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Abstract
In this paper, a new class of inverse mixed quasi-variational inequalities (IMQVI) is
introduced and studied in Hilbert spaces. This type of inequalities includes many
quasi-variational inequalities and inverse variational inequalities as its special cases.
We first prove some properties of generalized f -projection operators in Hilbert spaces.
Then we use these properties to obtain the existence and uniqueness result.
Moreover, error bounds for IMQVI in terms of the residual function are also
established. The results presented in this paper are new and improve some results in
the recent literature.
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1 Introduction
It the past decades, variational inequalities and their generalizations have been widely
used in finance, economics, transportation, optimization, operations research, and the
engineering sciences. For instance, Lescarret [] and Browder [] introduced mixed vari-
ational inequalities in s. Later, Konnov and Volotskaya [] applied mixed variational
inequalities to several classes of general economic equilibrium problems and oligopolis-
tic equilibrium problems. In , He et al. [, ] studied a class of inverse variational
inequalities and also found their applications in practical world, such as normative flow
control problems, which require the network equilibrium state to be in a linearly con-
strained set, and bipartite market equilibrium problems. Some other generalizations such
as quasi-variational inequalities also have been studied extensively. For details, we refer to
[, –] and the references therein.

Motivated and inspired by the work mentioned above, in this paper, we introduce a new
class of inverse mixed quasi-variational inequalities (IMQVI) in Hilbert spaces: find an
x ∈ H , such that Ax ∈ K(x) and

〈
g(x), y – Ax

〉
+ ρf (y) – ρf (Ax) ≥ , ∀y ∈ K(x), (.)
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where g, A : H → H are two continuous mappings, K : H → H is a set-valued mapping
such that, for each x ∈ H , K(x) ⊂ H is a closed convex set and f : H → R∪{+∞} is a proper,
convex, and lower semicontinuous on K(x) for each x ∈ H .

We first prove some properties of generalized f -projection operators in Hilbert spaces
and then explore the existence and uniqueness results of the IMQVI. Furthermore, we
study error bounds for the IMQVI in terms of the residual function. Since IMQVI nat-
urally encompasses many types of quasi-variational inequalities and inverse variational
inequalities, the results presented in this paper therefore generalize and improve some
results in the existing literature.

2 Preliminaries
Let H be a real Hilbert space with scalar product and norm denoted by 〈·, ·〉 and ‖ · ‖, re-
spectively. Now we recall the concept of the generalized f -projector operator introduced
by Wu and Huang []. More properties and applications on generalized projection op-
erators can be found in [–]. Let G : H × K → R ∪ {+∞} be a functional defined as
follows:

G(x, ξ ) = ‖x‖ – 〈x, ξ 〉 + ‖ξ‖ + ρf (ξ ),

where ξ ∈ K , x ∈ H , ρ is a positive number and f : K → R ∪ {+∞} is proper, convex, and
lower semicontinuous.

Definition . [] Let H be a real Hilbert space, and K be a nonempty closed and convex
subset of H . We say that Pf ,ρ

K : H → K is a generalized f -projection operator if

Pf ,ρ
K x =

{
u ∈ K : G(x, u) = inf

ξ∈K
G(x, ξ )

}
, ∀x ∈ H .

From the work of Wu and Huang [] and Fan et al. [], we know that the generalized
f -projection operator has the following properties.

Lemma . [, ] Let H be a real Hilbert space, and K be a nonempty closed and convex
subset of H . Then the following statements hold:

(i) Pf ,ρ
K x is nonempty and Pf ,ρ

K is a single valued mapping;
(ii) for all x ∈ H , x∗ = Pf ,ρ

K x if and only if

〈
x∗ – x, y – x∗〉 + ρf (y) – ρf

(
x∗) ≥ , ∀y ∈ K ;

(iii) Pf ,ρ
K is continuous.

Definition . Let H be a real Hilbert space, and g, A : H → H be two single-valued map-
pings.

(i) A is said to be λ-strongly monotone on H if there exists a constant λ such that

〈Ax – Ay, x – y〉 ≥ λ‖x – y‖, ∀x, y ∈ H ;

(ii) A is said to be γ -Lipschitz continuous on H if there exists a constant γ >  such that

‖Ax – Ay‖ ≤ γ ‖x – y‖, ∀x, y ∈ H ;
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(iii) A is said to be co-coercive on H if there exists a positive constant τ >  such that

〈Ax – Ay, x – y〉 ≥ τ‖Ax – Ay‖, ∀x, y ∈ H ;

(iv) (A, g) is said to be a μ-strongly monotone couple on H if there exists a positive
constant μ >  such that

〈
Ax – Ay, g(x) – g(y)

〉 ≥ μ‖x – y‖, ∀x, y ∈ H .

Let g, A : H → H be two continuous mappings, and K : H → H be a set-valued mapping
such that, for each x ∈ H , K(x) ⊂ H is a closed convex set. Let f : H → R∪{+∞} be proper,
convex, and lower semicontinuous on K(x) for each x ∈ H . Now we consider the inverse
mixed quasi-variational inequality (for short, IMQVI) (.): find an x ∈ H , such that Ax ∈
K(x) and

〈
g(x), y – Ax

〉
+ ρf (y) – ρf (Ax) ≥ , ∀y ∈ K(x). (.)

Remark IMQVI encompasses several models of quasi-variational inequalities and inverse
variational inequalities. For example:

() If g is the identity mapping and K(x) is a constant set K for all x ∈ H , then IMQVI
reduces immediately to the inverse mixed variational inequality [], which is defined as
follows: find an x ∈ H , such that Ax ∈ K and

〈
g(x), y – Ax

〉
+ ρf (y) – ρf (Ax) ≥ , ∀y ∈ K .

() If H = Rn, g is the identity mapping, f (x) = , and K(x) is a constant set K for all
x ∈ Rn, then IMQVI reduces to the following inverse variational inequality: find an x ∈ Rn,
such that Ax ∈ K and

〈x, y – Ax〉 ≥ , ∀y ∈ K ,

which was first proposed by He and Liu [].
() If H = Rn and f (x) =  for all x ∈ Rn, then IMQVI reduces to the inverse quasi-

variational inequality: find an x ∈ Rn, such that Ax ∈ K(x) and

〈
g(x), y – Ax

〉 ≥ , ∀y ∈ K(x). (.)

The inverse quasi-variational inequality (.) was introduced and studied by Aussel et al.
[]. Moreover, if g is the identity mapping, then IMQVI reduces to the following inverse
quasi-variational inequality: find an x ∈ Rn, such that Ax ∈ K(x) and

〈x, y – Ax〉 ≥ , ∀y ∈ K(x). (.)

() If H = Rn, A is the identity mapping and f (x) =  for all x ∈ Rn, then IMQVI becomes
the classic quasi-variational inequality.
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3 Some properties of generalized f -projection operators
Let K : H → H be a set-valued mapping such that K(x) is a closed convex set in H , for
each x ∈ H . The Hausdorff distance between K(x) and K(y) is defined as follows:

H
[
K(x), K(y)

]
= max

{
sup

u∈K (x)
inf

v∈K (y)
‖u – v‖, sup

v∈K (y)
inf

u∈K (x)
‖u – v‖

}
.

From Definition . and Lemma ., we see that the generalized f -projection of any z ∈ H
on the set K(x) is defined by

Pf ,ρ
K (x)z = arg inf

ξ∈K (x)
G(z, ξ ).

Now we apply the basic inequality in Lemma . to prove some properties of the operator
Pf ,ρ

K (x) in Hilbert spaces.

Theorem . Let H be a real Hilbert space and M be a nonempty bounded subset of H .
Let K : H → H be a set-valued mapping such that, for each x ∈ H , K(x) ⊂ H is a closed
convex set and f : H → R ∪ {+∞} be proper, convex, and lower semicontinuous on K (x).
Assume that

(i) there exists a constant γ >  such that H[K(x), K(y)] ≤ γ ‖x – y‖, ∀x, y ∈ H ;
(ii)  ∈ ⋂

u∈H K(u);
(iii) f is l-Lipschitz continuous on H .
Then there exists a constant k >  such that

∥∥Pf ,ρ
K (x)z – Pf ,ρ

K (y)z
∥∥ ≤ k‖x – y‖, ∀x, y ∈ H , z ∈ M.

Proof For any x, y ∈ H and z ∈ M, denote x̄ = Pf ,ρ
K (x)z and ȳ = Pf ,ρ

K (y)z. Since x̄ ∈ K(x), ȳ ∈ K(y)
and H[K(x), K(y)] ≤ γ ‖x – y‖, we know that there exist ξ ∈ K(x) and η ∈ K(y) such that
‖x̄ – η‖ ≤ γ ‖x – y‖ and ‖ȳ – ξ‖ ≤ γ ‖x – y‖. From Lemma ., we have

〈x̄ – z, ξ – x̄〉 + ρf (ξ ) – ρf (x̄) ≥  (.)

and

〈ȳ – z,η – ȳ〉 + ρf (η) – ρf (ȳ) ≥ . (.)

By the Lipschitz continuity of f , it follows from (.) and (.) that

‖x̄ – ȳ‖ = 〈x̄ – ȳ, x̄ – ȳ〉
= 〈x̄ – z, x̄ – ȳ〉 + 〈ȳ – z, ȳ – x̄〉
= 〈x̄ – z, x̄ – ξ 〉 + 〈x̄ – z, ξ – ȳ〉 + 〈ȳ – z, ȳ – η〉 + 〈ȳ – z,η – x̄〉
≤ ρf (ξ ) – ρf (ȳ) + ‖x̄ – z‖‖ξ – ȳ‖ + ρf (η) – ρf (x̄) + ‖ȳ – z‖‖η – x̄‖
≤ ρl‖ξ – ȳ‖ + ‖x̄ – z‖‖ξ – ȳ‖ + ρl‖η – x̄‖ + ‖ȳ – z‖‖η – x̄‖
≤ γ

(
ρl + ‖x̄ – z‖ + ‖ȳ – z‖)‖x – y‖, (.)
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and so

‖x̄ – ȳ‖ ≤
√

γ
(
ρl + ‖x̄ – z‖ + ‖ȳ – z‖)‖x – y‖. (.)

On the other hand, since M is bounded, we know that there exists a positive number m
such that ‖v‖ ≤ m for all v ∈ M. Noticing that  ∈ K(u) for all u ∈ H , we have

G
(
z, Pf ,ρ

K (u)z
)

= ‖z‖ – 
〈
z, Pf ,ρ

K (u)z
〉
+

∥∥Pf ,ρ
K (u)z

∥∥ + ρf
(
Pf ,ρ

K (u)z
)

≤ G(z, )

= ‖z‖ + ρf (). (.)

From the Lipschitz continuity of f , it follows from (.) that

∥∥Pf ,ρ
K (u)z

∥∥ ≤ 
〈
z, Pf ,ρ

K (u)z
〉
+ ρf () – ρf

(
Pf ,ρ

K (u)z
)

≤ ‖z‖∥∥Pf ,ρ
K (u)z

∥∥ + ρl
∥∥Pf ,ρ

K (u)z
∥∥

≤ (m + ρl)
∥∥Pf ,ρ

K (u)z
∥∥,

and so ‖Pf ,ρ
K (u)z‖ ≤ (m + ρl) for all u ∈ H , z ∈ M. Since ‖Pf ,ρ

K (x)z‖ ≤ (m + ρl), ‖Pf ,ρ
K (y)z‖ ≤

(m + ρl) and ‖z‖ ≤ m, we have

∥∥Pf ,ρ
K (x)z – z

∥∥ +
∥∥Pf ,ρ

K (y)z – z
∥∥ ≤ m + ρl.

Now (.) implies that

∥∥Pf ,ρ
K (x)z – Pf ,ρ

K (y)z
∥∥ ≤ k‖x – y‖, ∀x, y ∈ H , z ∈ M,

where k =
√

γ (m + ρl). This completes the proof. �

Remark . Theorem . shows that the generalized f -projection operator Pf ,ρ
K (x) is k-

Lipschitz continuous with respect to x on each bounded set of the Hilbert space H under
some suitable conditions.

If H = Rn and f (x) =  for all x ∈ Rn, then the generalized f -projection operator Pf ,ρ
K (x)

reduces to the classic metric projection operator PK (x). By Theorem ., we can obtain the
following theorem.

Theorem . Let M be a nonempty bounded subset of Rn, and K : Rn → Rn be a set-valued
mapping such that K(x) is a closed convex set in Rn, for each x ∈ Rn. Assume that

(i) there exists γ >  such that H[K(x), K(y)] ≤ γ ‖x – y‖, ∀x, y ∈ Rn;
(ii)  ∈ ⋂

u∈Rn K(u).
Then there exists a constant k >  such that

‖PK (x)z – PK (y)z‖ ≤ k‖x – y‖, ∀x, y ∈ Rn, z ∈ M.
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Theorem . Let H be a real Hilbert space, and K : H → H be a set-valued mapping
such that, for each x ∈ H , K(x) ⊂ H is a closed convex set. Let f : H → R ∪ {+∞} be proper,
convex, and lower semicontinuous on K (x) for each x ∈ H . Then, for any x, y, u, v ∈ H ,

〈
Pf ,ρ

K (x)u – Pf ,ρ
K (x)v, u – v

〉 ≥ ∥∥Pf ,ρ
K (x)u – Pf ,ρ

K (x)v
∥∥

and

∥∥u – Pf ,ρ
K (x)u –

(
v – Pf ,ρ

K (y)v
)∥∥ ≤ ‖u – v‖ +

∥∥Pf ,ρ
K (x)v – Pf ,ρ

K (y)v
∥∥.

Proof Based on Lemma ., we have

〈
Pf ,ρ

K (x)v – v, Pf ,ρ
K (x)u – Pf ,ρ

K (x)v
〉
+ ρf

(
Pf ,ρ

K (x)u
)

– ρf
(
Pf ,ρ

K (x)v
) ≥  (.)

and

〈
Pf ,ρ

K (x)u – u, Pf ,ρ
K (x)v – Pf ,ρ

K (x)u
〉
+ ρf

(
Pf ,ρ

K (x)v
)

– ρf
(
Pf ,ρ

K (x)u
) ≥ . (.)

It follows from (.) and (.) that

∥∥Pf ,ρ
K (x)u – Pf ,ρ

K (x)v
∥∥ ≤ 〈

Pf ,ρ
K (x)u – Pf ,ρ

K (x)v, u – v
〉
. (.)

By (.), we obtain

∥∥u – Pf ,ρ
K (x)u –

(
v – Pf ,ρ

K (x)v
)∥∥ = ‖u – v‖ – 

〈
Pf ,ρ

K (x)u – Pf ,ρ
K (x)v, u – v

〉
+

∥∥Pf ,ρ
K (x)u – Pf ,ρ

K (x)v
∥∥

≤ ‖u – v‖ –
∥∥Pf ,ρ

K (x)u – Pf ,ρ
K (x)v

∥∥

≤ ‖u – v‖

and so

∥∥u – Pf ,ρ
K (x)u –

(
v – Pf ,ρ

K (y)v
)∥∥ ≤ ∥∥u – Pf ,ρ

K (x)u –
(
v – Pf ,ρ

K (x)v
)∥∥ +

∥∥Pf ,ρ
K (x)v – Pf ,ρ

K (y)v
∥∥

≤ ‖u – v‖ +
∥∥Pf ,ρ

K (x)v – Pf ,ρ
K (y)v

∥∥.

This completes the proof. �

4 The existence and uniqueness result of IMQVI
From the properties of generalized f -projection operators, it is easy to see that x ∈ H is a
solution of IMQVI (.) if and only if x satisfies

Ax = Pf ,ρ
K (x)

[
Ax – ρg(x)

]
, ∀ρ > . (.)

In this section, we consider the existence and uniqueness result of IMQVI (.) in Hilbert
spaces.
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Theorem . Let H be a real Hilbert space, and g, A : H → H be Lipschitz continuous on
H (with constants α and β , respectively). Let K : H → H be a set-valued mapping such
that, for each x ∈ H , K(x) ⊂ H is a closed convex set and f : H → R ∪ {+∞} be proper,
convex, and lower semicontinuous on K (x). Assume that

(i) g is λ-strongly monotone and (A, g) is a μ-strongly monotone couple on H ;
(ii) there exists k >  such that

∥∥Pf ,ρ
K (x)z – Pf ,ρ

K (y)z
∥∥ ≤ k‖x – y‖, ∀x, y ∈ H , z ∈ {

v|v = Ax – ρg(x), x ∈ H
}

;

(iii)
√

β – ρμ + ρα + ρ
√

 – λ + α < ρ – k.
Then IMQVI (.) has a unique solution in H .

Proof Let h : H → H be defined as follows:

h(u) = u –

ρ

Au +

ρ

Pf ,ρ
K (u)

[
Au – ρg(u)

]
, ∀u ∈ H .

For any x, y ∈ H , denote x̄ = Ax – ρg(x) and ȳ = Ay – ρg(y), we have

∥∥h(x) – h(y)
∥∥ =

∥∥∥∥x – y –

ρ

Ax +

ρ

Ay +

ρ

Pf ,ρ
K (x)x̄ –


ρ

Pf ,ρ
K (y)ȳ

∥∥∥∥

=
∥∥∥∥x – y – g(x) + g(y) –


ρ

[
x̄ – Pf ,ρ

K (x)x̄ –
(
ȳ – Pf ,ρ

K (y)ȳ
)]

∥∥∥∥

≤ ∥∥x – y – g(x) + g(y)
∥∥ +


ρ

∥∥x̄ – Pf ,ρ
K (x)x̄ –

(
ȳ – Pf ,ρ

K (y)ȳ
)∥∥. (.)

Since g : H → H is λ-strongly monotone and α-Lipschitz continuous on H , we obtain

∥∥x – y – g(x) + g(y)
∥∥ = ‖x – y‖ – 

〈
g(x) – g(y), x – y

〉
+

∥∥g(x) – g(y)
∥∥

≤ (
 – λ + α)‖x – y‖. (.)

On the other hand, it follows from (ii) and Theorem . that

∥∥x̄ – Pf ,ρ
K (x)x̄ –

(
ȳ – Pf ,ρ

K (y)ȳ
)∥∥ ≤ ‖x̄ – ȳ‖ +

∥∥Pf ,ρ
K (x)ȳ – Pf ,ρ

K (y)ȳ
∥∥

≤ ∥∥Ax – Ay – ρ
[
g(x) – g(y)

]∥∥ + k‖x – y‖. (.)

Since A is β-Lipschitz continuous and (A, g) is a μ-strongly monotone couple on H , we
have

∥∥Ax – Ay – ρ
[
g(x) – g(y)

]∥∥

= ‖Ax – Ay‖ – ρ
〈
Ax – Ay, g(x) – g(y)

〉
+ ρ∥∥g(x) – g(y)

∥∥

≤ (
β – ρμ + ρα)‖x – y‖. (.)

Now (.)-(.) imply that

∥∥h(x) – h(y)
∥∥ ≤ θ‖x – y‖, (.)



Li and Zou Journal of Inequalities and Applications  (2016) 2016:42 Page 8 of 13

where θ =
√

 – λ + α + 
ρ

(
√

β – ρμ + ρα + k). By the assumption, we know that  <
θ <  and so (.) implies that h(u) = u– 

ρ
Au+ 

ρ
Pf ,ρ

K (u)[Au–ρg(u)] is a contracting mapping
in Hilbert space H . Thus, h has a unique fixed point x∗ in H and so x∗ is a unique solution
of IMQVI (.). This completes the proof. �

Remark . By Theorem ., we know that if {v|v = Ax –ρg(x), x ∈ H} is bounded and the
conditions (i)-(iii) in Theorem . are satisfied, then there exists k >  such that

∥∥Pf ,ρ
K (x)z – Pf ,ρ

K (y)z
∥∥ ≤ k‖x – y‖, ∀x, y ∈ H , z ∈ {

v|v = Ax – ρg(x), x ∈ H
}

.

Therefore, the condition (ii) in Theorem . is suitable.

5 Error bounds for IMQVI
It is well known that error bounds play important roles in the study of variational inequal-
ity problems. They allow one to estimate how far a feasible element is from the solution set
without even having computed a single solution of the associated variational inequality.
In [], Aussel et al. provided the following two error bounds.

Theorem DA (Theorem  of []) Let g, A : Rn → Rn be Lipschitz continuous on Rn (with
constants l and L, respectively), and let K : Rn → Rn be a set-valued map such that K(x) is
a closed convex set in Rn, for each x ∈ Rn. Suppose the following hold:

(a) (A, g) is a strongly monotone couple on Rn with constant μ,
(b) there exists  < k < μ

l such that, for any θ > Lk
μ–lk ,

∥∥Pθ
K (x)z – Pθ

K (y)z
∥∥ ≤ k‖x – y‖, ∀x, y, z ∈ Rn.

If x∗ is the solution of (.), then, for any x ∈ Rn and any θ > Lk
μ–lk , we have

∥∥x – x∗∥∥ ≤ (θ l + L)
θμ – (θ l + L)k

∥∥Rθ (x)
∥∥,

where Rθ (x) = Ax – PK (x)[Ax – θg(x)].

Theorem DA (Lemma  of []) Let A : Rn → Rn be Lipschitz continuous on Rn (with
constant L) on Rn and let K : Rn → Rn be a set-valued map such that K (x) is a closed
convex set in Rn, for each x ∈ Rn. Assume the following hold:

(a) A is strongly monotone on Rn with constant μ,
(b) there exists  < k < μ such that, for any θ > L(k+L)

(μ–k) ,

∥∥Pθ
K (x)z – Pθ

K (y)z
∥∥ ≤ k‖x – y‖, ∀x, y, z ∈ Rn.

If x∗ is the solution of (.), then, for any x ∈ Rn and any θ > L(k+L)
(μ–k) , we have

∥∥x – x∗∥∥ ≤ θ

θ (μ – k) – L(k + L)
∥∥Rθ (x)

∥∥,

where Rθ (x) = Ax – PK (x)(Ax – θx).
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In this section, we will develop some error bounds measuring the distance between any
point and the exact solution of IMQVI (.) in Hilbert spaces. Let

e(x,ρ) = Ax – Pf ,ρ
K (x)

[
Ax – ρg(x)

]

denote the residue of the generalized f -projection equation (.). Then solving an IMQVI
(.) problem is equivalent to finding a zero point of e(x,ρ). For any given x ∈ H , the mag-
nitude of ‖e(x,ρ)‖ depends on the value of ρ . Now we give the error bounds in terms of
the residual function ‖e(x,ρ)‖.

Theorem . Let H be a real Hilbert space, and g, A : H → H be Lipschitz continuous on
H (with constants α and β , respectively). Let K : H → H be a set-valued mapping such
that, for each x ∈ H , K(x) ⊂ H is a closed convex set and f : H → R ∪ {+∞} be proper,
convex, and lower semicontinuous on K (x). Assume that

(i) (A, g) is a μ-strongly monotone couple on H ;
(ii) there exists  < k < μ

α
such that, for any ρ > βk

μ–αk ,

∥∥Pf ,ρ
K (x)z – Pf ,ρ

K (y)z
∥∥ ≤ k‖x – y‖, ∀x, y ∈ H , z ∈ {

v|v = Ax – ρg(x), x ∈ H
}

.

If x∗ is the solution of IMQVI (.), then, for any x ∈ H and any ρ > βk
μ–αk , we have

∥∥x – x∗∥∥ ≤ (αρ + β)
μρ – (αρ + β)k

∥∥e(x,ρ)
∥∥.

Proof Denote u = Pf ,ρ
K (x∗)[Ax –ρg(x)]. Since x∗ is the solution of IMQVI (.), it follows that

〈
ρg

(
x∗), u – Ax∗〉 + ρf (u) – ρf

(
Ax∗) ≥ , (.)

for all ρ > . From the definition of u and Ax∗ ∈ K(x∗), we know that

〈
u –

[
Ax – ρg(x)

]
, Ax∗ – u

〉
+ ρf

(
Ax∗) – ρf (u) ≥ . (.)

By (.) and (.), we have

 ≤ 〈
ρ
[
g
(
x∗) – g(x)

]
+ Ax – u, u – Ax∗〉

= ρ
〈
g
(
x∗) – g(x), u – Ax

〉
+ ρ

〈
g
(
x∗) – g(x), Ax – Ax∗〉

+ 〈Ax – u, u – Ax〉 +
〈
Ax – u, Ax – Ax∗〉. (.)

Since (A, g) is a μ-strongly monotone couple, it follows from (.) that

ρ
〈
g
(
x∗) – g(x), u – Ax

〉
+

〈
Ax – u, Ax – Ax∗〉 ≥ ρμ

∥∥x∗ – x
∥∥ + ‖Ax – u‖. (.)
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In light of the facts that g is α-Lipschitz continuous and A is β-Lipschitz continuous, (.)
implies that

μρ
∥∥x∗ – x

∥∥ ≤ ρ
∥∥g

(
x∗) – g(x)

∥∥‖u – Ax‖ + ‖Ax – u‖∥∥Ax – Ax∗∥∥

≤ (ρα + β)
∥∥x∗ – x

∥∥∥∥Pf ,ρ
K (x∗)

[
Ax – ρg(x)

]
– Ax

∥∥

≤ (ρα + β)
∥∥x∗ – x

∥∥(∥∥Pf ,ρ
K (x∗)

[
Ax – ρg(x)

]
– Pf ,ρ

K (x)
[
Ax – ρg(x)

]∥∥

+
∥∥Pf ,ρ

K (x)
[
Ax – ρg(x)

]
– Ax

∥∥)

≤ (ρα + β)
∥∥x∗ – x

∥∥(
k
∥∥x∗ – x

∥∥ +
∥∥e(x,ρ)

∥∥)
, (.)

for any ρ > βk
μ–αk . Since αk < μ and ρ > βk

μ–αk , it follows from (.) that

∥∥x∗ – x
∥∥ ≤ (αρ + β)

μρ – (αρ + β)k
∥∥e(x,ρ)

∥∥.

This completes the proof. �

If H = Rn and f (x) =  for all x ∈ Rn, from Theorem ., we obtain the following theorem.

Theorem . Let g, A : Rn → Rn be Lipschitz continuous on Rn (with constants l and L,
respectively). Let K : Rn → Rn be a set-valued mapping such that, for each x ∈ Rn, K(x) ⊂
Rn is a closed convex set. Assume that

(i) (A, g) is a μ-strongly monotone couple on Rn;
(ii) there exists  < k < μ

l such that, for any θ > Lk
μ–lk ,

‖PK (x)z – PK (y)z‖ ≤ k‖x – y‖, ∀x, y ∈ Rn, z ∈ {
v|v = Ax – θg(x), x ∈ Rn}.

If x∗ is the solution of (.), then, for any x ∈ Rn and any θ > Lk
μ–lk , we have

∥∥x – x∗∥∥ ≤ (θ l + L)
θμ – (θ l + L)k

∥∥Rθ (x)
∥∥,

where Rθ (x) = Ax – PK (x)[Ax – θg(x)].

For any x ∈ H , based on Theorem ., we know that Pf ,ρ
K (x) is co-coercive mapping with

modulus  on H . Applying the co-coercivity of Pf ,ρ
K (x), we prove another error bound for

IMQVI (.).

Theorem . Let H be a real Hilbert space, and g, A : H → H be Lipschitz continuous on
H (with constants α and β , respectively). Let K : H → H be a set-valued mapping such
that, for each x ∈ H , K(x) ⊂ H is a closed convex set and f : H → R ∪ {+∞} be proper,
convex, and lower semicontinuous on K (x). Assume that

(i) (A, g) is a μ-strongly monotone couple on H ;
(ii) there exists  < k < μ

α
such that, for any ρ > β(β+k)

(μ–αk) ,

∥∥Pf ,ρ
K (x)z – Pf ,ρ

K (y)z
∥∥ ≤ k‖x – y‖, ∀x, y ∈ H , z ∈ {

v|v = Ax – ρg(x), x ∈ H
}

.
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If x∗ is the solution of IMQVI (.), then, for any x ∈ H and any ρ > β(β+k)
(μ–αk) , we have

∥∥x – x∗∥∥ ≤ αρ

ρ(μ – αk) – β(β + k)
∥∥e(x,ρ)

∥∥.

Proof Denote v = Ax –ρg(x) and v∗ = Ax∗ –ρg(x∗). From the definition of e(x,ρ), we know
that

〈
e(x,ρ), g(x) – g

(
x∗)〉

=
〈
e(x,ρ) – e

(
x∗,ρ

)
, g(x) – g

(
x∗)〉

=
〈
Pf ,ρ

K (x∗)v
∗ – Pf ,ρ

K (x)v, g(x) – g
(
x∗)〉 +

〈
Ax – Ax∗, g(x) – g

(
x∗)〉

=

ρ

〈
Pf ,ρ

K (x∗)v
∗ – Pf ,ρ

K (x)v, Ax – Ax∗〉 +

ρ

〈
Pf ,ρ

K (x∗)v
∗ – Pf ,ρ

K (x)v, v∗ – v
〉

+
〈
Ax – Ax∗, g(x) – g

(
x∗)〉

=

ρ

〈
Pf ,ρ

K (x)v
∗ – Pf ,ρ

K (x)v, Ax – Ax∗〉 –

ρ

〈
Pf ,ρ

K (x)v
∗ – Pf ,ρ

K (x∗)v
∗, Ax – Ax∗〉

+

ρ

〈
Pf ,ρ

K (x)v
∗ – Pf ,ρ

K (x)v, v∗ – v
〉
–


ρ

〈
Pf ,ρ

K (x)v
∗ – Pf ,ρ

K (x∗)v
∗, v∗ – v

〉

+
〈
Ax – Ax∗, g(x) – g

(
x∗)〉. (.)

Since (A, g) is a μ-strongly monotone couple, it follows from (.) and Theorem . that

〈
e(x,ρ), g(x) – g

(
x∗)〉

≥ 
ρ

〈
Pf ,ρ

K (x)v
∗ – Pf ,ρ

K (x)v, Ax – Ax∗〉 +

ρ

∥∥Pf ,ρ
K (x)v

∗ – Pf ,ρ
K (x)v

∥∥ + μ
∥∥x – x∗∥∥

–

ρ

∥∥Pf ,ρ
K (x)v

∗ – Pf ,ρ
K (x∗)v

∗∥∥∥∥Ax – Ax∗∥∥ –

ρ

∥∥Pf ,ρ
K (x)v

∗ – Pf ,ρ
K (x∗)v

∗∥∥∥∥v∗ – v
∥∥

=

ρ

∥∥∥∥Pf ,ρ
K (x)v

∗ – Pf ,ρ
K (x)v +



(
Ax – Ax∗)

∥∥∥∥



–


ρ

∥∥Ax – Ax∗∥∥ + μ
∥∥x – x∗∥∥

–

ρ

∥∥Pf ,ρ
K (x)v

∗ – Pf ,ρ
K (x∗)v

∗∥∥(∥∥Ax – Ax∗∥∥ +
∥∥v∗ – v

∥∥)

≥ μ
∥∥x – x∗∥∥ –


ρ

β∥∥x – x∗∥∥ –

ρ

k(β + αρ)
∥∥x – x∗∥∥, (.)

for any ρ > β(β+k)
(μ–αk) . On the other hand, we have

〈
e(x,ρ), g(x) – g

(
x∗)〉 ≤ ∥∥e(x,ρ)

∥∥∥∥g(x) – g
(
x∗)∥∥

≤ α
∥∥e(x,ρ)

∥∥∥∥x – x∗∥∥. (.)

Since αk < μ and ρ > β(β+k)
(μ–αk) , it follows from (.) and (.) that

∥∥x – x∗∥∥ ≤ αρ

ρ(μ – αk) – β(β + k)
∥∥e(x,ρ)

∥∥.

This completes the proof. �
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If H = Rn, g is identity mapping in Rn, and f (x) =  for all x ∈ Rn, by using Theorem .,
we have the following theorem.

Theorem . Let A : Rn → Rn be Lipschitz continuous on Rn (with constant L) on Rn and
let K : Rn → Rn be a set-valued map such that K (x) is a closed convex set in Rn, for each
x ∈ Rn. Assume the following hold:

(i) A is strongly monotone on Rn with constant μ,
(ii) there exists  < k < μ such that, for any θ > L(k+L)

(μ–k) ,

‖PK (x)z – PK (y)z‖ ≤ k‖x – y‖, ∀x, y ∈ H , z ∈ {
v|v = Ax – θx, x ∈ Rn}.

If x∗ is the solution of (.), then, for any x ∈ Rn and any θ > L(k+L)
(μ–k) , we have

∥∥x – x∗∥∥ ≤ θ

θ (μ – k) – L(k + L)
∥∥Rθ (x)

∥∥,

where Rθ (x) = Ax – PK (x)(Ax – θx).

Remark . It is easy to see that the condition (ii) in Theorem . is weaker than the
condition (b) in Theorem DA and the condition (ii) in Theorem . is also weaker than
the condition (b) in Theorem DA.
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