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Abstract
In this note, we prove that the fractional integral operators from Herz spaces with

variable exponent kg‘(_m to Lipschitz-type spaces are bounded provided p(-) is locally

log-Holder continuous and log-Hélder continuous at infinity.
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1 Introduction

Let R” be the n-dimensional Euclid space. For 0 < 8 < #, the fractional integral operator
Iy is defined by

- [ L0

The famous Hardy-Littlewood-Sobolev theorem tells us that Iz is a bounded operator
from the usual Lebesgue spaces L” to L? with 1/q = 1/p — 8/n, where 1 < p < n/B. Also Iz is
bounded from L# into BMO. As for p > n/B, Gatto and Vagi [1] proved that j,g is bounded
from L? into Lipschitz spaces whose smoothness is controlled by p and «, where I is
defined as

. ~ 1 eV
s (x)‘/w<|x—y|"-ﬂ_ P )Mdy'

Indeed Gatto and Vagi’s result was proved in the setting of the spaces of homogeneous

type. Also there are extensions like weighted function spaces theory, see [2]. Recently,
Ramseyer et al. [3] extended Gatto and Vagi’s result in the variable exponent function
spaces case.

For the sake of convenience, we briefly recall some basic elements of the Lebesgue
spaces with variable exponent, while more results can be found in [4, 5] and the refer-
ences therein. Let 2 be a non-empty open set in R” and p(-) : 2 — [1,00) be a measurable
function. The variable exponent Lebesgue space L”)(R2) is defined by

p(x)
LPO(Q) := {f is measurable :f J%
Q

dx < oo for some constant A > O}.
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It is easy to check that L”()(Q2) is a Banach space with the norm defined by

p(*)

/(%)

I 1l oo ) :=inf{k>0:f dxfl}.
Q

We let

p () := essinfp(x), P () := esssupp(x),
xeQ xeQ
and we denote by P(£2) the set of measurable function p(-) on © with value in [1, 00) such
that 1 < p~(Q2) < p(-) < p*(R) < 0o. For the sake of simplicity, we write LZ*)(R") as L**) and
IF Nl ) mmy @s 1 1l p()» respectively.
We say a function p(-) : R” — R is locally log-Holder continuous, if there exists a con-
stant C such that

C
P PO = (T

for all x,y € R". If, for some p, € R and C > 0, we have

|P(x) —Poo| = m
for all x € R”, then we say p(-) is log-Holder continuous at infinity.

The notation P'°¢(R") is used for all those exponents p(-) € P(R”") which are locally log-
Holder continuous and log-Hélder continuous at infinity with p := lim,—, o p(x). More-
over, we can easily show that p(-) € P'°¢(R”) implies p'(-) € P'°¢(R") .

Ramseyer, Salinas and Viviani introduced the following function space, which can be
viewed as the variable exponent counterpart of Lipschitz space defined by Peetre in [6].

Definition 1 ([3]) Let 0 < 8 < and p(-) € P(R”) and denote the Lebesgue measure of B
by |B|. We say that a locally integrable function f belongs to Lg,)(R") if there exists a
constant C such that

1
S / \f = maf|dx < C, (L1)
IBI 1 xqll) 45

for every ball B = B(x,R) C R”, with mpf = ﬁ [3f- The least constant C in (1.1) will be
denoted by |[f||Lipﬁ_p(_).

Ramseyer, Salinas and Viviani proved the following theorem.

Theorem 1.1 ([3]) Given 0 < 8 < n and p(-) € P(R"). Then the following two statements
are equivalent.

1) jﬂ is bounded from LPO(R") into Lgpy(R).

(2) p(-) € Pg, i.e., there exists a positive constant C such that for any ball B,

XR"\B B_14
locp — [P+ /()§C|B|” " xally e 1.2)
o

hold for every ball B, where xg denotes its center.
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Corollary 2.16 in [3] says that if p(-) € P°¢(R") with0 < B—1 < 1%, then p(-) satisfies (1.2).
With the help of Theorem 1.1, jﬂ is bounded from L0 (R") to Lp py(R"). It is natural to
ask what the target space is when L”)(R") is replaced by other more general spaces. The
main result of this note is that the target space of mapping I s is just the variant Lipschitz
space when L7")(R") is replaced by the so-called variable exponent Herz space.

2 Herz spaces and main results

Variable exponent Herz spaces were considered by many authors in recent years. Espe-
cially Herz spaces with two variable exponents and even with three variable exponents
were produced by Almeida and Drihem [7] and Samko [8], respectively. For brevity, we
only consider the Herz space with one variable exponent case, which was introduced by
Izuki in [9]. Let B(x,r) = {y e R" : |x — y| < 7}, By = {x € R" : |x| < 2K}, Ay = By \ By_;, and
X4, = Xk be the characteristic function of the set A, for k € Z.

Definition 2 ([9]) Leta € R, 0 < g < oo and p(-) € P(R"). The homogeneous Herz space
Kg(.),q(R”) is defined as the set of all f € v (R"\ {0}) such that

loc

1/q
W lls,, e = (sz“qunz(.)) < oo.

keZ

It is obvious that if p(-) is a constant, then I'(;‘(‘), q(R”) = K;f q(]R") are classical Herz spaces.
We can refer to [10] for more properties of the classical one.

Our main result is to establish a result of mapping property of j,g on K;‘(')’ q(]R”). For this
purpose we need to define a variant of the Lipschitz space.

Definition 3 Given —0o < A < +00, 0 < B < 1, and p(-) € P(R"). We say that a locally inte-
grable function f belongs to E?s,pt) if there exists a constant C such that

1
A
(%] + R 1B1 51 xs1)

/ |f — mafldx < C, 1)

for every ball B = B(x,R) C R”, with mpgf = ﬁ J5f- The least constant C in (2.1) will be
denoted by |[f||£2 o
P4y

Remark 2.1 It is easy to see that in Definition 3 the average mpzf can be replaced by a

constant in the following sense:

1 . 1
E”f”Lip-g,p(,) < sup inf /[f—c|dx< ”f”up

Berr R0 <R (%] + R 1B % | 51,

Also by Definition 3, we obtain ﬁﬂw - ﬁ?},p(.)’ where L — A1 = 1 — 8 > 0. Especially,
Eg,p 3 C Lpanp) for A <0and L) C 52,p<.> for A > 0.

Now we are in a position to state our results.

Theorem 2.1 Suppose that 0 < q < 0o and p(-) € P¢(R"). If B — sr-l<a<n- 1<
B < 1% + 1, then the operator j,g is bounded from 1‘(;‘(_)#(]1{”) to ﬁ};;(_)(]R”).
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Theorem 2.2 Suppose that 0 < q < o0 and p(x) € P°¢(R"). If & > 0, then 7,3 is not bounded
from K| q(Rl) to L’}gﬁ;‘;(‘)(RI).

Remark 2.2 According to Remark 2.1, E;‘i;;(A)(RI) C E;;(.)(Rl) when & > 0. This shows

that Theorem 2.1 is optimal.

We give some lemmas in Section 3 and then prove the above theorems in Section 4.
C always means a positive constant independent of the main parameters and it may change
from one occurrence to another. f ~ g means C'g < f < Cg.

3 Technique lemmas

Lemma 3.1 ([11]) Let Q C R™. If p(-) € P(R), then for all f € [’')(Q) and all g € LF'O(Q)

we have

[ @] ds < 1810y
Q

o 1
wherer,:=1+ FROITEOR

1

Given a function f € L

(R™), the Hardy-Littlewood maximal operator M is defined by

Mf(x) :=supr™” Ifo)|dy, xeR",
r>0 )

B(x,r

and we say B(R") is the set of p(-) € P(R") satisfying the condition that M is bounded on
LPO(RM).

Lemma 3.2 ([12]) p(:) € P'%(R") implies p(-) € B(R").

Lemma 3.3 ([13]) Let p(-) € B(R"), then there exists a positive constant C such that
CBI < llx8llp0) | x8lly () < CIBI

hold for every ball B.

Remark 3.1 According to Lemma 3.2, the conclusion of Lemma 3.3 is correct when the
condition p(-) € B(R") is replaced by p(-) € P°(R").

Lemma 3.4 (Corollary 4.5.9 in [5]) Let p(-) € P'°¢(R"), then for every ball B C R",
a1 Y
lxsllp) ~ 1BIP®, if|B| <2",x € B,
and
L .
lxallpe) ~ |BlP=, if|B] > 1.

Lemma 3.5 ([3]) Let p(-) € P(R") and 0< B —1< 1%.
1) Ifp(-) € P5(R") and 0 < B —1< p—’i, then p(-) € Pg.



Qu and Wang Journal of Inequalities and Applications (2016) 2016:2 Page 5 of 11

(2) If p() € Pg, then there exists a positive constant C such that

| X221l p¢) < Cllxallpe)» (3.1)

for every ball B, where 2B is the ball having the same center as B but whose diameter

is two times as large.

We point out that the two results collected in Lemma 3.5 are from [3]. The result (1) is
Corollary 2.16 and (2) is Lemma 2.9 therein, respectively.

Lemma 3.6 Let p(-) € PY%(R"), then there exists a constant C > 0 such that for all balls B

and all measurable subsets S = B(xg,ro) C B = B(x1,11),

i
Il xslpc) - C(|_5|>1’*.
Il &1l IB|

Proof We proved the lemma in the following three cases: (1) |S| < [B| < 1; (2) |S] <1<

|BJ; (3) 1 < |S] < |B|. Cases (2) and (3) are easy, we omit the details. Now for case (1). By

Lemma 3.4,

1 1
plxg) 1 1 ¥
”XS“P(') ~ |S| |B|p(x5)_p(x3) < C(E)p .

el (g B

Indeed in the last inequality in the above equation, since |xz — x5| < 2r;, we make use of

the local-Holder continuity of p(x), so

1

‘ 1 1 1 log -
_ log J— S —1
plxs)  plxp) rn ~ log(e + m)
log L
log(e + E)
The lemma is proved. O

4 Proofs of theorems

Proof of Theorem 2.1 Fix a ball Q = B(xy, R). To prove Theorem 2.1, we need to estimate

B Ty - o] .
QI lIxallp) 7@

Let k be the least integer such that Q C B(0,2¥), hence |x,| + R ~ 2X. We consider three
cases:

(1) QNB(0,2%) #4,

(2) QN B(0,252) =@ and R > 24,

(3) QN B(0,252) =@ and R < 2k,
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Case (1) or (2). Note that |Q| > C2* in both cases. We write

&) =f xpo.aks1y(x) +f XRr\B(0,2Kk+1 (%) = fi(x) + fo(x)
Letc =

First we estimate ], ,_«; f1

Then by Fubini’s theorem, we have

(4.1)
f\yl>1 T ﬁ dy, then Iyfi — 1 = Igfi. Forany x € Q, |[4fi(x)| < Ja0.251) ) T y‘,, oL gy,

[selae= [ ol [ o

dx dy
B
SCIQl”/ If )| dy
B(O,2k+1)

- ClQI’ kzljf [f )| dy.

Using Lemma 3.1 and Lemma 3.3, we derive the estimate
(|x0| +R)”

(10| + R)* /
I dx<C dy
1 1xallyo ﬂﬁﬁ(x)' = Z AL
&l
<Cy 2 ﬁQ"’( 0,0 110
Jj=—00
k+1

<C Y 22 il X ) s D

Jj=—00

Now we can distinguish three cases as follows, by Lemma 3.4
(1) If0 <j -1 <k, we have

(4.2)
131l 11 xBy e

L
~|B; |1700 |Bk|P:>o ~ (21") o (2’<")

2]n2 klpoc < Czjnz 'L
(2) Ifj —1 < 0 < k, we obtain

X1l ) 11 xBy o)

1

1

~ | Byl )| By |7 ~ (@)
L
,\,2/"(2—171) (%)
(B)Ifj—1<k<0,weget

(@)

(2/(}1) %00 Czjnz(k_l) =

11l ) 11 xBy )

1

~ |B;|"% IBkI"’ (2’”)
sznz it

75 (k)
p(x (2](}1)

;
P

) < ¢y
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Here in the last inequality we using the following facts: If k > 0, |x| < 2¥, and x| <2 < 2K,
then the local-Hélder continuity of p(x) at the origin yields

1 1 1
— <|—-—=|log = +|— - —=|log —
2k—’p(xk) p(O)‘ 8 o ‘p(x;) p(O)‘ £ o

log zik

‘ 1 1
log

) plx)

log(e + 2i,<) -

with C > 0 independent of k, j, xx, ;.

Therefore,
k+1
(|x |+R k=Pla—n+ =)o ja
7‘) / i) dx<C > vl LY TP
IQI I xelly o) j=—00
Since

1/q
i i 1/
N il ny = QWX oy o)) < <Z 29 f xill (R")) < Ifllks,,.

o0
Thus by the condition « — 7 + ;= < 0, it follows that

(|x0|+R

|Q| ol /|Iﬂfl(x)|dx<c|lf||1<a ®7)* (4.3)
"lXallp(

Next we estimate jﬂfz. Let ¢y = zgfz(xo). Forany x € Q, y € 4; and j > k + 2, we have
lxo =y > |y| = |xo| > 21 = 2K > 272, Then

- 1 1
Lefo(x) —ca| < - d
1) 2|‘/Rn le—y"F g —y*P 0] dy
f )l
=CR / o —ypFi Y
R1\B(0,2¢+1) [%0 — ¥

<CR22" ﬂ“/[f(y\dy

j=k+2

By Lemma 3.1 and Lemma 3.3, we obtain

o0

(|x0| + R)” ke /n=p+1)
/|1ﬁf2(x —e|dx<CRY . =————|Ql [ |f()|dy
Q1% lxallyo) G QA el
< kao—j(n—B+1)
A P S
<CR e (2L P
jok+2 QI
2ka2—] —B+1)
<CR Z IV x5 10 11337 1 35 D -

j=k+2
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Applying the arguments used in the corresponding step of the estimate of I4f;, we arrive
at the inequality

n

18 1) | X3y My < comp i (4.4)

Sincea—ﬁ+1%+1>0,

(|7C |+R) k—j)a—B+ ++ o
Oiflfﬁmx)—qld%CZf PPN Kl
Q| ”XQ”p( j=k+2 (4.5)

< Clfliks,, ey

Combining (4.1)-(4.5), cases (1) and (2) are proved.
Case (3). We write

S %) =f xBo,20) () +f X By \(Br_3UB(o,2R) X) + f XBi_5 (%) + f Xxmm\5,,, (%)
= fi(%) + fo(x) + f3 (%) + fa(x).

(4.6)

First we estimate Igf;. Let ¢; = fy|>1 G ﬂ dy, then Ipfy —c; = Igfi. Forany x € Q, |Igfi(x)| <

/ 4G
B(x0,2R) ‘xiy‘”_ﬁ

/|Iﬁf1(x)‘dx§/ V | dxdy
Q Blxo,2R) Qlx—

sC|Q|§/ £ dy
B(x0,2R)

dy. Then by Fubini’s theorem and Lemma 3.1, we obtain

£
< ClQI7 [f xBtxo,20) lp() | XBo.20) 117 (-

Note that B(xg,2R) C Ull”kl ,Aj, s0

(|x |+ R)? .
- - f |Iﬁf1 ) —c1|dx < C2% |If xBexo,20) 1)
|Q| I xallp)
k+1
<C 2 |f xllp0)
j=k-2
= C”f”](a R7) (4.7)

Next we estimate jﬁﬁ. Let ¢, = jﬂfz (%0). By Lemma 3.1, and then by the condition 1 < 8 <
[% +1 with Lemma 3.5,

- )|
|IﬁfZ(x) - C2i =CR /Ix —y[>2R W)lz)%

XR"\B(x0,2R)

= CRlleBk+1\Bk 3 ”P( | |n B+1

)40}
£,
< C[B(x0, 2R)| " If XBi\Bes llp) | XBexo.20) 1)

B_
< C1QI" M B \Bes o) | X0l ) -
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Hence

(|x0|+R

f ‘Iﬂfz(x - c2| dx < Czka”fXBk+1\Bk sllp)
|Q| " xollp )

= C||f||1<0t R7) (4.8)

Now we estimate 7ﬂf4. Let ¢4 = jﬁﬁ;(xo), For any x € Q, y € B(0,253), we have |xo — y| >
lxo| — |y| > 2k-2 — 2%=3 = 2%=3 Then

- 1
Ifi(x) — ¢ 5/ )| d
W -al< | |\e T y|" 7| Va0 4y
SCR/ 1462l dy
B(0,2k-3) [0 — Y|P+

< CR2 7 n=F+D) / [f )| dy
B(0,2k-3)

= CR2n=B+D) Z/ If )| dy.

J=—00
Now Lemma 3.1 yields
k-3
afa®) = ca| < CR2FPD N300 1 15
Jj=—00
Lemma 3.6 gives
1
Ixallot _ C(@)” ' (4.9)
I x 1o | Bil

Since o — 11 + 1% < 0, we have

(Ixo] + R)* .
ﬁ4/|lﬂf4(x)—64|dx
QI I xally )
2ka . ) k-3
=Co g2 M. Z I i Loy 1 51 ol Xl ey
Q| = Pl
2% Wil s
= sz R (IB |) Z I %31l pe) 1 x8; lpr ) L XBi N
x| 7 -
k-3 '
<C Y 28Tyl
j=—00

< Clf i, e (4.10)
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Finally we estimate iﬁfé. Let ¢c3 = 7ﬂﬁ,(xo). Forany x € Q, y € R” \ B(0,2¢*)), and j > k + 2,
we have |xg — y| > |y| — |xo| > 2K+ — 2% = 2%, Then we write

- )
pe-al=cef A
R1\B(0,2k+1) [%0 — Y

<CR22" ﬁ“/[f(y\dy

j=k+2

Lemma 3.1 implies
f F0)] dy < CIF 10 x5 -
4

Applying Lemma 3.3 we obtain

k-3

(Ixol +R)* [ = 2 e
——— / |afs (%) = o3| dac < C—5 270> £ 35,0 1, L0l Xl ot -
Q17 lIxally) /@ QI fared

Since o — 8 + 1% +1>0, by (4.4) and (4.9),

Gl +RY et 24D
f‘lﬁfs )—cs|dx<C Z 26D

|Q| " ”XQ”p j=k+2
< Clif kg, e (4.11)

Combining (4.6)-(4.8), (4.10), and (4.11), case (3) is proved and then the proof of the the-
orem is completed. d

Proof of Theorem 2.2 Let fi(x) = 27 x (i 9i 7 (%) for i > 1, then ”ﬁ”k;’(.)q(Rl) ~1and

1
e —yIF 2

(2 +1-x)" - (21 -x)" -1}.

iﬁﬁ(x)-iﬂﬁ(zipfw{ y|1 ﬂ}f(y) ly
o-ia
B

Let B; = (27 —1,2%) with |B;| = 1, then

2—ia(2/3+1 _ 13 _ 3)

1 7 7 i
B /Bil,gﬁ(x)dx: 561 +14fi(2).
Hence
1 - -
o [ et - et a
~ z—ia 21 ; P ; P 2ﬂ+1 _ :B -3
= ﬁ i (2 +1—x) —(2 —x) —I—T dx
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2—1’0[ 1 2ﬂ+l - B8-3
2 (oo ma-nfo1- 2 P23 4
B Jo p+1
- sziot

and

1

lim —
=00 (121 = 3| + 3)7 ¢ Bl A | X, ) U,

£ (%) — Tgf)5, | dx

Cz—ia

lim -
ioo (120 = 2|+ 3) ¢ Bil P xg, ()

lim C2% = oo.

11— 00

This finishes the proof of Theorem 2.2. 0
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