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From the transformer inequality, every connection is invariant consider congruences in

the sense that for eachA,B≥ � and C > � we have

C(Aσ B)C = (CAC)σ (CBC).

A meanis a connectionσ with normalized condition I σ I = I or, equivalently, “xed-point

property Aσ A = A for all A ≥ �. The class of Kubo-Ando means cover many well-known

operator means in practice,e.g.

• α-weighted arithmetic means: A�α B = (� …α)A + αB;
• α-weighted geometric means: A #α B = A�/� (A…�/� BA…�/� )αA�/� ;
• α-weighted harmonic means: A !α B = [(� …α)A…�+ αB…�]…�;
• logarithmic mean: (A,B) �→ A�/� f (A…�/� BA…�/� )A�/� where f : R+ → R+,

f (x) = (x … �)/log x, f (�) ≡ � , and f (�) ≡ � . Here, R+ = [�, ∞).
See [� , � ], [� ], Section �, and [	 ], Chapter �.

It is a fundamental that there are one-to-one correspondences between the following

objects:

() operator connections on B(H)+;
() operator monotone functions from R+ to R+;
() finite (positive) Borel measures on [�, �] ;
() monotone (Riemannian) metrics on the smooth manifold of positive definite

matrices.
Recall that a functionf : R+ → R+ is said to beoperator monotoneif

A ≤ B �⇒ f (A) ≤ f (B)

for all positive operatorsA,B∈ B(H) and for all Hilbert spacesH. This concept was intro-

duced in [
 ]; see also [� ], Chapter V, [� ], Section �, and [	 ], Chapter �. Concrete examples

of operator monotone functions are provided in [� ]. A remarkable fact is that (see [�� ]) a

function f : R+ → R+ is operator monotone if and only if it isoperator concave, i.e.

f
�
(� …α)A + αB

� ≥ (� …α)f (A) + αf (B), α ∈ (�, �),

for all positive operatorsA,B∈ B(H) and for all Hilbert spacesH.

A connectionσ on B(H)+ can be characterized via operator monotone functions as fol-

lows.

Theorem . ([� ]) Given a connectionσ , there is a unique operator monotone function

f : R+ → R+ satisfying

f (x)I = I σ (xI), x ≥ �.

Moreover, the mapσ �→ f is a bijection.

We call f the representing functionof σ . A connection also has a canonical characteriza-

tion with respect to a Borel measure via a meaningful integral representation as follows.
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Theorem . ([�� ]) Given a “nite Borel measureμ on [�, �], the binary operation

Aσ B =
�

[�,�]
A !t Bdμ(t), A,B≥ �, (�.�)

is a connection on B(H)+. Moreover, the mapμ �→ σ is bijective, in which case the repre-

senting function ofσ is given by

f (x) =
�

[�,�]
(� ! t x)dμ(t), x ≥ �. (�.�)

We call μ the associated measureof σ . A connection is a mean if and only iff (�) = � or

its associated measure is a probability measure. Hence every mean can be regarded as an

average of weighted harmonic means. From (�.� ) and (�.� ), σ and f are related by

f (A) = I σ A, A ≥ �. (�.�)

A connectionσ is said to besymmetricif Aσ B = Bσ A for all A,B≥ �.

The notion of monotone metrics arises naturally in quantum mechanics. A metric on a

dierentiable manifold of n-by-n positive de“nite matrices is a continuous family of posi-

tive de“nite sesquilinear forms assigned to each invertible density matrix in the manifold.

A monotone metric is a metric with the contraction property under stochastic maps. It was

shown in [�� ] that there is a one-to-one correspondence between operator connections

and monotone metrics. Moreover, symmetric metrics correspond to symmetric means. In

[�� ], the author de“ned a symmetric metric to benonregularif f (�) = � where f is the asso-

ciated operator monotone function. In [�� ], f is said to benonregularif f (�) = �, otherwise

f is regular. It turns out that the regularity of the associated operator monotone function

guarantees the extendability of this metric to the complex projective space generated by

the pure states (see [�� ]).

In the present paper, we introduce the concept of cancellability for operator connections

in a natural way. Various characterizations of cancellability with respect to operator mono-

tone functions, Borel measures, and certain operator equations are provided. It is shown

that a connection is cancellable if and only if it is not a scalar multiple of trivial means.

Applications of this concept go to certain nonlinear operator equations involving opera-

tor means. It is shown that such equations are always solvable if and only iff is unbounded

and f (�) = � where f is the associated operator monotone function. We also characterize

the condition f (�) = � for arbitrary connections without assuming the symmetry. Such a

connection is said to be nonregular.

This paper is organized as follows. In Section� , the concept of cancellability of operator

connections is de“ned and characterized. Applications of cancellability to certain nonlin-

ear operator equations involving operators means are explained in Section� . We investi-

gate the regularity of operator connections in Section� .

2 Cancellability of connections
The concept of cancellability for scalar means was considered in [�	 ]. We generalize this

concept to operator means or, more generally, operator connections as follows.
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Definition . A connectionσ is said to be

• left cancellableif for each A > � , B≥ � , and C ≥ � ,

Aσ B = Aσ C �⇒ B = C;

• right cancellableif for each A > � , B≥ � , and C ≥ � ,

Bσ A = Cσ A �⇒ B = C;

• cancellableif it is both left and right cancellable.

Lemma . Every nonconstant operator monotone function fromR+ to R+ is injective.

Proof Let f : R+ → R+ be a nonconstant operator monotone function. Suppose there exist

b > a ≥ � such that f (a) = f (b). Sincef is monotone increasing (in the usual sense),f (x) =

f (a) for all a ≤ x ≤ b andf (y) ≥ f (b) for all y≥ b. Sincef is operator concave,f is concave

in the usual sense and hencef (x) = f (b) for all x ≥ b. The casea = � contradicts the fact

that f is nonconstant. For the casea > �, suppose that there is a pointc∈ (�, a) such that

� ≤ f (c) < f (a). The convexity of the functiong(x) = xf (x) (see [� ], Lemma �.�) yields a

contradiction. �

A similar result for this lemma under the restriction thatf (�) = � was obtained in [ �
 ].

The left cancellability of connections is now characterized as follows.

Theorem . Let σ be a connection with representing function f and associated mea-

sureμ. Then the following statements are equivalent:

() σ is left cancellable;
() for eachA ≥ � and B≥ � , I σ A = I σ B �⇒ A = B;
() σ is not a scalar multiple of the left-trivial mean;
() f is injective, i.e., f is left cancellable in the sense that

f ◦ g= f ◦ h �⇒ g= h;

() f is a nonconstant function;
() μ is not a scalar multiple of the Dirac measureδ� at � .

Proof Clearly, (�) ⇒ (�) ⇒ (�) and (�) ⇒ (�). For eachk ≥ �, it is straightforward to show

that the representing function of the connection

kωl : (A,B) �→ kA

is the constant functionf ≡ k and its associated measure is given bykδ� . Hence, we have

the implications (�) ⇔ (�) ⇔ (	). By Lemma �.� , we have (�)⇒ (�).

(�) ⇒ (�): Assume that f is injective. ConsiderA ≥ � and B ≥ � such that I σ A = I σ B.

Then f (A) = f (B) by (�.� ). Sincef …�◦ f (x) = x for all x ∈ R+, we haveA = B.
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(�) ⇒ (�): Let A > �, B ≥ �, and C ≥ � be such that Aσ B = Aσ C. By the congruence
invariance ofσ , we have

A
�
�
�
I σ A…�

� BA…�
�
�
A

�
� = A

�
�
�
I σ A…�

� CA…�
�
�
A

�
�

and thusI σ A…�
� BA…�

� = I σ A…�
� CA…�

� . The assumption (�) impliesB = C. �

Recall that thetransposeof a connectionσ is the connection

(A,B) �→ Bσ A.

If f is the representing function ofσ , then the representing function of the transpose ofσ
is given by thetransposeof f (see [� ], Corollary �.�), de“ned by

x �→ xf (�/ x), x > �.

A connection issymmetricif it coincides with its transpose.

Theorem . Let σ be a connection with representing function f and associated mea-
sureμ. Then the following statements are equivalent:

() σ is right cancellable;
() for eachA ≥ � and B≥ � , Aσ I = Bσ I �⇒ A = B;
() σ is not a scalar multiple of the right-trivial mean;
() the transpose off is injective;
() f is not a scalar multiple of the identity functionx �→ x;
() μ is not a scalar multiple of the Dirac measureδ� at � .

Proof It is straightforward to see that, for eachk ≥ �, the representing function of the
connection

kωr : (A,B) �→ kB

is the function x �→ kx and its associated measure is given bykδ� . The proof is done by
replacingσ with its transpose in Theorem�.� . �

Remark . The injectivity of the transpose off does not imply the surjectivity off . To
see that, takef (x) = (� + x)/�. Then the transpose off is f itself.

The following results are characterizations of cancellability for connections.

Corollary . Let σ be a connection with representing function f and associated mea-
sureμ. Then the following statements are equivalent:

() σ is cancellable;
() σ is not a scalar multiple of the left/right-trivial mean;
() f and its transpose are injective;
() f is neither a constant function nor a scalar multiple of the identity function;
() μ is not a scalar multiple ofδ� or δ� .

In particular, every nontrivial mean is cancellable.
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Remark . The •order cancellability• does not hold for general connections, even if we

restrict them to the class of means. For eachA,B > �, it is not true that the condition

I σ A ≤ I σ B or the condition Aσ I ≤ Bσ I implies A ≤ B. To see this, takeσ to be the

geometric mean. It is not true thatA�/� ≤ B�/� implies A ≤ B in general.

3 Applications to certain nonlinear operator equations involving means
Cancellability of connections can be restated in terms of the uniqueness of certain opera-

tor equations as follows. A connectionσ is left cancellable if and only if

for each givenA > � and B≥ �, if the equation Aσ X = B has a solutionX, then it has

a unique solution.

The similar statement for right cancellability holds. In this section, we characterize the ex-

istence and the uniqueness of a solution of the operator equationAσ X = B. The equations

of this type with speci“c operator meansσ are also considered.

Theorem . Letσ be a connection which is not a scalar multiple of the left-trivial mean.

Let f be its representing function. Given A> � and B≥ �, the operator equation

Aσ X = B

has a(positive) solution if and only ifSp(A…�
� BA…�

� ) ⊆ Range(f ). In fact, such a solution is

unique and given by

X = A
�
� f …�� A…�

� BA…�
�
�
A

�
� .

Proof Suppose that there is a positive operatorX such that Aσ X = B. The congruent

invariance ofσ yields

A
�
�
�
I σ A…�

� XA…�
�
�
A

�
� = B.

The property (�.� ) now implies

f
�
A…�

� XA…�
�
�

= I σ A…�
� XA…�

� = A…�
� BA…�

� .

By the spectral mapping theorem,

Sp
�
A…�

� BA…�
�
�

= Sp
�
f
�
A…�

� XA…�
�
��

= f
�
Sp

�
A…�

� XA…�
�
�� ⊆ Range(f ).

Conversely, suppose thatSp(A…�
� BA…�

� ) ⊆ Range(f ). Sinceσ �= kωl for all k ≥ �, we see that

f is nonconstant by Theorem�.� . It follows that f is injective by Lemma�.� . The assump-

tion yields the existence of the operatorX ≡ A
�
� f …�(A…�

� BA…�
� )A

�
� . We obtain from the

property (�.� ) Aσ X = B. The uniqueness of a solution follows from the left cancellability

of σ . �

Similarly, we have the following theorem.
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Theorem . Letσ be a connection which is not a scalar multiple of the right-trivial mean.
Given A> � and B≥ �, the operator equation

X σ A = B

has a(positive) solution if and only ifSp(A…�/� BA…�/� ) ⊆ Range(g), here g is the representing
function of the transpose ofσ . In fact, such a solution is unique and given by

X = A�/� g…�� A…�/� BA…�/� � A�/� .

Theorem . Letσ be a connection with representing function f. Then the following state-
ments are equivalent:

() the operator equation

Aσ X = B (�.�)

has a unique solution for any givenA > � and B≥ � ;
() f is unbounded andf (�) = � ;
() f is surjective, i.e., f is right cancellable in the sense that

g◦ f = h ◦ f �⇒ g= h.

Moreover, if (�) holds, then the solution of(�.� ) varies continuously in each given A> � and
B≥ �, i.e. the map(A,B) �→ X is separately continuous with respect to the strong-operator
topology.

Proof (�) ⇒ (�): This follows directly from the intermediate value theorem.
(�) ⇒ (�): It is immediate from Theorem �.� .
(�) ⇒ (�): Assume (�). The uniqueness of solution for the equationAσ X = B implies

the left cancellability ofσ . By Theorem�.� , f is injective. The assumption (�) implies the
existence of a positive operatorX such that

f (X) = I σ X = �.

The spectral mapping theorem implies thatf (λ) = � for all λ ∈ Sp(X). Sincef is injective,
we haveSp(X) = {λ} for someλ ∈ R+. SinceX is not invertible (otherwise,I σ X > �), we
haveλ = � and hence f (�) = �.

Now, let k > �. The assumption (�) implies the existence ofX ≥ � such that I σ X = kI.
Sincef (X) = kI, we havef (λ) = k for all λ ∈ Sp(X). SinceSp(X) is nonempty, there isλ ∈
Sp(X) such thatf (λ) = k. Therefore,f is unbounded.

Assume that (�) holds. Then the map (A,B) �→ X is well de“ned. Recall that ifAn ∈
B(H)+ converges strongly toA, thenφ(An) converges strongly toφ(A) for any continuous
function φ. It follows that the map

(A,B) �→ X = A
�
� f …�� A…�

� BA…�
�
�
A

�
�

is separately continuous in each variable. �
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Next, we investigate certain nonlinear operator equations involving operator means.
First, consider a class of parametrized means, namely, thequasi-arithmetic power mean
#p,α with exponentp ∈ […�, �] and weightα ∈ (�, �), de“ned by

A #p,α B =
�
(� …α)Ap + αBp� �/ p

.

Its representing function of this mean is given by

fp,α(x) =
�
� …α + αxp� �/ p

.

The special casesp = � and p = …� are theα-weighted arithmetic mean and theα-weighted
harmonic mean, respectively. The casep = � is de“ned by continuity and, in fact, #�, α = #α

and f�, α(x) = xα .

Example . Let p ∈ […�, �] andα ∈ (�, �). Given A > � and B ≥ �, consider the operator
equation

A #p,α X = B. (�.�)

The case p= �: Since the range off�, α(x) = xα is R+, equation (�.� ) always has a unique
solution given by

X = A�/� �
A…�/� BA…�/� � �/ α

A�/� ≡ A #�/ α B.

The case� < p ≤ �: The range offp,α is the interval [(� …α)�/ p,∞). Hence, equation (�.� )
is solvable if and only ifSp(A…�/� BA…�/� ) ⊆ [(� …α)�/ p,∞), i.e., B≥ (� …α)�/ pA.

The case…�≤ p < �: The range of fp,α is the interval [�, (� …α)�/ p). Hence, equation (�.� )
is solvable if and only ifSp(A…�/� BA…�/� ) ⊆ [�, (� … α)�/ p), i.e., B < (� …α)�/ pA.

For eachp ∈ […�, �) ∪ (�, �] and α ∈ (�, �), we have

f …�
p,α(x) =

�
� …

�
α

+
�
α

xp
� �/ p

.

Hence, the solution of (�.� ) is given by

X =
	�

� …
�
α

�
Ap +

�
α

Bp

 �/ p

≡ A #p, �
α

B.

Example . Let σ be the logarithmic mean with representing function

f (x) =
x … �
log x

, x > �.

Here,f (�) ≡ � and f (�) ≡ � by continuity. We see thatf is unbounded. Thus, the operator
equationAσ X = B is solvable for allA > � and B≥ �.

Example . Let η be the dual of the logarithmic mean,i.e.,

η : (A,B) �→ �
A…�σ B…�� …�

,
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whereσ denotes the logarithmic mean. The representing function ofη is given by

f (x) =
x

x … �
log x, x > �.

Sincef (�) ≡ � and f is unbounded, the operator equationAηX = B is solvable for allA > �

andB≥ �.

Next, we will consider a parametrized symmetric mean. For eachr ∈ […�, �], recall that

the function

gr(x) =
�

� r … �
� r + �

�
x

� r+�
� … �

x
� r…�

� … �
, x ≥ �,

is operator monotone (see [� ]). This function satis“esgr(�) = � and gr(x) = xgr(�/ x). Thus

it associates to a unique symmetric operator mean, denoted by♦r . In particular,

♦� = �, ♦� = #, ♦…�=!.

The operator means♦�/� and♦…�/� are the logarithmic mean and its dual.

Example . Let A > � and B≥ �. Consider the operator equation

A♦r X = B (�.�)

for each givenr ∈ […�, �].

The case�/� < r ≤ �: Observe that

lim
x→∞

�
� r … �
� r + �

�
x(� r+�)/� … �
x(� r…�)/� … �

= ∞,

meaning thatgr is unbounded. By the intermediate value theorem,

Range Fr =
�
gr (�), ∞�

=
	

� r … �
� r + �

,∞
�

.

By Theorem�.� , the operator equation (�.� ) has a (unique) solution if and only if

B≥
�

� r … �
� r + �

�
A.

The case� < r < �/�: Observe that

lim
x→∞

�
� r … �
� r + �

�
x(� r+�)/� … �
x(� r…�)/� … �

= ∞,

so thatgr is unbounded. By L•Hôspital•s rule, we have

gr(�) =
�

� r … �
� r + �

�
(…�)lim

x→�

x(…�/�)(� r…�)

� …x(…�/�)(� r…�)
= �.
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It follows that Range gr = [�, ∞). Theorem�.� guarantees the existence and uniqueness for

the solution of the equation (�.� ).

The case…(�/�) < r < �: It is similar to the case � < r < �/�. The operator equation (�.� )

always has a unique solution.

The case…� <r < …(�/�): We have

lim
x→∞

�
� r … �
� r + �

�
x(� r+�)/� … �
x(� r…�)/� … �

=
� r … �
� r + �

.

By L•Hôspital•s rule, we havegr(�) = �. By continuity,

Range gr =
	
�,

� r … �
� r + �

�
.

By Theorem�.� , the operator equation (�.� ) has a (unique) solution if and only if

B <
�

� r … �
� r + �

�
A.

The casesr = �/� and r = …�/� are already done in Examples�.� and �.	 .

4 Regularity of connections
In this section, we give various characterizations for the non-regularity of an operator

connection.

Theorem . Let σ be a connection with representing function f and associated mea-

sureμ. Then the following statements are equivalent.

() f (�) = � ;
() μ({� }) = � ;
() I σ � = � ;
() Aσ � = � for all A ≥ � ;
() for eachA ≥ � , the condition� ∈ Sp(A) implies� ∈ Sp(I σ A);
() for eachA,X ≥ � , the condition� ∈ Sp(A) implies� ∈ Sp(X σ A).

Proof From the integral representation (�.� ), we have

f (x) = μ
� {� }� + μ

� {� }� x +
�

(�,�)
(� ! t x)dμ(t), x ≥ �, (�.�)

i.e. f(�) = μ({� }). From the property (�.� ), we haveI σ � = f (�) I . Hence, (�)-(�) are equiva-

lent. It is clear that (�) ⇒ (�) and (	) ⇒ (�).

(�) ⇒ (�): Assume that I σ � = �. For any A > �, we have by the congruence invariance

Aσ � = A
�
� (I σ �) A

�
� = �.

For generalA ≥ �, we have (A + εI )σ � = � for all ε > � by the previous claim and hence

Aσ � = � by the continuity from above.

(�) ⇒ (�): We have � ∈ Sp(I σ �) = Sp(f (�) I ) = {f (�) }, i.e. f(�) = �.
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(�) ⇒ (	): Assume f (�) = �. Consider A ≥ � such that � ∈ Sp(A), i.e. Ais not invertible.
Assume “rst that X > �. Then

X σ A = X
�
�
�
I σ X…�

� AX…�
�
�
X

�
� = X

�
� f

�
X…�

� AX…�
�
�
X

�
� .

SinceX…�
� AX…�

� is not invertible, we have �∈ Sp(X…�
� AX…�

� ) and hence by the spectral
mapping theorem

� = f (�) ∈ f
�
Sp

�
X…�

� AX…�
�
��

= Sp
�
f
�
X…�

� AX…�
�
��

.

This implies that X σ A is not invertible. Now, considerX ≥ �. The previous claim shows
that (X + I )σ A is not invertible. SinceX σ A ≤ (X + I )σ A, we conclude thatX σ A is not
invertible. �

We say that a connectionσ is nonregularif one of the conditions in Theorem�.� holds
(and thus they all do), otherwiseσ is regular. Hence, regular connections correspond to
regular operator monotone functions and regular monotone metrics.

Remark . Let σ be a connection with representing functionf and associated mea-
sureμ. Let g be the representing function of the transpose ofσ . From (�.� ),

g(�) = lim
x→� +

xf
�

�
x

�
= lim

x→∞
f (x)
x

= μ
� {� }� .

Thus, the transpose ofσ is nonregular if and only ifμ({� }) = �.

Theorem . The following statements are equivalent for a meanσ .
() σ is nonregular;
() I σ P= P for each projectionP.

Proof (�) ⇒ (�): Assume that f (�) = � and consider a projection P. Sincef (�) = �, we have
f (x) = x for all x ∈ {�, � } ⊇ Sp(P). ThusI σ P= f (P) = P.

(�) ⇒ (�): We have � = I σ � = f (�) I , i.e. f(�) = �. �

To prove the next result, recall the following lemma.

Lemma . ([� ]) If f : R+ → R+ is an operator monotone function such that f(�) = � and f
is neither the constant function� nor the identity function, then

() � < x < � �⇒ x < f (x) < � ;
() � < x �⇒ � < f (x) < x.

Theorem . Letσ be a nontrivial mean. For each A≥ �, if I σ A = A, then A is a projec-
tion. Hence, the following statements are equivalent:

() σ is nonregular;
() for eachA ≥ � , A is a projection if and only ifI σ A = A.

Proof SinceI σ A = A, we havef (A) = A by (�.� ). Hencef (x) = x for all x ∈ Sp(A) by the
injectivity of the continuous functional calculus. Sinceσ is a nontrivial mean, Lemma�.�
implies that Sp(A) ⊆ {�, � }, i.e. Ais a projection. �
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Theorem . Under the condition thatσ is a left-cancellable connection with representing

function f , the following statements are equivalent:

() σ is nonregular.
() The equationf (x) = � has a solutionx.
() The equationf (x) = � has a unique solutionx.
() The only solution tof (x) = � is x = � .
() For eachA > � , the equationAσ X = � has a solutionX.
() For eachA > � , the equationAσ X = � has a unique solutionX.
() For eachA > � , the only solution to the equationAσ X = � is X = � .
() The equationI σ X = � has a solutionX.
() The equationI σ X = � has a unique solutionX.

() The only solution to the equationI σ X = � is X = � .
Similar results for the case of right cancellability hold.

Proof It is clear that (�) ⇒ (�), (	) ⇒ (�) and (��) ⇒ (�). Sincef is injective by Theorem�.� ,

we have (�)⇒ (�) ⇒ (�).

(�) ⇒ (��): Let X ≥ � be such that I σ X = �. Then f (X) = � by ( �.� ). By spectral mapping

theorem,f (Sp(X)) = {� }. Hence,Sp(X) = {� }, i.e. X= �.

(�) ⇒ (�): Consider X ≥ � such that I σ X = �. Then f (X) = �. Since f is injective with

continuous inverse, we haveX = f …�(�).

(�) ⇒ (	): Use congruence invariance.

(�) ⇒ (
): Let A > � and considerX ≥ � such that Aσ X = �. Then A
�
� (I σ A…�

� XA…�
� )A

�
� =

�, i.e. f(A…�
� XA…�

� ) = I σ A…�
� XA…�

� = �. Hence,

f
�
Sp

�
A…�

� XA…�
�
��

= Sp
�
f
�
A…�

� XA…�
�
��

= {� }.

Suppose there existsλ ∈ Sp(A…�
� XA…�

� ) such thatλ > �. Then f (�) < f (λ) = �, a contradic-

tion. Hence,Sp(A…�
� XA…�

� ) = {� }, i.e. A…�
� XA…�

� = � or X = �.

(
) ⇒ (�): We havef (�) I = I σ � = �, i.e. f(�) = �. �
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