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Abstract

The Heinz mean for every nonnegative real numbers g, b and every 0 < v < 1'is
a’blVqgl-vpv . . . . s

Hy(a,b) = ==—="—=.1In this paper we present tracial Heinz mean-type inequalities

for positive definite matrices and apply it to prove a majorisation version of the Heinz

mean inequality.
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1 Introduction

The arithmetic-geometric mean inequality for two positive real numbers a, b is vab <
atb

2 )
that interpolate in a certain way between the arithmetic and geometric mean. For every

where equality holds if and only if a = b. Heinz means, introduced in [1], are means

nonnegative real numbers a, b and 0 < v <1, the Heinz mean is defined as

avbl—v + al—vbv

Hv(a:b) = 9

The function H, is symmetric about the point v = % Note that Hy(a,b) = Hi(a, b) = “%b,
H% (a,b) = v/ ab, and

H)(a,b) < Hy(a,b) < H(a, b) 1)

for every 0 < v <1, and equality holds if and only if a = b.

Let M, (C) denote the space of all # x n matrices. We shall denote the eigenvalues and
singular values of a matrix A € M, (C) by A;(A) and 0j(A), respectively. We assume that sin-
gular values are sorted in non-increasing order. For two Hermitian matrices A, B € M,(C),
A > B means that A — B is positive semi-definite. In particular, A > 0 means A is positive
semi-definite. Let us write A > 0 when A is positive definite. |A| shall denote the modulus
JA| = (A*A)} and t(4) = Y1 4(A).

The basic properties of singular values and trace function that some of them are used to

establish the matrix inequalities in this paper are collected in the following theorems.

Theorem 1.1 Assume that X,Y € M,(C),A,Be M,(C)*',a €C,andj=1,2,...,n.
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(1) o(X) = 0(X*) = (1X]) = and a;(eX) = |erloy(X).
(2) IfA < B, then 0j(A) < 0;(B).
(3) 0i(X") = (0;(X))", for every positive real number r.
(4) 0j(XY*) = 0;(YX™).
(5) oi(XY) < [ X[loj(Y).
(6) o(YXY*) < Y |20,(X).
Theorem 1.2 Assume that X,Y € M,(C), a € C.
1) r(X +Y) =tr(X) + tr(Y).
(2) tr(XY) = tr(YX).
(3) tr(X) >0, and for A € M,,(C)*, tr(A) =0 only if A = 0.
The absolute value for matrices does not satisfy |XY| = |X]| - |Y|; however, a weaker ver-

sion of this is the following:

If Y = U|Y] is the polar decomposition of ¥, with unitary U, then
\xY*| = u|(1x|- 1Y) |u* (2)
and
A (|XY*|) = o5 (1X1 - Y1) 3)

The Young inequality is among the most important inequalities in matrix theory. We

present here the following theorem from [2, 3].

Theorem 1.3 Let A, B € M,(C) be positive semi-definite. If p,q > 1 with }9 + 1% =1, then
1 1 ‘
0j(AB) < o;(—Ap + —Bq) forj=1,2,...,n, (4)
p q
where equality holds if and only if A? = B1.
Corollary 1.4 Let A, B € M,(C) be positive semi-definite. If p,q > 1 with }7 + }9 =1, then
1 1
tr(JAB|) < = tr(A?) + — r(BY), (5)
p q

where equality holds if and only if A? = B1.

Another interesting inequality is the following version of the triangle inequality for the

matrix absolute value [1, 4].

Theorem 1.5 Let X and Y be n x n matrices, then there exist unitaries U, V such that

X + Y| < UIX|U* + VIY|V* (6)
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We are interested to find what types of inequalities (1) hold for positive semi-definite

matrices A, B? For example, do we have
VIAB| < |H,(A,B)| < Hi(A, B)? (7)

Or do we have

JOi(AB) < 0;(H, (A, B)) < A;(H\(A,B))? (8)
Here

A\)Bl—v +A1—va

HU(A!B) = 2

Bhatia and Davis [5] extended inequality (1) to the matrix case, they showed that it holds
for positive semi-definite matrices, in the following form:

A+B
4t < ) < | 22| ®
where || - ||| is any invariant unitary norm. An example shows that the first inequality in (9),

to singular values, does not hold [6]. One of the results in the present article is a version
of Heinz mean-type inequalities for matrices in the following theorem.

Theorem 1.6 Let A, B be two positive semi-definite matrices in M, (C). Then
tr(v/|AB|) < tr(Hy(JA"B""|, |A'"B"|)) < tr(H\(4, B)).
Equality holds if and only if A = B.

For a real vector X = (x1,%5,...,%,), let X} = (xf,xi, ... ,xi) be the decreasing rearrange-

ment of X. Let X and Y are two vectors in R”, we say X is (weakly) submajorised by Y, in
symbols X <, Y, if

k k
Zx} 523}}, 1<k<n.
j=1 j=1
X is majorised by Y, in symbols X < Y, if X is submajorised by ¥ and
n n
Vo {
2% =2
j=1 j=1

Definition 1.7 If A, B € M,(C), then we write A <,, B to denote that A is weakly majorised
by B, meaning that

k k
Y 0j(A) <> 0i(B), foralll<k=<n.
j=1 j=1
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If A <, Band
tr(JA]) = tr(|BJ),
then we say that A is majorised by B, in symbols A < B.
Let S(A) denote the n-vector whose coordinates are the singular values of A. Then we
write A <,, B (A < B) when S(A) <,, S(B) (S(A) < S(B)) .

The following theorem has been proved in [1].

Theorem 1.8 If X and Y are two matrices in M,(C), then
S'(XY) <, S'(X)S"(Y) forallr>O0. (10)

2 Main results
We present here the matrix inequalities that we will use in the proof of our main results.
The next theorem has been proved in [6].

Theorem 2.1 For positive semi-definite matrices A and B and forall j=1,2,...,n
0)(Hu(4,B) < o3(Hi (4, B),
forevery v € [0,1].

Thus, this proves that the second inequality in (8) holds. The arithmetic-geometric mean
inequality

ﬁabia;b

is used in the matrix setting, much of this is associated with Bhatia and Kittaneh. They
established the next inequality in [7]:

AA* + BB*
: 11)

o (232

where A and B are two matrices in M,,(C). They also studied many possible versions of this
inequality in [8], and put a lot of emphasis on what they described as level three inequali-
ties [9]. Drury [10] answered to the key question in this area in the following theorem.

Theorem 2.2 For positive semi-definite matrices A and B in M,,(C) and forallj=1,2,...,n

\/ O'](AB) < )\I(Hl(A,B))

We will show that in both Theorems 2.1 and 2.2 equality holds if and only if A = B. It is
still unknown whether

\/ O'](AB) =< Oj(HU(A’B))
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for every v € (0,1). However, by using Theorems 2.1 and 2.2, we present a different version
of this inequality.

Lemma 2.3 For positive semi-definite matrices A and B in M,(C) and forallj=1,2,...,n

Vo aB) < (i (|4 B |4 B)) (12)
foreveryv € (0,1).
Proof We first aim to show that
0;(AB) < 0j(A""VA"B'""B").
We have
0;(AB) = 0j(A'"""A"B'""B'A' " A" ™)
<|lA|""o;(A"B""B"A"")|A|"""  (by part (5) Theorem 1.1). (13)

As v —1<0, the matrix A"~ exists only if A is invertible. Therefore, to prove (13) we shall
assume that A is invertible. This assumption entails no loss in generality, for if A were
not invertible, then we could replace A by A + ¢1, which is invertible and which satisfies
0;((A + eI)B) — 0j(AB) for every B € M,(C) and j = 1,2,...,n. Thus, (13) is achieved for
noninvertible A as a limiting case of (13) using the invertibility of A.

By using equation (3), we get

O_j(AvBl—vBuAl—u) — O}'(‘AUBI_U’ . |A1—VBV|)‘

Hence, by using Theorem 2.2,

Joi(aB) = \foy (4B [ |4 B]) < by (i |A"B |4 B)). 0

Remark 2.4 Note that Lemma 2.3 generalizes Theorem 2.2, in fact, it is the special case
with v =1 of Lemma 2.3.

Theorem 2.5 Let A, B be two positive semi-definite matrices in M, (C). Then
tr(y/|AB|) < tr(H,(|A"B"™"|,|A"B"|)) < tr(Hi(4, B)).

Proof By the definition of the trace, we have
w(vIAB|) = Y 2;V/AB]
j=1
= Z /0i(AB) (by part (3) Theorem 1.1)
j=1

’

n
<> w(H(|a"B™
j=1

AB)
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= tr(H1(|A”Bl""|, \Al"”B"D) (using inequality (12))

tr(A"B"") + %tr(Al‘“B")

N = N =

< =(r(vA+ (1 -v)B) +tr(vB + (1 -v)A)).

We applied (1.4) with p = % and g = ﬁ for the first summand, and g = % and p = ﬁ for
the second one.

Therefore,

w(/TABI) < te(H (|47, |47 BY))

< -(vtr(A) + A = v) r(B) + (1 - v) tr(A) + v tr(B))

N = N

tr(A + B) = tr(Hy (A, B)). O

Theorem 2.6 IfA,B € M,(C) are two positive semi-definite matrices and 0 <v < 1. Then
the following conditions are equivalent:

(1) t(IAB]) = tr(Hi(A, B)).

(2) u(Hi(|A"B"],|A'™"B"))) = tr(Hy(A, B)).

(3) w(|H,(A, B)|) = tr(Hy(A, B)).

(4) A=B.

Proof We shall show that (1) = (2) = (4) = (1) and 3) = (2) = (4) = (3).
Let tr(v/|AB]) = tr(H1(A, B)). Then the arguments of the proof of the above theorem im-
plies

tr(Hy (|AY B

A"B"|)) = tr(Hi(A, B)).

’

If the equation in part (2) holds, then from what was proved in the last theorem we con-
clude that

tr(Hy(A,B)) = t(H,(|A"B""|,|A"""B"|))

= SB[ B)
< S ((vA + (1= v)B) + u(vB+ (1-)A)) = u(H(4, B).
Thus,
tr(JA"B'"|) + tr(|A'B"|) = tr(vA + (1 - v)B) + tr(vB + (1 - v)A). (14)

By Corollary 1.4, this equality holds if and only if
tr(|JA"B"|) =tr(vA+ (1-v)B) and tr(|JA""B"|) =tr(vB + (1 - v)A),

and therefore A" = B”, B'"V = A", which implies A = B. It is clear that (4) = (1).
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Now, we try to show that (3) = (2) = (4) = (3). Therefore assume (3): tr(|H, (4, B)|) =
tr(H1(A, B)). Then

tr(Hi(A,B)) = tr(|H,(A,B)|)

tr(JA"B'™ + A""B"|)

N = N

IA

[tr(U|A"B"|U*) + tw(V*[A"B"|V)] (by the triangle inequality(6))

for some unitaries U and V € M,(C).
Thus,

tr(Hy(A,B)) < %tr(’A"Bl‘”’ +|ABY))

= tr(H,(|A"B"™

|4 B))
< tr(Hi(A,B)) (by Theorem 2.5),
thereby proving (2). (2) = (4) was shown in the first part. It is clear that (4) = (3). O
The following two corollaries are almost immediate from Theorem 2.6.

Corollary 2.7 For positive semi-definite matrices A and B in M,(C) and for all j =
1,2,...,n

\/% = j(Fi(A,B)),
if and only if A = B.

Corollary 2.8 For positive semi-definite matrices A and B in M,(C) and for all j =
1,2,...,n

O}(Hv(AxB)) = A}(Hl(A;B)):
forv e [0,1] ifand only if A = B.

We do not know whether

JOi(AB) < 0;(H, (A, B)) < A;(H\(4, B))

for every v € [0,1].

To answer this question, just we need to know whether

N O'I(AB) =< O'j(HU(A,B))

for every v € [0,1].
In the rest of this paper, we apply the results of singular value inequalities for the means

to present a new majorisation version of the means.
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Lemma 2.9 Let A and B be two positive semi-definite matrices. Then

1
S3(AB) <,, 5 (54)+5(8)).
Proof By Theorem 1.8,
k 1 K 1 1
0j(AB)2 < Z)»}-(A)f)»j(B)7 foreveryl <k <m.
j=1

j=1

By using an arithmetic-geometric mean inequality for singular values of A and B,

k k k
1 1 1
Z:UJ(AB)2 < Z EA;(A) + Z E)Lj(B) foreveryl <k <n.
j=1 j=1 j=1
Thus,
k 1 k 1
> 0i(AB)? <) ~(A(A) +1(B) foreveryl <k <n,
j=1 j=1 2
which implies S2 (AB) <,, 1(S(4) + S(B)). O

Lemma 2.10 IfA and B € M,(C), then
VIAB| <,, Hi(A,B).
Proof 1t is direct result of the definition of the majorisation and Theorem 2.2. O
Lemma 2.11 If A and B are positive semi-definite € M,(C), then
H,(A,B) <, Hi(A,B).
Proof 1t is direct result of definition of the majorisation and Theorem 2.1. O
It is interesting to know whether
VIAB| <,, H{A, B).
Lemma 2.12 If A and B are positive semi-definite € M, (C), then
VIAB| <, H,(|A"B""|, |A*B")).
Proof 1Tt is direct result of definition of the majorisation and Lemma 2.3. O

The results to this point lead to the following theorem about majorisation for positive
definite matrices.
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Theorem 2.13 For every two positive matrices A and B in M, (C), the following conditions

are equivalent:

(1) S7(AB) < 1(S(4) + S(B)).

(2) IAB| < (Hy(A,B)).

(3) H,(A,B) < Hi(A, B).

(4) VIAB| <,, Hi(|A"B""|,]A"B"|).
(5) A=B.
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