t o(#), 5 log[cosh(pt)] = Sht o(t) (2.5)

fort — 0"



Li et al. Journal of Inequalities and Applications (2016) 2016:31

It follows from (2.4) and (2.5) that
F(0*,p) =0, (2.6)

oF(t,p) cosh[(p —1)¢]
P S _ft.p) 27)
ot sinh(£) cosh(pt) sinh ™ [v/2 sinh(z)]
where
/2 sinh(t) cosh(pt) cosh(t)

t,p) = sinh™ /2 sinh(¢)] - , 2.8
Aep) [ ( )] J/cosh(2¢t) cosh[(p — 1)t] 28)
£1(0,p) =0, (2.9)

of1(t, p) /2 sinh(¢)
Abp) T (210)
ot 4[cosh(2t)]3/2 cosh”[(p — 1)¢]
where f(t, p) is defined by Lemma 2.1.
. F(t,p) 1 2
and
tlim F(t,p) = —oc0 (2.12)
ifp>0.
We first prove that the inequality
2 sinh(¢
M < [cosh(pt)]w (2.13)
sinh™' [+/2 sinh(#)]
holds for all £ > 0 if and only if p > 2/3.
If p > 2/3, then inequality (2.13) holds for all ¢ > 0 follows easily from Lemma 2.1(i),
(2.4), (2.6), (2.7), (2.9), and (2.10).
If inequality (2.13) holds for all ¢ > 0, then (2.4) and (2.11) lead to p > 2/3.
Next, we prove that the inequality
2 sinh(¢
V2 sinh(?) > [cosh(pt)]l/p (2.14)

sinh™[+/2 sinh(#)]

holds for all £ > 0 if and only if p < 0.

If p < 0, then that inequality (2.14) holds for all ¢ > 0 follows easily from Lemma 2.1(ii),
(2.4), (2.6), (2.7), (2.9), and (2.10).

If inequality (2.14) holds for all £ > 0, then (2.4) leads to F(t, p) > 0. We assert that p <0,
otherwise p > 0 and (2.12) implies that there exists large enough T, > 0 such that F(¢,p) < 0
for t € (T, 00). O

Lemma 2.3 Lett >0, p € R, and fi(¢, p) be defined by (2.8). Then the following statements
are true:

Page 5 of 9
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(i) filt,p) <0 forallt>0ifand only ifp > 2/3;
(i) f(t,p) >0 forallt>0 ifand only ifp <0.

Proof (i) If p > 2/3, then fi(¢,p) < 0 for all £ > 0 follows easily from (2.9) and (2.10) together
with Lemma 2.1(i).
If fi(¢,p) <0 forall £ > 0, then (2.8) leads to

_ _2\3 3
i i) V2 -3t +O(t)=_ﬁ(p 2)

t—>0 3 t

which gives p > 2/3.

(ii) If p < 0, then fi(¢, p) > O for all £ > O follows easily from (2.9) and (2.10) together with
Lemma 2.1(ii).

Note that

Atp)
ellpl-lp-1))t Sll’lh(t)
B sinh™![/2 sinh(#)] /2 cosh(t) cosh(pt)
" ellp-p-1ginh(f)  elpl-lp-1D¢ cosh[(p — 1)t]+/cosh(2£)

~ log[+/2sinh(£) + v/cosh(28)]  +/2(1 + e 2I!) cosh(z)
- ellPl-Ip=1D¢ sinh(¢) 1+ e2P-1t)/cosh(20)

(2.15)

Iffi(t,p) > 0 for all £ > 0, then

fi(tp)

t—+o0 ellpl=Ip-1)t Slllh(t) -
and we assert that p < 0. Otherwise, equation (2.15) leads to

t;
lim & = —Q <0
t=>+00 ellP=Ip-1D¢ ginh(f) 2

ifp=1and

ftp) —_J2<0

t—+oo ellpl-lp-1t sinh(¢)

if p€(0,1) U (1, 00). O

3 Main results
Theorem 3.1 The double inequality

My(a,b) < V(a,b) < My(a,b)
holds for all a,b > 0 with a # b if and only if p < 0 and q > 2/3.

Proof Since both M, (a,b) and V (a, b) are symmetric and homogeneous of degree 1, with-
out loss of generality, we assume thata > b > 0. Let £ = % log(a/b) > 0 and r € R, then (1.1)
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and (1.2) lead to
ot ~/2ab sinh(t)
Viab) = \/_V<\/7 \/7> «/—V ) sinh™ 1[\/— 2 sinh(z)] (3.1)
and
M,(a,b) = VabM, (/% \@) = VabM, (¢, e™") = Vab[cosh(rt)]"”". (3.2)

Therefore, Theorem 3.1 follows easily from (3.1) and (3.2) together with Lemma 2.2. OJ

Theorem 3.2 The double inequality

a1 + b7V aby/2(a? + b2) a®™t + b1 ab/2(a? + b?)
<V(a,b) <
ab + br a+b al + b1 a+b

holds for all a,b > 0 with a # b if and only if p > 2/3 and q < 0.

Proof Without loss of generality, we assume thata > b > 0. Let £ = % log(a/b) >0andr e R,

then
b aby2(a? + b?) Vab cosh[(r — 1)t]+/cosh(2£) (3.3)
a +b a+b - cosh(t) cosh(rt) ’ ’

Therefore, Theorem 3.2 follows easily from (3.1) and (3.3) together with Lemma 2.3. (0

Let p € R and 4,b > 0. Then the pth Lehmer mean [28] L,(a,b) = % is strictly

increasing with respect to p € R for fixed a,b > 0 with a # b. From Theorem 3.2 we get
Corollary 3.3 immediately.

Corollary 3.3 The double inequality

Qla, b)G*(a, b) Viab) Q(a, b)G*(a, b)
A@b)L, @b~ " Aab)L,(ab)

holds for all a,b > 0 with a # b if and only if p > 2/3 and g < 0.
Letp=2/3,1,2,+00 and g = 0,-1/2,-1,-2,—00. Then Corollary 3.3 leads to
Corollary 3.4 The inequalities
Qa,b) G*(ab) G*(a,b)Q(a,b)
< <
Ala,b)  Qla,b) A2%(a,b)
Qla, b)G*>(a, b)M;)3(a, b)

Ala,b)M3}3(a,b)

Q(a, b)[2A(a, b) - G(a, b)]
Ala, b)

Q@b 2@@h-Gabh) . 0wh
“X@b T Q@b xla bl @ b)

hold for all a,b > 0 with a #b.

min{a, b}

< Vl(a,b) < Q(a,b)
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From (1.3), (1.4), and Theorem 3.1 we clearly see that My/3(a, b) is the sharp upper power
mean bound for the 2-order generalized logarithmic mean L?(a?, b?), the first Seiffert
mean P(a, b), and the second Yang mean V'(a, b). In [29], Theorem 3, Yang and Chu proved
that the inequality

P(a,b)> L' (a’,b") (3.4)

holds for all 4,5 > 0 with a # b if and only if r < 2.
As a result of comparing V (a, b) with L2(a?, b?), we have the following.

Theorem 3.5 The inequality
V(a,b) < L'? (az, bz)
holds for all a,b > 0 with a #b.

Proof We assume thata > b. Let ¢t = % log(a/b) > 0, then

2_p? 172 sinh(2¢)
L2 (2 ) = a - . .
(a5 <2(loga —log b)> ab 2t (35)

It follows from (3.1) and (3.5) that

L2 (az,bZ) - V(a,b)

= \/ﬂﬁ%(ﬂ) [sinh—l(\/i sinh(t)) - \/Ztanh(t)]. (3.6)

Let
g(#) = sinh™! (v/2sinh(¢)) — v2¢ tanh(?). (3.7)
Then simple computation leads to

£(0) =0, (3.8)

cosh(t) _t+ sinh(¢) cosh(t) )
Jcosh(28)  2cosh?(t)y/ftanh(?) )’

g0 - ﬁ(

cosh(t) \? £ + sinh(¢) cosh(z) \*

(«/W(%)) - (ZCoshz(t)«/W)

_cosh®(#) (¢ + sinh(¢) cosh(t))?

" cosh(2t) 4t sinh(¢) cosh3(£)

_ (2£cosh(2¢) - sinh(2£))(sinh(2¢) cosh(2¢) — 2£)

- 16¢ sinh(z) cosh(2¢) cosh®(¢)

~ sinh(4t) — 4t

16t sinh(¢) cosh(2¢) cosh®(2)

(3.10)

(cosh(Zt) - sinh(2t)) >0

2t

for ¢t > 0.
Therefore, Theorem 3.5 follows easily from (3.6)-(3.10). O
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Remark 3.6 From (1.4), (3.4), Theorems 3.1, and 3.5 we get the inequalities
Mo(a,b) < V(a,b) < L'? (az,b2) < P(a,b) < My;3(a,b)

forall a,b > 0 with a # b.
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